Survival analysis hw03
41— 105225020 wei ting sun fAEREE

Reproduce all results in Example 7.2 and Example 7.3 (do not use R packages . )
1.

The data showed below :

Surgically Placed Catbeter

Infection Times: 1.5, 3.5, 4.5, 4.5, 5.5, 8.5, 8.5, 9.5, 10.5, 11.5, 15.5, 16.5, 18.5, 23.5, 26.5
Censored Observations: 2.5, 2.5, 3.5, 3.5, 3.5, 4.5, 5.5, 6.5,6.5,7.5,7.5,7.5,7.5, 85,95
10.5, 11.5, 12,5, 125, 13,5, 14.5, 14.5, 21.5, 21.5, 22,5, 225, 255, 275
Percutaneous Placed Catheter

Infection Times: 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 2.5, 2.5, 3.5, 6.5, 155
Censared Observations: 0.5, (0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 1.5, 1.5, 1.5, 1.5, 2.5,
2.5. 2.5, 2.5, 2.5, 3.5, 3.5, 3.5, 3.5, 3.5, 4.5, 4.5, 4.5, 5.5, 5.5, 5.5, 5.5, 5.5, 6.5, 7.5, 7.5,

5, 85,85, 85,95, 95, 105, 10.5, 10.5, 11.5, 11.5, 12.5, 125, 125, 125, 14.5, 14.5,
16 5, 16.5, 18.5, 19.5, 19.5, 19.5, 20.5, 22.5, 24.5, 25.5, 26.5, 26.5, 28.5

Group1: (t;1,6;1),i=1,...... My
Group 2: (tj2,6;2),i =1, ... M

Times to infection (in months) of kidney dialysis patients with different
catheterization procedures

We are interesting in testing if there is a difference in the time to cutaneous exit-site
infection between patients whose catheter was placed surgically (group 1) as

compared to patients who had their catheters placed percutaneously (group 2) .

(a) Figure 7.1

2 The picture shows the survival curves for
. the two samples which estimated
g & (Infection-free) survival function for
% kidney dialysis patients with
E 5 percutaneous (--) and surgical (—)
’ placements of catheters .
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Where
dij = z SkjI(tyj =1t;),j=1or2  number of deathin group j at t;

ng

Yij = ) I(txj = t;) = number of survivors in group j at t;
k=1
n1+n2
d] = Z 6k I(tk = t]*) = dil + diZ
k=1
ni{+n;

Vo= ) It t) = Yo+ Yo
k=1



(b)Table 7.2 construction of two-sample , log-rank test

t Yada Yo do Yo di v dy-val ( ——“)(Y ~a,
05 43 0 76 6 119 6 2168 -2.168 1 326
15 43 1 60 0 103 1 0417 0.583 0.243
25 42 0 56 2 98 2 0857 -0.857 0.485
35 40 1 49 1 89 2 0899 0101 0.489
45 36 2 43 0 79 2 0911 1089 0.490
55 33 1 40 0 73 1 0452 0548 0.248
65 31 0 35 1 66 1 0470 -0470 0.249
85 25 2 30 0 55 2 0909 1091 0.487
95 22 1 27 0 49 1 0449 0551 0.247
10520 1 25 0 45 1 0444 0.556 0.247
11518 1 22 0 40 1 0450  0.550 0.248
15511 1 14 1 25 2 0880 0.120 0.472
165 10 1 13 0 23 1 0435 0.565 0.246
185 9 1 11 0 20 1 0450 0.550 0.248
235 4 1 5 0 9 1 0444  0.556 0.247
265 2 1 3 0 5 1 0400 0.600 0.240
SUM 15 11 26 11036 3.964 6.211

The table above showed the calculations needed to construct the log-rank test .
Where we can see that
Hy, = no dif ference between two groups

H, = there is a dif ference between two groups
> Z

1] 1.590442
Zl—ZW(t)<ll ll(y))—s%z} £il
[1] 3.963552
Yi4 12 Yid = var
> ZA2
- Zy — 3'964 =159 [1] 2.529506
JVar(z,) +Ve.211 > 2% (1l-pnorm(z))
P — value = 0.1117 > o = 0.05 [1] 0.1117352

Do not reject Hj, , so the log-rank test suggest that there is no difference between

two procedures in the distribution of the time to exit-site infection .



