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® Example 10.1.21

Let X, ---, X, beindependent and identical distributed random variables from Ber( p). Then

the maximum likelihood estimator (MLE) of p is p=ZX',X./n. By the invariant property of

the MLE, the MLE of p(1-p) is p(1-p)=="X,(1-=X,./n)/n.

We first derive the true variance of p(1—p). Since Y =% X, ~Bin(n,p), we have
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where the binominal moments are
E(Y)=np, E(Y?)=np(l-p+np),
E(Y®)=np(1-3p+3np—2p*—3np*+n?p?),
E(Y*)=np(1-7p+7np—-12p*—18np* +6n°p” —6p° +11np® —6n°p° +n’p®).
Therefore, we have obtained the true variance of p(1-p).

However, the true variance of p(1-p) depends on p. In real applications, we can
never know the true value of p. Thus, we have to apply some methods to estimate its variance.
One possible approach is applying the delta method. According to Example 10.1.14, we have

Jn(p-p)>N(0, p(1-p)). & n—w,

d
where “ — ” denotes convergence in distribution. Let g(p)=p(l-p) then we have

g'(p)=dg(p)/dp=1-2p and g"(p)=dg’'(p)/dp=—2. For p=1/2 (ie, g'(p)=0),
by applying the first-order delta method, we obtain

Jn{p(1-p)— p(1-p)}>N(O, p(1-p)(1-2p)),

as N—oo,



For p=1/2, by applying the second-order delta method, we obtain

d
{p(1-P)-p(1-p)}=>p(P-1)2is, 8 N,
With replacing p by p, we can estimate the variance of p(1-p) by
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Another possible approach is applying the non-parametric bootstrap method to

approximate the distribution of p(1— p) then estimates its variance. Concretely, we perform:

Algorithm 1 Non-parametric bootstrap variance

Let B be alarge integer.
Step 1. Resample X,-.-, X® fromdata X,,---, X, with replacement for b=1,---, B.

Step 2. Based on the bootstrap samples, compute

p®(1- f)“’))=%2Xi(b)[1—%2xi(b)j, foreach b=1---,B.
i=1 i=1

Step 3. Estimate var{ p(1-p)} by

~ ~ 1 B ~ ~ ~M) 74 ~(b) \
varg{ p(1-p )}=B—12{ p®(1-p®)-p®(1-p) ¥,
T4 b=l

where p®(1-p® )= p®(1-p®)/B.

A

Remark 1: Following the textbook, we set n=24 for simulations. For the case p=1/4, we

set data X,=---=X;=1 and X,=---=X,,=0 to yield the desired MLE. Similarly, we set
data X, =---=X,=1 and X, ;=---=X,,=0 for the case p=1/2; X, =---=X,,=1 and
Xy;=-=X,,=0 forthecase p=2/3.

Now, we compare the estimates of var{ p(1—p)} based on the bootstrap (Algorithm 1)
and delta method. Table 1 shows that the results on the delta method agree with the textbook.
However, the results on the bootstrap method and true value violate the textbook. Table 1 also
reveals that the bootstrap variance gives a slightly better approximation than the delta method

variance. This is due to that the delta method relies on asymptotic approximation while our



sample size n=24 is small. One should note that the computational cost of the bootstrap
method is much higher than the delta method. We provide R codes that reproduce Table 1 in

Appendix 1.

Table 1. The non-parametric bootstrap and delta method variances for p(1—p). The true

variance is calculated by assuming p=p.

Variance p=1/4 p=1/2 p=2/3
Bootstrap (B =1,000) 0.002068 0.000214 0.001105
Bootstrap (B =10,000) 0.001963 0.000208 0.001087
Bootstrap (B =100,000) 0.001904 0.000206 0.001110

Delta Method 0.001953 0.000217 0.001029

True 0.001911 0.000208 0.001109




Example 10.1.22
Suppose that we have a sample
-1.81, 0.63, 2.22, 241, 295, 4.16, 4.24, 453, 5.00.

with

o 13 ) 1 T \2

X,==>X;=271 and Si=—"">"(X;-X,)*=4.83.

