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iid
Q2 [+5] Let X,,..., X, ~ f(X|n)=—nexp(nx), n<0, x>0.
(1) [+1] Derive the MLE 7 of 7.
Solution 1).

The likelihood and log-likelihood functions are

L(n)=f[f(xi|n)=(—n)"exp(nixi] and  ((1)=logL(n)=nlog( )" +7> X,

i=1
Thus, the MLE of # is the solution of the score function o/(7)/dn=0 which is 7=-n/Z' X..

The MLE attains the maximum of the log-likelihood value since &°/(7)/on*|,_,=-n//* <0.

(2) [+2] Calculate the bias E, [7]-7.

Solution (2).
Since X, ~ f(x|n)=—nexp(nx), i=12,...,n, we have

Zl:xi =T~ f(tln)=—(r_(’;))nt“'1exp(nt), n<0, t>0.

Therefore,

~ Gy fea(=m)" n
E(5)=-nE(T ):_([t T’;)t exp(nt)dtzn—fl.

Then the bias is

~ n
E(f)-n=—".
(1)-n=—"7

(3) [+1] Show that _ K is an ancillary statistic for 7.
X ++X

Solution (3).
We have X, /XL X, =(-nX)(-nZ,X;). Since —nX, ~BExp(1) and —7X',X,~T(n,1), the
distribution of X /X', X; does not depend on parameter 7. Then we have shown that X /X X;

is an ancillary statistic for 7.



X
4) [+1] Calculate E | ———— need proofs).
(4) [+1] {X1+W+XJ (need proofs)

Solution (4).
We have

(O ) =TT 11 = (-0 133% |=e w3+ nog( ) |.

=
Thus, the canonical form of this one-dimensional exponential family is
FOx, 0 X () =ep{nT (%, ... X, )= A(7) (%, .. X, ),
where T(X,...,X,)=2"%, A(n)=-nlog(-7), and h(x,...,X,)=1. Since the natural parameter
space ®={n|n<0} contains an one-dimensional rectangle (e.g., (—2,-1)), we obtain that
T(X,..., X, )=20 % iscomplete.
Now, by Basu’s Theorem, X! x. (complete sufficient statistic) and X /X, X, (ancillary

statistic) are independent. Therefore, we have

X, n X, n
E,;( Xn ): En(zinﬂxi 'zi—lxi] = Er{zin:lxi qu(zi_lxi )

This implies

E( Xn J_ E'](Xn) __1/77:1
n

TLX _Eq(zrﬂxi)_—nlﬂ H

NOTE: One may also apply the change of variables to show that X, /%! X, follows a Beta

distribution which does not depend on 7 and then compute its expectation.



iid
Q4 [+5] Let X,,..., X, ~ f(x]|0)=20°x°1(x=0), 6>0.
(1) [+2] Derive a size-« LR test for testing H,:0<6, vs. H,:6>6,.
Solution (1).
The likelihood function is
L(O)=]f(X16)=2"0"" [ X;*I(Xy=6),
i=1 i=1

where X, =min( X,, ..., X, ). Clearly, the likelihood function L(&) isincreasingin 6.

If X, <6, we have the likelihood ratio (LR) test statistic A=1 which implies that we
always accept the null hypothesis. This is a natural result since <X, <6,. If X, >, the LR

test statistic is

n n2n z -3 n
sUp,uo, L(6) 2"6; ]‘[xi I( Xy >6,) _( " ]2

Sup&e@ L(H) X2nnx—3|(x(1)_ (l)) X

®
(Y

where ©,={0|0<6,} and ©,={0|6>6,},and ©=0,U0,={0|0<R}.
Since (6,/ Xy )" <c forsome c isequivalentto X, >k forsome k.Now, we consider

P R
-3 _

otherwise,
where a=E,{#( X )}=Pr(Xy >k)=(6,/k)*". This implies k =8,a™'*". Thus, the desired LR

test with size « is

l/2n

¢(x):{1 if Xy >6a"

0 otherwise.

