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Survival analysis hw03 

統計碩一 105225020  wei ting sun 孫薇婷 

Reproduce all results in Example 7.2 and Example 7.3 (do not use R packages . ) 

1. 

The data showed below :  

 

 

 

 

 

 

 

 

 

Group 1 : (𝑡𝑖1, 𝛿𝑖1) , 𝑖 = 1, … … , 𝑛1 

Group 2 : (𝑡𝑖2, 𝛿𝑖2) , 𝑖 = 1, … … , 𝑛2 

 

Times to infection (in months) of kidney dialysis patients with different 

catheterization procedures  

We are interesting in testing if there is a difference in the time to cutaneous exit-site 

infection between patients whose catheter was placed surgically (group 1) as 

compared to patients who had their catheters placed percutaneously (group 2) .  

 

(a) Figure 7.1  

 

 

 

The picture shows the survival curves for 

the two samples which estimated 

(Infection-free) survival function for 

kidney dialysis patients with 

percutaneous (--) and surgical (−) 

placements of catheters .  
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Where  

𝑑𝑖𝑗 = ∑ 𝛿𝑘𝑗 𝐼(𝑡𝑘𝑗 = 𝑡𝑖
∗), 𝑗 = 1 𝑜𝑟 2         𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑎𝑡ℎ 𝑖𝑛 𝑔𝑟𝑜𝑢𝑝 𝑗 𝑎𝑡 𝑡𝑖

∗ 

𝑌𝑖𝑗 = ∑ 𝐼(𝑡𝑘𝑗 ≥ 𝑡𝑖
∗)

𝑛𝑖

𝑘=1

= 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑟𝑣𝑖𝑣𝑜𝑟𝑠 𝑖𝑛 𝑔𝑟𝑜𝑢𝑝 𝑗 𝑎𝑡 𝑡𝑖
∗ 

𝑑𝑗 = ∑ 𝛿𝑘

𝑛1+𝑛2

𝑘=1

𝐼(𝑡𝑘 = 𝑡𝑗
∗) = 𝑑𝑖1 + 𝑑𝑖2 

𝑌𝑖 = ∑ 𝐼(𝑡𝑘 ≥ 𝑡𝑖
∗)

𝑛1+𝑛2

𝑘=1

= 𝑌𝑖1 + 𝑌𝑖2 
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(b)Table 7.2 construction of two-sample , log-rank test 

 

 

 

 

 

 

 

 

 

 

 

 

 

The table above showed the calculations needed to construct the log-rank test .  

Where we can see that  

𝐻0 = 𝑛𝑜 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡𝑤𝑜 𝑔𝑟𝑜𝑢𝑝𝑠 

𝐻1 = 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡𝑤𝑜 𝑔𝑟𝑜𝑢𝑝𝑠 

Z1 = ∑ 𝑊̅ (𝑡𝑖) (𝑑𝑖1 − 𝑌𝑖1 (
𝑑𝑖

𝑌𝑖
)) = 3.964 

Var(Z1) = ∑ 𝑊̅2 (𝑡𝑖)
𝑌𝑖1𝑌𝑖2

𝑌𝑖
2

𝑌𝑖𝑑𝑖

𝑌𝑖 − 1
𝑑𝑖 = 6.211 

Z =
Z1

√Var(Z1)
=

3.964

√6.211
= 1.59 

P − value = 0.1117 > α = 0.05 

Do not reject 𝐻0 , so the log-rank test suggest that there is no difference between 

two procedures in the distribution of the time to exit-site infection .  

