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NOTE1: Please write down the derivation of your answer very clearly for all
questions. The score will be reduced if you only write the answer or if the
derivation is not clear. The score will be given even when your answer has a
minor mistake but the derivations are clearly stated.




iid
Q1. [+10] Let X,,...,X,~ p,(x)=f(x—6), where f is a known symmetric pdf s.t.
Var(X,)=o7 <o . Consider testing H,:0=0 under the local alternatives

6, =h//n forareal number h.
(i) [+2] Let )?n=EZXi and aﬁ:ilZ(Xi—in)z. Derive the asymptotic
) n—-1%3

distribution of the t-statistics t, =~/nX_ /o, under the local alternatives.

Answer:

Under the local alternatives, by the CLT, we have

X _ d
M—W(O,l), as n—ow.
o)

f

By the Taylor expansion,

p
Jng, —h, as n—ow,
and the fact that sample variance will converge in probability to population

variance

o P
-1 1, as n—ow,
O

Then by Slusky’s theorem,

t :\/E)Tn:{x/ﬁ(fn—en)+\/ﬁﬁn}ﬁi>N{L,1j, as N—ow.

n
O, Oy O | Oy O

Hence we have derived the asymptotic distribution of t-statistics t, under the

local alternatives.



(ii) [+4] Derive the asymptotic distribution of the sign statistics Jﬁsf under the

local alternatives, where S? = 1Z{I (X;>0) —%} :
n

i=1
Answer:

Under the local alternatives,
1 1 1
E{I(Xi >0)—§} =Pr(X, >0)—E:Pr(Xi ~6, >0, )-E

~1-PH(X,~0,<-0,) 5 =3 ~F(~6,)=F(0)-F(-0,)

where F(0)=1/2 due to that f is a known symmetric probability density
function. Then consider the Taylor expansion of F(—-6,) around 0,
F(-6,)~F(0)-6,f(0).

Thus, we obtain

\/ﬁ{F(O)—F(—Hn)}z\/ﬁ{F(O)—F(0)+¢9nf(0)}—p>hf(0), as n—oo.
By the CLT,

ﬁsrf:ﬁ{%i{l(xi>0)—%}—F(0)+F(—en)}im(o,%j, 25 n>oo

i=1

where variance is derived as
1
{1—F(O)}F(O):Z.

Therefore, by Slusky’s theorem,

Jns? =Jﬁ[%§n;{|(xi >0)—%}—F(O)+F(—¢9ﬂ )}JH{F(O)—F(—HH)}

i=1

d
—>N(hf(0),%), as n— o,

Hence we have derived the asymptotic distribution of sign test statistics Jﬁsﬁ

under the local alternatives.



(iii) [+2] Derive the Pitman ARE e,

Answer:

The Pitman ARE is

6, = lim Nt(a,ﬂ,é’n)_[ﬂé(o)/ﬁstz(Zf(O)Jz:4f(0)zaf.

" asoN(a, 8.6,) \ #(0)/ o o,

(iv) [+2] Let f be the pdf of N(0)).
Compute the Pitman ARE and interpret the value of ARE.

Answer:
If f~N(0,1),we have

foyo[-L)V L g o2t
\/Z 27 f '

Then the Pitman ARE is

i:Ez0.637.

2T 7

st

The test based on t, is z/2 more efficient than the test based on S/.



Q2 [+12] Kolmogorov-Smirnov test
To answer the questions below, please define symbols and notations by yourself.

(i) [+1] Define the Kolmogorov-Smirnov statistic ( T, ) for testing

Hy:F=F vs. H :F#F.

Answer:

iid.

Suppose X, X,,---, X, ~ F, the Kolmogorov-Smirnov (K-S) statistics for

testing H,:F=F, vs. H,:F=F, isdefined as

T =+/nsup|F,(t)—F,(t)], where ﬁn(t)z%zn)(xi <t).

teR

(i) [+2] Explain how to compute the critical value (s,, ) for level « test when

nl-a

F, is continuous.

