Homework#5 Statistical Inference 11

Name: Jia-Han Shih

Problem 1.9 [p.391]
In Example 1.7, let §°(X)=X/n with probability 1—s and & (X )=1/2 with
probability &. Determine the risk function of &~ and show that for ¢=1/(n+1), its

risk is constant and less than supR( p, X/n).

Solution:

The risk function of & with e=1/(n+1) is
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The risk function of X /n is
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Thus, we have shown the desired result
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Problem 1.10 [p.391]

Find the bias of minimax estimator (1.11) and discuss its direction.

Solution:

The minimax estimator (1.11) is

X ++4/n/2

0=
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The bias of & is
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Then we have the following results,

diBias(d)— <0,and Bias(5)= /z_p—>0,as n—oo.
p
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Furthermore, we have the following conclusions:

1. If p>1/2,then Bias(o)<0.

2. If p<1/2,then Bias(o)>0.



Problem 1.11 [p.391]
In Example 1.7,

(a) determine c, andshow that ¢, —>0,as n—o,

Solution:

To solve c,, we have
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Therefore, we obtain
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Taking limit for n goes to infinite,

limc, =lim 1-—— " —J1-1=0.
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Then we have shown that

c,—0,as n—oo.



(b) showthat R (1/2)/r,—>1,as n—oo.

Solution:
In Example 1.7, we have
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Therefore, we have
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Then we have proven that

R.(1/2)/r, >1,as n—>co.



Problem 1.12 [p.391]
In Example 1.7, graph the risk function of X /n and the minimax estimator (1.11) for

n=1 4,916, and indicate the relative position of the two graphs for large values of n.

Solution:

As in problem 1.11, the risk function of X /n and the minimax estimator o6 are

p(1-p) 1
n and 4(1++/n)?’

respectively. Then we can plot the risk function for n=1,4,9,16 by R (Figure 1).

— X/n — X/n
- 8 ]

025
025

020
020

R
0.15
Risk
015

0.10
0.10

000 00§
I |
000 005

|

00 02 04 06 08 10 00 02 04 06 08 1.0

o — X/n w — X
& 5 &
o . o

Risk
015 0.20
0.15 020

0.10
0.10

005
00!

000
000

T T T
00 02 04 06 08 10 00 02 04 06 08 1.0

P P

Fig. 1 The risk functionsof X /n and 6 for n=14,916.



For the case of large value of n, I set n=10000 (Figure 2). Figure 1 and 2 reveal that

the interval of the risk of X /n greater than the risk of & shrink as n goes larger.

When n goes to infinite, the interval will shrink to the point p=1/2.
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Fig. 2 The risk functionof X/n and 6 for n=210000.



Problem 1.13 [p.391]

(a) Find two points 0< p,< p, <1 such that the estimator (1.11) for n=1 is Bayes

with respect to a distribution A for which Pr(p=p,)+Pr(p=p,)=1.

Solution:

With n=1, the estimator in (1.11) is

(314 if X =1
T l1/4 if X =0

Also, we have X |p~Ber(p),thatis
Pr(X=1|p)=p and Pr(X =0|p)=1-p.
Now, consider a discrete prior
Pr(p=p,)=a and Pr(p=p,)=1-a with O<p,<p, <1, O<a<l.
To obtain the posterior distribution, we need calculate the following conditional

probabilities
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Then let the posterior mean equal to ¢, we have
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Solve these two equation, we have

ap, +(1-a)p/ =3/4
ap, +(1-a)p,=1/2

For all discrete prior that | defined previously satisfy the above two equation then its

Bayes estimator is equal to ¢ . For example, let a=1/2, we have
{pé +pf=3/2
Po+ P =1

The solution is
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Hence we have found two points 0< p, < p, <1 such that the estimator (1.11) for

n=1 is Bayes with respect to a distribution A  for which



Pr(p=p,)+Pr(p=p,)=1.

(b) For n=1, show that (1.11) is a minimax estimator of p even if it is known that

Solution:

The risk function of o is
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The estimator 6 has constant risk. By (a), we have already shown that it is a Bayes

estimator. Therefore, & is a minimax estimator.



(c) In(b), find the values p, and p, forwhich p,—p, isassmall as possible.

Solution:

We need to find p, and p, minimize p,—p, and satisfy equations in (a), that is

ap, +(1-a)p/ =3/4
ap, +(1-a)p, =1/2'

By the second equation, we have
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Taking it into the first equation, we have
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Therefore, the solution of p, is
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Thus,
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Then p, »1/2" and p, —>1/2".



Problem 6.12

Show that the efficiency (6.27) tendstoOas |a—6@|—> .

Solution:

Equation 6.27 is

o ¢’(a-0)
“ pla-0){1-d(a-0)}

Define x=a-4@, and letting X — oo, we have
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Consider the limits separately, the first term is
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By L’Hospital rule, the second term is

m 20 i X)) i x =0
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The speed of the first term goes to zero (exponential) is faster than the speed of second

term goes to infinite. Therefore, we have

lim e, ,=lime,, =0.
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Similarly, we can show that lim e,, =lime,, =0.
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Thus, we have proven that

lim e,, =0.
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