  



4 
 

(c)Table 7.3 comparison of two-sample tests 

Test W(𝑡𝑖) 𝑍1(𝜏) 𝜎11
2  𝜒2 p-value 

Log-Rank 1.0 3.964 6.211 2.53 0.112 

Gehan 𝑌𝑖 -9.000 38861.81 0.002 0.964 

Tarone-Ware 
𝑌𝑖

1
2 

13.203 432.831 0.403 0.526 

Peto-Peto S̅(𝑡𝑖) 2.469 4.358 1.399 0.237 

Modified Peto-Peto 
S̅(𝑡𝑖)𝑌𝑖/(𝑌𝑖 + 1) 

2.313 4.195 1.276 0.259 

Fleming-Harrington 

p=0,q=1 

[1 − Ŝ(𝑡𝑖−1)] 1.413 0.207 9.668 0.002 

Fleming-Harrington 

p=1,q=0 

Ŝ(𝑡𝑖−1) 2.550 4.690 1.387 0.239 

Fleming-Harrington 

p=1,q=1 

Ŝ(𝑡𝑖−1)[1 − Ŝ(𝑡𝑖−1)] 1.021 0.106 9.834 0.002 

Fleming-Harrington 

p=0.5,q=0.5 

Ŝ(𝑡𝑖−1)0.5[1

− Ŝ(𝑡𝑖−1)]0.5 

2.470 0.657 9.285 0.002 

Fleming-Harrington 

p=0.5,q=2 

Ŝ(𝑡𝑖−1)0.5[1

− Ŝ(𝑡𝑖−1)]2 

0.324 0.013 8.179 0.004 

To further investigate these two treatments , we shall apply some of the other weight 

functions . The table summarizes the results of the tests .   

We defined the common survival function as S̅(𝑡𝑖) = ∏(1 −
𝑑𝑖

𝑌𝑖+1
) .  

Ŝ(𝑡) = ∏(1 −
𝑑𝑖

𝑌𝑖
) 

The Gehan weights may have misleading results when the censoring patterns are 

different in the individual samples .  

Fleming-Harrington : weighted function is  

W(𝑡𝑖) = Ŝ(𝑡𝑖−1)𝑝[1 − Ŝ(𝑡𝑖−1)]𝑞 , 𝑝 ≥ 0, 𝑞 ≥ 0 

When p=q=0 , we can lead to log-rank test ; when p=1, q=0, we can lead to Mann–

Whitney–Wilcoxon test ; when q=0 and p>0 , these weights give the most weight to 

early departures between the hazard rates in the K populations, whereas, when p=0 

and q>0, these tests give most weight to departures which occur late in time.  

So we need to choose the appropriate p and q .  
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(d)Figure 7.2 Relative weights for comparison of observed and expected numbers 

of deaths for kidney dialysis patients .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The figure shows the relative weights these tests give to the comparisons at each 

time point , where we plot with (𝑡𝑖
∗, 𝑤𝑖) , 𝑤𝑖 = 𝑊(𝑡𝑖)/ ∑ 𝑊(𝑡𝑖)

𝐷
𝑖=1  . We can see 

that Gehan’s weight function gives very heavy weight to early comparisons at 

𝑡𝑖
∗ = 0.5 and it leads to a negative test statistic .  

The Fleming-Harrington tests put more weight on the late comparison and lead to 

significance tests because the two survival curves diverge for larger values of t .  

The picture I draw is not similar to text book because the text book is wrong , it 

mistake to draw Fleming-Harrington p=0.5,q=2 as p=2,q=2 , so it does not look the 

same .  

 

 

 

 

 

 

 

 

The relative weight I calculated is on above .  
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2. 

I download the data from package-boot , first we separated the data into two groups 

–male and female .  

These data are left-truncated by the individual’s entry time into the retirement 

center . We now try to test the hypothesis that females live longer than males .  

𝐻0: ℎ𝐹(𝑡) = ℎ𝑀(𝑡)   , 777𝑚𝑜𝑛𝑡ℎ𝑠 ≤ 𝑡 ≤ 1152 

𝐻1: ℎ𝐹(𝑡) < ℎ𝑀(𝑡)   , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ [777,1152] 

We can compute the 𝑌𝑖𝑀 and 𝑌𝑖𝐹 as the number of male and female , on the other 

hand , who is in the center at age 𝑡𝑖 .  