(2) [+1] Derive the power function.
Solution (2).
The power function is defined as

B(O)=E LI X)}=Pr(Xy>6a ™), 6>0.
If g™ <@, one has p(0)=1; if Ga™*" >0, one has B(0)=(6/6,)"a. Therefore, the
power function of the LR test in (1) is

(016,)"a if Ga™*" >0,
B(0)= {

if o™V <0.



(3) [+1] Draw figures of the power function under 6,=1, a=0.5, n=12 (details).

Solution (3).
Figure 1 plots the power function under 6,=1, «=0.5, n=12.
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Figure 1. Power functions with sample size n=1,2 under 6,=1, a=0.5.

(4) [+1] Derive a (1-« ) one-sided ClI by invertingatest H,:0=6, vs. H,:0>6,.

Solution (4).
Similarly, one only needs to consider the case X, >@,. The LR test statistic is

SUPyee L(EO) 2“X2nHXi73|(X(1)ZX(l)) X
a

@

n n2n . -3 n
SUpy., L(8) 2"6; l;[xi (X =6) _( " Jz
)

wl

where ©,={6,} and ©,={0|6>6,},and ©=0,U0,={0|0>06,}. Then the test is exactly the

same as in (1), that is

-1/2n

Hx) = 1 if Xgy>Ga ™,
0 if Xy <Ga ™.

- - - - - - /
By inverting its acceptance region, we obtain a (1-« ) confidence [a'*"x,,, ).



Exercise 9.54

Solution (a).

We have X ~N(u,o”) and vS*/o®~ yZ_, are independent. The interval estimator is
C(x)=[x—cs,x+cs] and the loss function is L{(x, o°),C}=bLength(C)/o—1.(u). Thus,

the risk function is

R{(u#,0%),C}=E[L{(u,0"),C}]=bE{Length(C)} o ~Pr(ucC)
=2bcE(S/o)—-Pr(X —-cS<u<X+cS)

st

X—u 3cj+l.
S

:2bcE(S/a)—Pr(

X—u
S

:2bcE(S/a)—2Pr(

Recall

J2r((v+1)/2) _X-—u (X-p)lo _
WT(vi2) and - T=7gTs Js? /o t

df=v *

M=E(S/c)=

Thus, we obtain
R{(x, c°),C}=2bcM —2Pr(T <c)+1,

Solution (b).
The first derivative of the risk function with respectto ¢ is

0 2 _ _
gR{(la,G ),C}=2bM -2f_(c),

where f.(t) is the density function of t,_, . Set the equation equals to zero and it becomes

2\/§F((V+1)/2)b_ZF((V+1)/2)(1+§J—(V+1)/2 i
\/;F(V/Z) MF(V/Z) v =VU.

The above equality may hold if b<1/+2z. With some further simplification, we have that c

minimize the risk function satisfies

1 v (v+1)/2
b=— .
N2r (v+czj



Solution (c).

Let v — o0, we have

b=1lim

1 y (v+1)/2 _ _ CZ (v+1)/2
| =——Ilim|1+ 2
v~>oo,/27z- v+C ,/272-1/»00 vV+C

l _C2/2 (v+1)/2 l )
=——lim| 1+ ——F—— =—— e°'2
N 27 v (v+c)/2 N2

Then,

c=\/—2Iog( J2rb) .

Hence we have shown that as v — oo, the solution will converge to the known case.

Exercise 9.55

Solution.

We have

R{(u#,0%),C}=E[{(x,0”),C}]

=E[{(u,c%),C}HS<KIPr(S<K)+E[L{(x,6°),C}S>K]Pr(S>K)
=R{(u,c%),C'}+E[L{(u,c%),C}S>K]Pr(S>K).

The last equality holds since C'=¢ if S>K . Thus, it suffices to find when

E[L{(u c°),C}S>K]>0.

By straightforward calculations,

E[L{(x 0°),C}S>K]=E{bLength(C)~1c(x)|S>K}
=E{2bcS—-1.(u)|S>K}

= E{2bcK -1|S > K}
= 2bcK —1.

Therefore, if K >1/2bc then C' dominates C.