Answer:

When F; is continuous, the K-S statistics is distribution free. Therefore, consider

ii.d.
the simple uniform distribution (U,,U,,---,U, ~U(0,1)), the K-S statistics

follows

T —Jnsup|G,(u)—u|, where Ifn(t):%ZI(Uist).
i=1

O<u<l

The algorithm of computing the critical value s , , suchthat Pr(T >s , )=«

is given as follows:

Algorithm (compute the critical value)

ii.d.
Step 1. Generate U;,U,,---,U’ ~U(0,1).
Step 2. Order the samples U, Uy, -+ U, -

Step 3. Compute the K-S statistics

1<i<n | M

Tf=max{l—u(’}>,u‘ %,iﬂ,z,---,n}.
Step 4. Repeat Step1-3 k timeswithlarge k (/=12,---, k).
Step 5. Order the K-S statistics T®, T®, ... T®,

by 1-a percentile of T®, T@ ... T®,

n ?*'n 1!

Step 6. Approximate s,

a



(ii1) [+3] Show that the test is pointwise consistent in power for VF =F,.

Answer:

Since the statement F=F, is the same as that there exists t, such that

F(t,)=F(t,). It is also equivalent to T, =sup|F(t)—-F,(t)|>0. Therefore,

teR

under the alternative hypothesis (VF = F,), we obtain
Vn{F, () - F(t) 3= Vn{F,(t,) - F(t ) }+Vn{ F(t,) - Fy(t,)}

i>N(0,F(t0){1—F(t0)})+{ © TF(G)> Rl ),
—oo, if F(t,)<F(t,).

Then the power is

Pr(T, > Sy, ) = Pr(~nsup| F,(t) - Fy () >s,,., )
teR
>Pr(vn|F, (t,)-Fy(t)>S,,,) =L as n—ow.
Hence we have shown that the K-S test is pointwise consistent in power for

VF #F,.

(iv) [+3] Based on data X =(2,4,6,810), perform a level «=0.05 test
H,:F=F, vs. H,:F=F, for F,=U(0,10) using the asymptotic critical value

S, 005 =1.4.

Answer:
We order the data as X, =2, X, =4, X5, =6, X ;) =8, X5, =10 and the CDF of

uniform distribution U(0,10) is
F(u)=—, 0<u<10
0 10° '
Then the K-S test statistics is derived as follows:

T; :max{i_F( Xy W F( X )—i%l, i=1 2,...,5}

1<i<5 | §

_ 1. 22 ,2 44 13 626 24 838 3
5 10°10 '5 10'10 5'5 10'10 5'5 10'10 5’
5 1010 4
5 10'10 5

2 2 2 2 2] 2
—max{ S, 5,5 S fl- 2 02,
{10 10'10' 10 10} 10

Since T;=0.2<1.4=s_, ., we do not reject the null hypothesis H,:F=F, .



(v) [+3] Based on the above data, draw the 95% confidence band for F . Check

whether the null distribution F, = U(0,10) is inside the confidence band or not.

Answer:

Yes, Figure 1 reveals that F,(u)=u/10 is inside the 95% confidence band (CB)

of the K-S statistics based on the data in (iv).

F(x)

Figure 1.
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95% CB of the K-S statistics based on the data in (iv).



Q3[+12] Pearson’s y> Test

Let (Y,...,Y,) ~ Multi(n; p,, ..., p.,) - Consider testing the hypothesis
Ho p; =7, Vi=1..,k+1 vs. H;: p; #7;, 3j=1...,k+1,

where 7;’s are known.

(1)[+2] Define Pearson’s y*-test with level « .

Answer:

Pearson’s chi-square statistics is defined as

Then alevel a Pearson’s chi-square test is

1’ If Qn >zk2,1fa’
o, if Q<.

(2) [+4] Show that the y*-test is pointwise consistent in power.
Answer:

Since the statement p; =7, for some | is equivalent to that there exists ¢

such that p, =z, . Therefore, under the alternative hypothesis (H,), the power is

K (Y. -nz )? Y, —nzx, )?
PrHl(Qn > Zkz,l—a ) = PrHl(zJ—J > Zkz,l—aJ 2 PrHl(M > Zkz,l—a

= nr, nr,
n(Yl;/n—ﬂ'é )2 2
= PrHl( ] > Xkia |
T,

In addition, we have

2

2
lim n(YZ/n_ﬂ./,) = lim n( P, _ﬂ'z)

=00,
n—o 72'[ n—o0 72-[
Then
_ 2
P (Q,> i1, )2 PrHl(M > ;(fyl_a} —1, as n—oo.
7,

Hence we have proven that Pearson’s chi-square test is pointwise consistent in

POWEer.