Here we use the log-rank test , where 

Z1 = ∑ 𝑊̅ (𝑡𝑖) (𝑑𝑖1 − 𝑌𝑖1 (
𝑑𝑖

𝑌𝑖
)) = 9.692915 

Var(Z1) = ∑ 𝑊̅2 (𝑡𝑖)
𝑌𝑖1𝑌𝑖2

𝑌𝑖
2

𝑌𝑖𝑑𝑖

𝑌𝑖 − 1
𝑑𝑖 = 28.21195 

Z =
Z1

√Var(Z1)
=

9.692915

√28.21195
= 1.824895 

P − value = 0.03400844 < α = 0.05 

So the log-rank test suggest us to reject 𝐻0 , which means we have enough 

evidence that males are dying at a faster rate than females .  
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<code> 

##figure 7.1 

data1=c(1.5,3.5,4.5,4.5,5.5,8.5,8.5,9.5,10.5,11.5,15.5,16.5,18.5,23.5,26.5) 

data1_c=c(2.5,2.5,3.5,3.5,3.5,4.5,5.5,6.5,6.5,7.5,7.5,7.5,7.5,8.5,9.5, 

     10.5,11.5,12.5,12.5,13.5,14.5,14.5,21.5,21.5,22.5,22.5,25.5,27.5) 

cens1=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1) 

time1=c(data1,data1_c) 

dataa1=cbind(time1,cens1) 

 

data2=c(0.5,0.5,0.5,0.5,0.5,0.5,2.5,2.5,3.5,6.5,15.5) 

data2_c=c(0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,1.5,1.5,1.5,1.5,2.5, 

     2.5,2.5,2.5,2.5,3.5,3.5,3.5,3.5,3.5,4.5,4.5,4.5,5.5,5.5,5.5,5.5,5.5,6.5,7.5,7.5, 

     7.5,8.5,8.5,8.5,9.5,9.5,10.5,10.5,10.5,11.5,11.5,12.5,12.5,12.5,12.5,14.5,14.5, 

     16.5,16.5,18.5,19.5,19.5,19.5,20.5,22.5,24.5,25.5,26.5,26.5,28.5) 

cens2=c(0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 

        ,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 

        ,1,1,1,1,1,1,1,1,1) 

time2=c(data2,data2_c) 

dataa2=cbind(time2,cens2) 

 

t=unique(sort(c(data1,data2))) 

length(t) 

 

 

y1=1:16 #number of unique death times 

for(i in 1:16)  

{ 

  y1[i]=length(time1[t[i]<=time1]) 

} 

y1 

 

 

d1=1:16 

for(i in 1:16)  

{ 

  d1[i]=sum(time1==t[i]&cens1==0) 
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} 

d1 

 

y2=1:16 #number of unique death times 

for(i in 1:16)  

{ 

  y2[i]=length(time2[t[i]<=time2]) 

} 

y2 

 

 

d2=1:16 

for(i in 1:16)  

{ 

  d2[i]=sum(time2==t[i]&cens2==0) 

} 

d2 

 

st1=cumprod(1-d1/y1) 

st1=c(1,st1) 

t1=c(0,t) 

st2=cumprod(1-d2/y2) 

st2=c(1,st2) 

t2=c(0,t) 

plot(t1,st1,type='s',xlim=c(0,30),ylim=c(0,1),xlab='Time (in Months) to Exit Site 

Infection',ylab='Estimated Survival Functions') 

par(new=TRUE) 

plot(t2,st2,type='s',xlim=c(0,30),ylim=c(0,1),xlab='Time (in Months) to Exit Site 

Infection',ylab='Estimated Survival Functions',lty=9) 

 