(c)Table 7.3 comparison of two-sample tests

Test W(t) Z1(7) 2 x? | p-value
Log-Rank 1.0 3.964 6.211 253 | 0.112
Gehan Y; -9.000 | 38861.81 | 0.002 | 0.964
Tarone-Ware 1 13.203 | 432.831 | 0.403 | 0.526
Y2
Peto-Peto S(ty) 2.469 | 4.358 |1.399 | 0.237
Modified Peto-Peto 3 2.313 4195 |1.276 | 0.259
S(E)Y:/(Y; + 1)
Fleming-Harrington [1—S(t;i_y)] 1.413 0.207 |9.668 | 0.002
p=0,q=1
Fleming-Harrington S(ti—1) 2.550 4.690 |1.387| 0.239
p=1,g=0
Fleming-Harrington | S(t;_,)[1 —S(t;_,)] | 1.021 | 0.106 |9.834 | 0.002
p=1,9=1
Fleming-Harrington S(t;_)%%[1 2.470 | 0.657 |9.285| 0.002
p=0.5,9=0.5 —S(t;-1)]°°
Fleming-Harrington S(t;-1)%°[1 0.324 | 0.013 |[8.179| 0.004
p=0.5,g=2 — S(ti-)1?

To further investigate these two treatments , we shall apply some of the other weight
functions . The table summarizes the results of the tests .

We defined the common survival function as S(t;) = [1(1 — L) :

) d;
=] Ja-7

The Gehan weights may have misleading results when the censoring patterns are
different in the individual samples .
Fleming-Harrington : weighted function is

W(t) = S(ti-1)P[1 = S(ti-)]%p 20, 2 0
When p=g=0, we can lead to log-rank test ; when p=1, g=0, we can lead to Mann-—
Whitney—Wilcoxon test ; when g=0 and p>0 , these weights give the most weight to
early departures between the hazard rates in the K populations, whereas, when p=0
and g>0, these tests give most weight to departures which occur late in time.

So we need to choose the appropriate pand q .



(d)Figure 7.2 Relative weights for comparison of observed and expected numbers

of deaths for kidney dialysis patients .
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The figure shows the relative weights these tests give to the comparisons at each
time point, where we plot with (t;*,w;) , w; = W(t;)/ X, W(t;) . We can see
that Gehan’s weight function gives very heavy weight to early comparisons at

t;" = 0.5 and it leads to a negative test statistic .

The Fleming-Harrington tests put more weight on the late comparison and lead to
significance tests because the two survival curves diverge for larger values of t .

The picture | draw is not similar to text book because the text book is wrong , it