[y n-14

We aim to apply the parametric bootstrap method based on normal distribution to estimate the

variance of S’. Here, we first follow the textbook and estimate the normal parameters x and

o’ by X, and S?, respectively. Concretely, we perform:

Algorithm 2 Parametric bootstrap variance (textbook)

Let B be alarge integer.
Step 1. Generate samples X, ..., X® from N(X, =2713,S?=4.820) for b=1,---, B.

Step 2. Based on the bootstrap samples, compute

1 -
S = — N (XP-_X®)y  foreach b=1---,B,
n n—l;( 1 n ) l
where X® =3 X®/n.
Step 3. Estimate var(S>) by
1 & =
vary(57) = (S0 -0 )
B-13

where S’® =32 S*/B.

n

By using Algorithm 2 with B =1000, we obtain var,(S?)=5.764. On the other hand,
based on the normal assumption, we have (n-1)S?/c”~ yi_,,. Therefore, we obtain

var(S>)=2c"/(n-1). The textbook suggests to estimate it by utilizing the MLE. However,

the textbook mistakenly estimates o by the sample variance. The MLE should be



2(6%)?/(9-1)=4.590, where 6° =% (X, —X,)*/n=4.285. In addition, according to the

textbook, the true variance of S’ is 4. Thus, our results violate the textbook. The MLE gives a

better approximation to the true variance.

Algorithm 2 can be improved by estimating normal parameters based on MLEs ;& =2.713

and &% =4.285. To be specific, we perform:

Algorithm 3 Parametric bootstrap variance (MLE)

Let B be alarge integer.
Step 1. Generate samples X, ..., X® from N(2=2713 6*=4.285) for b=1---,B.

Step 2. Based on the bootstrap samples, compute

1 -
S = N (XP-_X®)y  foreach b=1---,B,
n n—l;( 1 n ) l
where X® =3 X®/n.
Step 3. Estimate var(S>) by
1 & =
vary(57) = (S0 -0 )
B-13

where S*® =3P S*®)/B.

n

By using Algorithm 3 with B =1000, we obtain var,(S’)=4.554 which is more close

to the true value and agree with the MLE. We summarize all the results in Table 2. R codes that

reproduce Table 2 are available in Appendix 2.

Table 2. The parametric bootstrap variance and the MLE.

Method Bootstrap (Algorithm 2)  Bootstrap (Algorithm 3) MLE True
Variance 5.764 4.554 4.590 4.000




Appendix 1 R codes for Example 10.1.21

B =1000

n=24

p.hat = 1/4

### bootstrap method ###

var.boot = rep(0,B)

set.seed(816)

data = c(rep(1,n*p.hat),rep(0,n*(1-p.hat))); mean(data)
for (bin 1:B) {

data.boot = sample(data,n,replace = TRUE)
p.boot = mean(data.boot)
var.boot[b] = p.boot*(1-p.boot)

ks

round(var(var.boot),6)

### delta method ###
if (p.hat 1=1/2) {

round(p.hat*(1-p.hat)*(1-2*p.hat)"2/n,6)

}else {

round(p.hat*2*(p.hat-1)"2/n"2*2,6)

Hit# true #i#

p = p.hat

EY =n*p

EY2 = n*p*(1-p+n*p)

EY3 = n*p*(1-3*p+3*n*p+2*p"2-3*n*p"2+n"2*p"2)

EY4 = n*p*(1-7*p+7*n*p+12*p"2-18*n*p/2+6*n2*p"2-6*p/3+11*n*p3-6*n2*p"3+n3*p3)
round((EY2-EY~2)/n"2+(EY4-EY2/2)/n"4-2*(EY 3-EY*EY 2)/n"3,6)




Appendix 2 R codes for Example 10.1.22

x =¢(-1.81,0.63,2.22,2.41,2.95,4.16,4.24,4.53,5.09)
B =1000

n = length(x); n

mu = mean(x); mu

s2.sample = var(x); s2.sample

s2.MLE = sum((x-mean(x))"2)/n; s2.MLE

s2.boot = rep(0,B)

set.seed(816)

for (bin 1:B) {

x.boot = rnorm(n,mean = mu,sd = sqrt(s2.sample)) # Algorithm 2
#x.boot = rnorm(n,mean = mu,sd = sqrt(s2.MLE)) # Algorithm 3
s2.boot[b] = var(x.boot)

ks

var(s2.boot)
2*s2.MLE"2/(n-1)