(3) [+6] Derive the asymptotic distribution of the y*-statistics

Answer:

Under the null hypothesis Hy:p;=7;, Vj=1..,k+1, we define
T
Vn:\/ﬁ{ﬁ_,[l Y_k_”k} .
n n
Since YJ. is the sum of i.i.d. Bernoulli trials and

Y. Y. Y, m(l-7), if i=],
E| 2 |=p;,, cov -, =2|= e
n n n -mr; o, if 0]

By multivariate CLT, we obtain

) b 0 V2
V,>MWN, (0,X), where = + iz o om]
0 T, T,
We define
2 0
D= and 1=[1 1
0 T,

With these notations, we can rewrite £ as X =D+ D11"D. Then consider

d T
V2V, >y, as n—o, where yiopii il
ﬂk+l
Claim:
k (Y, —nz, )
anz( ' i) =V/ZV,.
EELG

It suffices to prove the Claim then we have shown that under the null hypothesis,
the asymptotic distribution of Pearson’s chi-square statistics follows the chi-

square distribution with degree of freedom k.

Proof of Claim:

We have
Y.
T n
VnTEan=n|:£—7Z'1 Y—k—ﬂk}(Dl+ll ] :
n n 7Z-k+1 Yk
n



First we consider

n
— =T
n k
1 0| h_,
{Yl Yy, 1™ n.
=N —=-m — 7
n n ) 1 1Y,
0 — F_ﬂ-k
L k|
2 2
Zk:(YJ/n—ﬁj) =ZK:(YJ nz;)
= 7] = N
Then another term is
%
[Yl Y, }11T n.
nN—=-=z, -+ —-7m :
n n ﬂ-k+l Yk
n
Yl
1 1 ——7
n Y, Y, n
= — F—ﬂ'l . F—ﬂ'k Y
7Z-k+1 1 1 _k_”k
n
ORI Ry b
= — =7 — =7 |= — = ) T — =) T
ﬂ-k+l§ n ; n : 7[k+l ;n ; ;n ; :
2
:L(l_h_l_'_ﬂkﬂj(l_Ykﬂ _1+ﬂk+lJ = L(ﬂ.kJrl _Yk+lj
T n n T n
— (Yk+1_n”k+l )2 .
r]7z-k+1
Finally, by combining the results, we obtain
Vix -y :Zk:(Yj_n”j ) +(Yk+1_n”k+1)2 :kZﬂ:(Yi_n”j ) _
" " = nz; Nz, = nz;

Then we have proven the Claim hence derived the asymptotic distribution of

Pearson’s chi-square statistics under the null hypothesis.

10



Q4 [+16] Neyman’s Smooth Test

2
Let pg(x)=C(9)exp[ZHjTj(x)] xe(0,1), be a density w.rt. the Lebesgue
j=1

measure, where Tl(x):\/§(2x—1) and Tz(x):\/§(6x2—6x+1) be the Legendre

polynomials. Draw the graph of p,(x) including the locations of p,(0), p,(®),

minxe(O,l) Py(X) and max xe(0,1) Po (x).

(1)[+4] 6,=1 and 6,=0

Answer:

If =1 and 6, =0, we have
p,(x)=C(@)eV =D}

1 1
= [ p,(x)dx=C(0)[e"**dx
0 0
1J
0

:C(H):{e—(em“—l)}

1
—1=C(9)e® 23
(9) LZ\/§+1
2\/§+1

(2\/§+1)eﬁ

:C(e): eZ\/§+l_1

Therefore, the density is

X)ZM.

P ( ezﬁu 1

Then we can compute

2\/§+1

243 +1)e?"
pa(0)=m and pa(l):¥-

e2J§+1_1
Since p,(x) isincreasingin x, we obtain
gg)!gl pa(x):pe(o) and ED% pg(x)ng(l).