##table 7.2 

data1=c(1.5,3.5,4.5,4.5,5.5,8.5,8.5,9.5,10.5,11.5,15.5,16.5,18.5,23.5,26.5) 

data1_c=c(2.5,2.5,3.5,3.5,3.5,4.5,5.5,6.5,6.5,7.5,7.5,7.5,7.5,8.5,9.5, 

          10.5,11.5,12.5,12.5,13.5,14.5,14.5,21.5,21.5,22.5,22.5,25.5,27.5) 

cens1=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1) 

time1=c(data1,data1_c) 

dataa1=cbind(time1,cens1) 
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data2=c(0.5,0.5,0.5,0.5,0.5,0.5,2.5,2.5,3.5,6.5,15.5) 

data2_c=c(0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,1.5,1.5,1.5,1.5,2.5, 

          

2.5,2.5,2.5,2.5,3.5,3.5,3.5,3.5,3.5,4.5,4.5,4.5,5.5,5.5,5.5,5.5,5.5,6.5,7.5,7.5, 

          

7.5,8.5,8.5,8.5,9.5,9.5,10.5,10.5,10.5,11.5,11.5,12.5,12.5,12.5,12.5,14.5,14.5, 

          16.5,16.5,18.5,19.5,19.5,19.5,20.5,22.5,24.5,25.5,26.5,26.5,28.5) 

cens2=c(0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 

        ,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 

        ,1,1,1,1,1,1,1,1,1) 

time2=c(data2,data2_c) 

dataa2=cbind(time2,cens2) 

 

t=unique(sort(c(data1,data2))) 

 

y1=1:16 #number of unique death times 

for(i in 1:16)  

{ 

  y1[i]=length(time1[t[i]<=time1]) 

} 

 

d1=1:16 

for(i in 1:16)  

{ 

  d1[i]=sum(time1==t[i]&cens1==0) 

} 

 

y2=1:16 #number of unique death times 

for(i in 1:16)  

{ 

  y2[i]=length(time2[t[i]<=time2]) 

} 

 

d2=1:16 

for(i in 1:16)  

{ 

  d2[i]=sum(time2==t[i]&cens2==0) 
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} 

 

y=y1+y2 

 

d=d1+d2 

 

t 

y1 

d1 

y2 

d2 

y 

d 

y1*(d/y) 

d1-y1*(d/y) 

y1/y*(1-y1/y)*(y-d)/(y-1)*d 

sum(y1*(d/y)) 

z1=sum(d1-y1*(d/y)) 

var=sum(y1/y*(1-y1/y)*(y-d)/(y-1)*d) 

z=z1/sqrt(var) 

z 

chisq=z^2 

2*(1-pnorm(z)) 

 

##table 7.3 

##log-rank 

z1=sum(d1-y1*(d/y)) 

var=sum(y1/y*(1-y1/y)*(y-d)/(y-1)*d) 

z=z1/sqrt(var) 

z1 

var 

z^2 

2*(1-pnorm(z)) 

 

## Gehan 

z1=sum(y*(d1-y1*(d/y))) 

var=sum(y^2*(y1/y*(1-y1/y)*(y-d)/(y-1)*d)) 

z=z1/sqrt(var) 
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z1 

var 

z^2 

2*(pnorm(z)) 

 

##tarone-ware 

z1=sum(y^(1/2)*(d1-y1*(d/y))) 

var=sum(y*(y1/y*(1-y1/y)*(y-d)/(y-1)*d)) 

z=z1/sqrt(var) 

z1 

var 

z^2 

2*(1-pnorm(z)) 

 

##peto-peto 

st=cumprod(1-d/(y+1)) 

z1=sum(st*(d1-y1*(d/y))) 

var=sum(st^2*(y1/y*(1-y1/y)*(y-d)/(y-1)*d)) 

z=z1/sqrt(var) 

z1 

var 

z^2 

2*(1-pnorm(z)) 

 