mistake to draw Fleming-Harrington p=0.5,g=2 as p=2,q=2, so it does not look the

same.
wl w2 w3 wé w5 wb w7 w8 w9 wl0

0.06250 0.13252 0.09662 0.07530 0.07689 0.00000 0.07645 0.00000 0.00000 0.00000
0.06250 0.11470 0.08989 0.07458 0.07606 0.01727 0.07260 0.02209 0.03937 0.00396
0.06250 0.10913 0.08768 0.07307 0.07448 0.02043 0.07189 0.02587 0.04261 0.00552
0.06250 0.09911 0.08356 0.07145 0.07275 0.02700 0.07042 0.03350 0.04849 0.00954
0.06250 0.08797 0.07873 0.06966 0.07084 0.03409 0.068384 0.04135 0.05387 0.01504
0.06250 0.08129 0.07568 0.06872 0.06981 0.04190 0.06710 0.04953 0.058%6 0.02243
0.06250 0.07350 0.07196 0.06769 0.06867 0.04602 0.06618 0.05365 0.06136 0.02687
0.06250 0.06125 0.06569 0.06527 006602 0.05051 0.06518 0.05800 0.06380 0.03213
0.06250 0.05457 0.06200 0.06397 0.06456 0.06113 0.06281 0.06764 0.06890 0.04619
0.06250 0.05011 0.05942 0.06258 0.06304 0.06687 0.06152 0.07248 0.07132 0.05472
0.06250 0.04454 0.05602 0.06105 0.06134 0.07299 0.06016 0.07736 007368 0.06447
0.06250 0.02784 0.04429 0.05636 005580 0.07973 0.05865 0.08239 0.07604 0.07595
0.06250 0.02561 0.04248 0.05401 0.05330 0.10075 0.05396 0.09579 0.08199 0.11633
0.06250 0.02227 0.03961 0.05144 005044 011126 0.05162 010118 0.08426 0.13875
0.06250 0.01002 0.02657 0.04629 0.04290 0.12283 0.04903 0.10611 0.08629 0.16481
0.06250 0.00557 0.01981 0.03858 0.03310 0.14723 0.04359 0.11306 0.08907 0.22327

The relative weight | calculated is on above .



2.

| download the data from package-boot, first we separated the data into two groups
—male and female .

These data are left-truncated by the individual’s entry time into the retirement
center . We now try to test the hypothesis that females live longer than males .

Hy: hp(t) = hy(t) ,777months <t < 1152

Hy:hg(t) < hy(t) ,forallt € [777,1152]

We can compute the Y;,, and Y;r as the number of male and female, on the other
hand, who is in the center at age ¢; .

Here we use the log-rank test , where

_ d;
7, = Z W (t) <di1 — Yy (7‘)> = 9.692915
l

Y1V, Yid;

Z) =) W2(t 4, =282119
Var(Z,) ZW(tl) Ly = 2821195

/A 9.692915

7= = = 1.824895
JVar(z,) +28.21195

P — value = 0.03400844 < o = 0.05

So the log-rank test suggest us to reject H, , which means we have enough

evidence that males are dying at a faster rate than females .

>zl

[1] 9.692915
> var

[1] 28.21195
> Z

[1] 1.824895
> l-pnorm(z)
[1] 0.03400844



<code>

##tfigure 7.1

datal=c(1.5,3.5,4.5,4.5,5.5,8.5,8.5,9.5,10.5,11.5,15.5,16.5,18.5,23.5,26.5)

datal_c=c(2.5,2.5,3.5,3.5,3.5,4.5,5.5,6.5,6.5,7.5,7.5,7.5,7.5,8.5,9.5,
10.5,11.5,12.5,12.5,13.5,14.5,14.5,21.5,21.5,22.5,22.5,25.5,27.5)

censl1=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1)

timel=c(datal,datal_c)

dataal=cbind(timel,cens1)

data2=c(0.5,0.5,0.5,0.5,0.5,0.5,2.5,2.5,3.5,6.5,15.5)
data2_c=c(0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,1.5,1.5,1.5,1.5,2.5,
2.5,2.5,2.5,2.5,3.5,3.5,3.5,3.5,3.5,4.5,4.5,4.5,5.5,5.5,5.5,5.5,5.5,6.5,7.5,7.5,
7.5,8.5,8.5,8.5,9.5,9.5,10.5,10.5,10.5,11.5,11.5,12.5,12.5,12.5,12.5,14.5,14.5,
16.5,16.5,18.5,19.5,19.5,19.5,20.5,22.5,24.5,25.5,26.5,26.5,28.5)
cens2=c(0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
,,111,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
,1,1,1,1,1,1,1,1,1)
time2=c(data2,data2_c)

dataa2=cbind(time2,cens2)

t=unique(sort(c(datal,data2)))
length(t)

y1=1:16 #number of unique death times

for(i in 1:16)
{
yl[i]=length(timel[t[i]<=time1l])
}
vyl
dil=1:16
for(iin 1:16)
{

d1[i]=sum(timel==t[i]&cens1==0)




