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Problem 1 

Show that }),,[),,(,{ ZaaC    is a sigma-field, where ),( Z . 

Proof. 

The properties of sigma-field are verified as follows: 
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Thus, we have shown that C  is a sigma-field. □ 



Problem 2 
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Proof. 

The probability density function of X  is 
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Similarly, if 0 x , 
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Therefore, we obtain 
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That is 2XY   follows chi-square distribution with degree of freedom equal to 1. 

Hence we finished the proof. □ 

 

 



Another proof. 

The cumulative distribution function of 2XY   is 
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where )(   is the cumulative distribution function of standard normal distribution. 

Thus, the probability density function of Y  is 
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is the probability density function of standard normal distribution. As a result, we 

have obtained  
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That is 2XY   follows chi-square distribution with degree of freedom equal to 1. 

Hence we finished the proof. □ 

 

 



Problem 3 

Show the following inequality 
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Proof. 

For all || z , and since exponential function can be defined by power series, we 

have 
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Then we have proven the desired result. □ 

For further discussion, we define 
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The inequality above is equivalent to  
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There are three different cases including a  is positive, negative or zero. The case of 

a  is equal to zero is trivial since the M  function becomes zero. For the other two 

cases, it is possible to plot the M  function and its bounds to actually see how these 

bounds work. The results are given in Figure 1 and 2.  

 



 

 

Figure 1.  The plots of M  functions and corresponding bounds when a  is 

positive. 

 

 

Figure 2.  The plots of M  functions and corresponding bounds when a  is 

negative. 

 

 