##modified peto-peto 

st=cumprod(1-d/(y+1)) 

z1=sum(st*y/(y+1)*(d1-y1*(d/y))) 

var=sum((st*y/(y+1))^2*(y1/y*(1-y1/y)*(y-d)/(y-1)*d)) 

z=z1/sqrt(var) 

z1 

var 

z^2 

2*(1-pnorm(z)) 

 

##fleming-harrington (p=0,q=1) 

p=0 

q=1 

st=cumprod(1-d/y) 
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st=c(1,st) 

st=st[1:16] 

wt=st^(p)*(1-st)^(q) 

z1=sum(wt*(d1-y1*(d/y))) 

var=sum(wt^2*(y1/y*(1-y1/y)*(y-d)/(y-1)*d)) 

z=z1/sqrt(var) 

z1 

var 

z^2 

2*(1-pnorm(z)) 

 

##fleming-harrington (p=1,q=0) 

p=1 

q=0 

st=cumprod(1-d/y) 

st=c(1,st) 

st=st[1:16] 

wt=st^(p)*(1-st)^(q) 

z1=sum(wt*(d1-y1*(d/y))) 

var=sum(wt^2*(y1/y*(1-y1/y)*(y-d)/(y-1)*d)) 

z=z1/sqrt(var) 

z1 

var 

z^2 

2*(1-pnorm(z)) 

 

##fleming-harrington (p=1,q=1) 

p=1 

q=1 

st=cumprod(1-d/y) 

st=c(1,st) 

st=st[1:16] 

wt=st^(p)*(1-st)^(q) 

z1=sum(wt*(d1-y1*(d/y))) 

var=sum(wt^2*(y1/y*(1-y1/y)*(y-d)/(y-1)*d)) 

z=z1/sqrt(var) 

z1 

var 
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z^2 

2*(1-pnorm(z)) 

 

##fleming-harrington (p=0.5,q=0.5) 

p=0.5 

q=0.5 

st=cumprod(1-d/y) 

st=c(1,st) 

st=st[1:16] 

wt=st^(p)*(1-st)^(q) 

z1=sum(wt*(d1-y1*(d/y))) 

var=sum(wt^2*(y1/y*(1-y1/y)*(y-d)/(y-1)*d)) 

z=z1/sqrt(var) 

z1 

var 

z^2 

2*(1-pnorm(z)) 

 

##fleming-harrington (p=0.5,q=2) 

p=0.5 

q=2 

st=cumprod(1-d/y) 

st=c(1,st) 

st=st[1:16] 

wt=st^(p)*(1-st)^(q) 

z1=sum(wt*(d1-y1*(d/y))) 

var=sum(wt^2*(y1/y*(1-y1/y)*(y-d)/(y-1)*d)) 

z=z1/sqrt(var) 

z1 

var 

z^2 

2*(1-pnorm(z)) 

##################################### 

###  text book result (wrong!!!!!!!!!!!!) 

w=c() 

a1=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1) 

w1=a1/sum(a1) 

w2=y/sum(y) 
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w3=(y^0.5)/sum(y^0.5) 

 

st1=cumprod(1-d/(y+1)) 

w4=st1/sum(st1) 

w5=(st1*y/(y+1))/sum(st1*y/(y+1)) 

 

st2=cumprod(1-d/y) 

st2=c(1,st2) 

st2=st[1:16] 

w6=(1-st2)/sum(1-st2) 

w7=st2/sum(st2) 

w8=(st2*(1-st2))/sum(st2*(1-st2)) 

w9=(st2^(0.5)*(1-st2)^(0.5))/sum(st2^(0.5)*(1-st2)^(0.5)) 

w10=(st2^(0.5)*(1-st2)^(2))/sum(st2^(0.5)*(1-st2)^(2)) 

w=cbind(w1,w2,w3,w4,w5,w6,w7,w8,w9,w10) 

 

plot(t,w1,xlim=c(0,30),ylim=c(0,0.15),type='b',pch=18,xlab='Time (in Months) to Exit 