}
d1

y2=1:16 #number of unique death times

for(iin 1:16)

{
y2[i]=length(time2[t[i]<=time2])

}

y2

d2=1:16

for(iin 1:16)

{
d2[i]=sum(time2==t[i]&cens2==0)

}
d2

stl=cumprod(1-d1/y1)

stl=c(1,st1)

t1=c(0,t)

st2=cumprod(1-d2/y2)

st2=c(1,st2)

t2=c(0,t)

plot(tl,stl,type='s' xlim=c(0,30),ylim=c(0,1),xlab='Time (in Months) to Exit Site
Infection',ylab='Estimated Survival Functions')

par(new=TRUE)

plot(t2,st2,type="s' xlim=c(0,30),ylim=c(0,1),xlab='Time (in Months) to Exit Site

Infection',ylab='Estimated Survival Functions',lty=9)

##table 7.2

datal=c(1.5,3.5,4.5,4.5,5.5,8.5,8.5,9.5,10.5,11.5,15.5,16.5,18.5,23.5,26.5)

datal_c=c(2.5,2.5,3.5,3.5,3.5,4.5,5.5,6.5,6.5,7.5,7.5,7.5,7.5,8.5,9.5,
10.5,11.5,12.5,12.5,13.5,14.5,14.5,21.5,21.5,22.5,22.5,25.5,27.5)

cens1=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1)

timel=c(datal,datal_c)

dataal=cbind(timel,censl)




data2=¢(0.5,0.5,0.5,0.5,0.5,0.5,2.5,2.5,3.5,6.5,15.5)
data2_c=c(0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,1.5,1.5,1.5,1.5,2.5,

2.5,2.5,2,5,2.5,3.5,3.5,35,3.5,3.5,4.5,4.5,4.5,5.5,5.5,5.5,5.5,5.5,6.5,7.5,7.5,

7.5,8.5,8.5,8.5,9.5,9.5,10.5,10.5,10.5,11.5,11.5,12.5,12.5,12.5,12.5,14.5,14.5,
16.5,16.5,18.5,19.5,19.5,19.5,20.5,22.5,24.5,25.5,26.5,26.5,28.5)
cens2=c(0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
,,111,1,1,1,1,1,1,2,1,1,1,2,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
,1,1,1,1,1,1,1,1,1)
time2=c(data2,data2_c)

dataa2=cbind(time2,cens2)

t=unique(sort(c(datal,data2)))

y1=1:16 #number of unique death times

for(iin 1:16)

{
yl[i]=length(timel[t[i]<=time1l])

d1l=1:16

for(iin 1:16)

{
d1[i]=sum(timel==t[i]&cens1==0)

y2=1:16 #number of unique death times

for(iin 1:16)

{
y2[i]=length(time2[t[i]<=time2])

d2=1:16

for(iin 1:16)

{
d2[i]=sum(time2==t[i]&cens2==0)




y=yl+y2

d=d1+d2

t

vyl

di

y2

d2

y

d

y1*(d/y)

d1-y1*(d/y)
y1/y*(1-y1/y)*(y-d)/(y-1)*d
sum(y1*(d/y))
z1=sum(d1-y1*(d/y))
var=sum(y1/y*(1-y1/y)*(y-d)/(y-1)*d)
z=z1/sqrt(var)

z

chisq=z"2

2*(1-pnorm(z))

##table 7.3

H##tlog-rank

z1=sum(d1-y1*(d/y))
var=sum(y1/y*(1-y1/y)*(y-d)/(y-1)*d)
z=z1/sqrt(var)

z1

var

"2

2*(1-pnorm(z))

##t Gehan
z1=sum(y*(d1-y1*(d/y)))

var=sum(y~2*(y1/y*(1-y1/y)*(y-d)/(y-1)*d))

z=z1/sqrt(var)