The density is plotted in Figure 2. It shows that the minimum and maximum are

attained at x=0 and x=1, respectively.

11



(2) [+4] 6,=0 and &,=1 [no need to calculate the numerical value of C(6)]

Answer:

If 6,=0 and @, =1, the density is
p,(X)=C()e/s(E o0}

Then we can compute

p,(0)=C(0)e”® and  p,(1)=C(0)e®.

Since
d \/— {\/g(6x2—6x+l)}59t 1
&pg(x): 5(12x-6)C(0)e :0:x:E
and
dZ
ng(x) >0.

x=1/2

Therefore, we obtain
min p,(x) = p,(1/2)=C(&)e ™ and  max p,(x)=p,(1)=C(0)e”.

The density is plotted in Figure 3. It shows that the minimum and maximum are

attained at x=1/2 and x=0,1, respectively.

12
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Figure 2. The density p,(x) under §,=1 and 6, =0 with minimum and
maximum attained at x=0 and x=1, respectively.
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Figure 3. The density p,(x) under 6,=0 and 6,=1 with minimum and
maximum attained at x=1/2 and x=0,1, respectively.
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(3) [+4] Derive the Neyman’s smooth test statistics.

Answer:

iid.

Suppose X, X,,--, X, ~ F, to test H,:F=U(0,1) vs. H,:F=U(0,1). It
is equivalent to test that H,:0,=0 for all j vs. H,:0,#0 for some j.

Under the null hypothesis, consider
K
log p,(x)=10gC(d)+ > 6,T;(x)
j=1

a a set
:ﬁlog pa(x):ﬁlogC(e)+Tm(x):O

m m

s E{T. (X )}:—%IogC(@):O.

m

The last equality is due to the orthogonality of T,(x), T,(x),---, T,(Xx). Under

the null hypothesis, thatis, H,:6; =0 forall j, we have
[
exp{ZHJ.Tj(x)}:To(x):l.
j=1
Therefore,
1 k
E{T,.(X )}=ij(x)C(e)exp{ze,»T,-(x)}dx
0 j=1
1
=C(6’)ITm(x)TO(x)dx=O.
0

In addition, the orthogonality of T,(x),T,(x),---,T.(x) also gives the

following results
1, if i=],

COV{Ti(X),T-(X)}Z{O i i

Thus, we define
1 n
Z,=—=2 (%) - T(x)] .
\/H;[ 1 k ]T
By the multivariate CLT, we have

d
Z,—>MVN(0,1), as n—oo.

Then the Neyman’s smooth test statistics is

14



ZNZ,=21Z, = =S (%) - T ()
i = T.(%)

:%{%gﬂ(xi )} i);gkz as n— .

For instance, the Neyman’s smooth test with k=1 and k=2 are
n 2
T, (% )} { J3(2x, —1)}
Sagneof -2
2
13 1
=12n X ——
DA

i=1
and

2

j=L

respectively.

13 2 11& 2 1 (& , 2
Z{ﬁ;n(xi )} :ﬁ{éﬁ(zx‘ —1)} +H{;\/§(6xi —6xi+l)}
18 1) 18, 1 1)
=12n{ﬁizl:xi—5} +180n{ﬁizl:xi _H;Xi +€} ,

15



(4) [t+4] How the Neyman’s test statistics is related to the moments of U(0,1).

Answer:

The expressions of the Neyman’s smooth test statistics for k=1 and k=2 are

sl

and
18 1) 18, 18, 1)
Z'Z =120 =) % —= ¢ +180n{ =) X - =) X+,
respectively. We reject the null hypothesis if Z:Zn>;(k2’17a. Under the null
hypothesis, we have
1&. P 1 o :
HZX‘_)EO(X ):E which is the first moment of U(0,1)
i=1
and
HZx —>E NOS )_— which is the second moment of U(0,1).
i=1

If the data truly follow the uniform distribution U(0,1), the Neyman’s smooth

test statistics will converge to zero, that is, Z'Z. —>0. Then we cannot reject the

null hypothesis.
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