Site Infection',ylab='Relative Weights') 

par(new=TRUE) 

plot(t,w2,xlim=c(0,30),ylim=c(0,0.15),type='b',pch=17,xlab='Time (in Months) to Exit 

Site Infection',ylab='Relative Weights') 

par(new=TRUE) 

plot(t,w3,xlim=c(0,30),ylim=c(0,0.15),type='b',pch=16,xlab='Time (in Months) to Exit 

Site Infection',ylab='Relative Weights') 

par(new=TRUE) 

plot(t,w4,xlim=c(0,30),ylim=c(0,0.15),type='b',pch=15,xlab='Time (in Months) to Exit 

Site Infection',ylab='Relative Weights') 

par(new=TRUE) 

plot(t,w5,xlim=c(0,30),ylim=c(0,0.15),type='b',pch=14,xlab='Time (in Months) to Exit 

Site Infection',ylab='Relative Weights') 

par(new=TRUE) 

plot(t,w6,xlim=c(0,30),ylim=c(0,0.15),type='b',pch=13,xlab='Time (in Months) to Exit 

Site Infection',ylab='Relative Weights') 

par(new=TRUE) 

plot(t,w7,xlim=c(0,30),ylim=c(0,0.15),type='b',pch=12,xlab='Time (in Months) to Exit 

Site Infection',ylab='Relative Weights') 

par(new=TRUE) 

plot(t,w8,xlim=c(0,30),ylim=c(0,0.15),type='b',pch=11,xlab='Time (in Months) to Exit 
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Site Infection',ylab='Relative Weights') 

par(new=TRUE) 

plot(t,w9,xlim=c(0,30),ylim=c(0,0.15),type='b',pch=10,xlab='Time (in Months) to Exit 

Site Infection',ylab='Relative Weights') 

par(new=TRUE) 

plot(t,w10,xlim=c(0,30),ylim=c(0,0.15),type='b',pch=9,xlab='Time (in Months) to Exit 

Site Infection',ylab='Relative Weights') 

legend(5.5,0.15,legend=c("Log Rank","Gehan","Tarone-Ware","Peto-Peto","Modified 

Peto-Peto","F-H test p=1,q=0","F-H test p=0,q=1","F-H test p=1,q=1","F-H test 

p=0.5,q=0.5","F-H test p=0.5,q=2"),pch=c(18,17,16,15,14,13,12,11,10,9)) 

 

##2. 

library(boot) 

data=channing 

 

data_m=data[data$sex=="Male",] 

data_f=data[data$sex=="Female",] 

 

t=unique(sort(c(data$exit,data$entry))) 

length(t) 

 

 

y1=1:315 #number of unique death times 

for(i in 1:315)  

{ 

  y1[i]=length(data_m$entry[data_m$entry<=t[i]&t[i]<=data_m$exit]) 

} 

y1 

 

d1=1:315 

for(i in 1:315)  

{ 

  d1[i]=sum(data_m$exit==t[i]&data_m$cens==1) 

} 

d1 

 

y2=1:315 #number of unique death times 

for(i in 1:315)  



16 
 

{ 

  y2[i]=length(data_f$entry[data_f$entry<=t[i]&t[i]<=data_f$exit]) 

} 

y2 

 

d2=1:315 

for(i in 1:315)  

{ 

  d2[i]=sum(data_f$exit==t[i]&data_f$cens==1) 

} 

d2 

 

y=y1+y2 

d=d1+d2 

 

y1*(d/y) 

d1-y1*(d/y) 

yyy=y1/y*(1-y1/y)*(y-d)/(y-1)*d 

yyy=yyy[2:314] 

sum(y1*(d/y)) 

 

z1=sum(d1-y1*(d/y)) 

var=sum(yyy) 

z=z1/sqrt(var) 

z 

z1 

var 

z^2 

1-pnorm(z) 

 