10




z1
var
N2

2*(pnorm(z))

##tarone-ware
z1=sum(y~(1/2)*(d1-y1*(d/y)))
var=sum(y*(y1/y*(1-y1/y)*(y-d)/(y-1)*d))
z=z1/sqrt(var)

z1

var

"2

2*(1-pnorm(z))

##peto-peto

st=cumprod(1-d/(y+1))
z1=sum(st*(d1-y1*(d/y)))
var=sum(stA2*(y1/y*(1-y1/y)*(y-d)/(y-1)*d))
z=z1/sqrt(var)

z1

var

"2

2*(1-pnorm(z))

##modified peto-peto

st=cumprod(1-d/(y+1))
z1=sum(st*y/(y+1)*(d1-y1*(d/y)))
var=sum((st*y/(y+1))*2*(y1/y*(1-y1/y)*(y-d)/(y-1)*d))
z=z1/sqrt(var)

z1

var

"2

2*(1-pnorm(z))

##fleming-harrington (p=0,q=1)
p=0

g=1

st=cumprod(1-d/y)

11




st=c(1,st)

st=st[1:16]

wt=st”(p)*(1-st)*(q)
z1=sum(wt*(d1-y1*(d/y)))

var=sum(wt 2*(y1/y*(1-y1/y)*(y-d)/(y-1)*d))
z=z1/sqrt(var)

z1

var

"2

2*(1-pnorm(z))

##fleming-harrington (p=1,q=0)
p=1

gq=0

st=cumprod(1-d/y)

st=c(1,st)

st=st[1:16]

wt=st”(p)*(1-st)*(q)
z1=sum(wt*(d1-y1*(d/y)))
var=sum(wtA2*(y1/y*(1-y1/y)*(y-d)/(y-1)*d))
z=z1/sqrt(var)

z1

var

"2

2*(1-pnorm(z))

##fleming-harrington (p=1,q=1)
p=1

g=1

st=cumprod(1-d/y)

st=c(1,st)

st=st[1:16]

wt=stA(p)*(1-st)A(q)
z1=sum(wt*(d1-y1*(d/y)))
var=sum(wtA2*(y1/y*(1-y1/y)*(y-d)/(y-1)*d))
z=z1/sqrt(var)

z1

var

12




N2

2*(1-pnorm(z))

##fleming-harrington (p=0.5,9=0.5)
p=0.5

g=0.5

st=cumprod(1-d/y)

st=c(1,st)

st=st[1:16]

wt=st”(p)*(1-st)*(q)
z1=sum(wt*(d1-y1*(d/y)))
var=sum(wt"2*(y1/y*(1-y1/y)*(y-d)/(y-1)*d))
z=z1/sqrt(var)

z1

var

"2

2*(1-pnorm(z))

##fleming-harrington (p=0.5,q=2)

p=0.5

q=2

st=cumprod(1-d/y)

st=c(1,st)

st=st[1:16]

wt=st”(p)*(1-st)*(q)
z1=sum(wt*(d1-y1*(d/y)))
var=sum(wt"2*(y1/y*(1-y1/y)*(y-d)/(y-1)*d))
z=z1/sqrt(var)

z1

var

"2

2*(1-pnorm(z))

HUHHH R
### _text book result (wrong!!1111111111)

w=c()
al=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
wl=al/sum(al)

w2=y/sum(y)

13




w3=(y"0.5)/sum(y~0.5)

stl=cumprod(1-d/(y+1))
wié=st1/sum(st1)
w5=(st1*y/(y+1))/sum(st1*y/(y+1))

st2=cumprod(1-d/y)

st2=c(1,st2)

st2=st[1:16]

w6=(1-st2)/sum(1-st2)

w7=st2/sum(st2)

w8=(st2*(1-st2))/sum(st2*(1-st2))
w9=(st2/7(0.5)*(1-st2)*(0.5))/sum(st2/(0.5)*(1-st2)*(0.5))
w10=(st2/(0.5)*(1-st2)"(2))/sum(st27(0.5)*(1-st2)*(2))

w=cbind(w1,w2,w3,w4,w5,w6,w7,w8,w9,w10)

plot(t,w1,xlim=c(0,30),ylim=c(0,0.15),type='b',pch=18,xlab='Time (in Months) to Exit

Site Infection',ylab='Relative Weights')
par(new=TRUE)

plot(t,w2,xlim=c(0,30),ylim=c(0,0.15),type='b',pch=17,xlab='Time (in Months) to Exit

Site Infection',ylab='Relative Weights')
par(new=TRUE)

plot(t,w3,xlim=c(0,30),ylim=c(0,0.15),type='b',pch=16,xlab="Time (in Months) to Exit

Site Infection',ylab='Relative Weights')
par(new=TRUE)

plot(t,w4,xlim=c(0,30),ylim=c(0,0.15),type='b',pch=15,xlab="Time (in Months) to Exit

Site Infection',ylab='Relative Weights')
par(new=TRUE)

plot(t,w5,xlim=c(0,30),ylim=c(0,0.15),type='b',pch=14,xlab="Time (in Months) to Exit

Site Infection',ylab='Relative Weights')
par(new=TRUE)

plot(t,w6,xlim=c(0,30),ylim=c(0,0.15),type='b',pch=13,xlab='Time (in Months) to Exit

Site Infection',ylab='Relative Weights')
par(new=TRUE)

plot(t,w7,xlim=c(0,30),ylim=c(0,0.15),type='b',pch=12,xlab="Time (in Months) to Exit

Site Infection',ylab='Relative Weights')
par(new=TRUE)

plot(t,w8,xlim=c(0,30),ylim=c(0,0.15),type='b',pch=11,xlab='Time (in Months) to Exit
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Site Infection',ylab="'Relative Weights')

par(new=TRUE)

plot(t,w9,xlim=c(0,30),ylim=c(0,0.15),type='b',pch=10,xlab="Time (in Months) to Exit
Site Infection',ylab='Relative Weights')

par(new=TRUE)

plot(t,w10,xlim=c(0,30),ylim=c(0,0.15),type='b',pch=9,xlab="Time (in Months) to Exit
Site Infection',ylab='Relative Weights')

legend(5.5,0.15,legend=c("Log Rank","Gehan","Tarone-Ware","Peto-Peto","Modified
Peto-Peto","F-H test p=1,q=0","F-H test p=0,q=1","F-H test p=1,9=1","F-H test
p=0.5,g=0.5","F-H test p=0.5,q=2"),pch=c(18,17,16,15,14,13,12,11,10,9))

Hi#2.
library(boot)

data=channing

data_m=data[dataSsex=="Male",]

data_f=data[dataSsex=="Female",]
t=unique(sort(c(dataSexit,dataSentry)))

length(t)

y1=1:315 #number of unique death times
for(iin 1:315)

{
y1[i]=length(data_mSentry[data_mSentry<=t[i]&t[i]<=data_mSexit])
}
vyl
d1=1:315
for(i in 1:315)
{
d1[i]=sum(data_mSexit==t[i]&data_mScens==1)
}
di

y2=1:315 #number of unique death times
for(iin 1:315)
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y2[i]=length(data_fSentry[data_fSentry<=t[i]&t[i]<=data_fSexit])
}
y2

d2=1:315

for(iin 1:315)

{
d2[i]=sum(data_fSexit==t[i]&data_fScens==1)

}
d2

y=yl+y2
d=d1+d2

y1*(d/y)

d1-y1*(d/y)
yyy=y1/y*(1-y1/y)*(y-d)/(y-1)*d
yyy=yyy[2:314]

sum(y1*(d/y))

z1=sum(d1-y1*(d/y))
var=sum(yyy)
z=z1/sqrt(var)

z

z1

var

"2

1-pnorm(z)
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