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Exercise 7.2 (a) (b) Need details and R codes
Solution (a).

Let X,,---, X, beindependent and identical samples from I'(«, £), that is

f, (X)= ! x“e¥f x>0, a>0, B>0.

I'(a)p”
Suppose « is known, we derive the maximum likelihood estimator (MLE) of g. The

likelihood function is

Ln(ﬂ)zf[fa,ﬁ(xi)z[r(a—l)ﬂaj (ﬁxij exp(—%znlxi}

i=1

The log-likelihood function is
én(ﬁ)=IogLn(,B):—nlogF(a)—nalog,BJr(a—l)ZIogXi—%ZXi.
i=1 i=1
The MLE can be obtained by solving o/.(#)/0£ =0 which is equivalent to
13 no
— > X,——=0.
FE
Clearly, the MLE is
1
=—> X..
p an; |

The MLE attains the maximum of log-likelihood function is ensured by examining its second-

order derivative

0? nae 1 < 3 & N
—/ = —— X =— X 0.
T (na)(; j <

Solution (b).

Suppose both « and g are unknown, we aim to find the MLEs of « and /£ based on the

data in Exercise 7.10 (c). The data consist n=14 samples and are given in Table 1. Now, the

log-likelihood function becomes
¢,(a, f)=-nlogT(a)-nalog f+(a-1)3 log X, —%in .
i=1 i=1

According to (a), we can replace g by X X./n« . To be specific,

¢ (a ﬂ(a)):-nlogr(a)—nalog[niixi]+(a—1)znjlog X, —ne.
adia i=1



Therefore, this problem has been reduced to the maximization of a univariate function. The

MLEs can be obtained by solving o/ (e, f(a))/a=0 which is equivalent to

ZIogX—m//(a) nlog( ZXj

where w(a)=0logI'(a)/da is the digamma function. Since there is no explicit formula for
the MLE of «, one needs to use some numerical methods. We suggest applying the Newton-
Raphson algorithm. Thus, we require the second-order derivative of 7. («, f(«)),
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where w'(«) isthe trigamma function. Now, we state the Newton-Raphson algorithm.

t(a, ﬂ(a))———nw(a) 0,

Algorithm 1 Newton-Raphson algorithm
Step 1. Set initial value o®.

Step 2. Repeat the Newton-Raphson iteration:

a* =q® {8 } {—5 (a, ﬂ(a))}

o If oY —a™ <107, stop the algorithm and set the MLE as o

a=a

We apply Algorithm 1 with initial value o =1 and it converges in 15 iterations. The result of

A~

estimation is & =514.3354. Then we obtain B=3!" X,/nd&=0.0449. Figure 1 reveals that

the MLEs attain the maximum of the log-likelihood function. R codes are given in Appendix 1.
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Figure 1. Log-likelihood functions under the gamma distribution based on the cuckoo’s egg
data. The vertical lines are drawn at ¢ =514.3354, ﬁ =0.00449 .

Tablel. The length (in millimeters) of cuckoo’s egg.

22.0 23.9 20.9 23.8 25.0 24.0 21.7
23.8 22.8 23.1 23.1 23.5 23.0 23.0




Exercise 7.6 (a) Is it complete? (b) Draw the figure of the likelihood function to explain

your answer (with R codes)

Solution (a).

Let X,,---, X, beindependent and identical samples from the probability density function
f,(x)=60x?, 0<@<x<oo.

This is known as the Pareto type | distribution with the scale and shape parameters being &

and 1, respectively. The joint density is

fg(xl’...,xn):ll[fg(xi ):G”ﬁx(ZI(QSXi )=0"1(0< X, )f[xi‘2
= G AT (X X ) 30X, - %, ),

where 1(-) isthe indicator function, X, =min(x, -+, X, ) =T (X, =+ X,),

0,(1)=0"1(0<t),  h(x, %) =] ]%*.

By the factorization theorem, we obtain T( X,,---, X, ) =X, Iis a sufficient statistics.
Now, we examine the completeness of T( X,,---, X, ) =X, . The cumulative distribution
functionof T is
F(t)=Pr(T <t)=Pr(min( X,,---, X, )<t)=1-Pr(min( X,,---, X, )>t)
=1-Pr(X >t)"=1-6"/x".
Its density function is

0 ng"
fT(t)ZaFT(t)Z o

Suppose that there exist function ¢ such that E,{4#(T)}=0 for all 6>0. Then, by
straightforward calculations, we have forall >0,

ne

n n
tn+1 dt

i dt=z¢'(t)

EA4 (T)I=EL4 (T)}=[¢'(1)
=¢'(0)5 =4 ()
= ¢7(0)=¢(0)
= ¢(0)=0.

This implies ¢(t)=0 for all t>8&. Therefore, we have shown that T is completes hence

T( X, X, )= X, isacompletes sufficient statistics.



Solution (b).
According to (a), the likelihood is

Ln(e):H fa( X )=0"1(0< X(l) )1_[)(i_2 '
i=1 i=1
One may observe that L (&) is an increasing function of & in the range 0<&< X, . Thus,

the MLE is é:x(l). For illustration, we apply the inverse transform method to generate

n=100 samples from the Pareto type | distribution with the scale and shape parameters being

2 and 1, respectively (details of data generation are provided in Appendix 2). Then, we obtain
the MLE 6= X =2.0293. Figure 2 plots the likelihood function and it shows that the MLE

attains the maximum. R codes are available in Appendix 2.
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Figure 2. Likelihood function under the Pareto type I distribution based on the generated data.
The vertical line is drawn at 6 =2.0293.

Solution (c).
The general Pareto type | distribution is defined as f,(x)=6%x"*", x>0, where >0 is
a scale parameter and « >0 is a shape parameter. Its k-th moment is derived as

0 0 k
E,(X*)=[x" fg(x)dx=0“ajxk-“-ldx=‘9—“, a>kK.
” ” a—Kk
The above formula implies that the k-th moment does not exist if « <k . Under our case a =1,

the k-th moment does not exist for all k >1. Thus, we cannot find the moments estimator for 4.



® [Exercise 7.8
Solution (a).
Let X be one observation from N(0,c”) with probability density function is defined as

X2

1
fg(x):ﬂaexp[—zazj, —wo<X<w, c>0.

Clearly, one has
o’ =var( X )=E(X?*)—{E(X)¥ =E(X?).

Thus, we obtain X ? is an unbiased estimator for o2.

Solution (b).
For one single observation, the likelihood function is its probability density function. Then, the

log-likelihood function is

2

/(o) =log fg(x):—%log( 27r)—|oga—2X—.
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The MLE is obtained by solving /(o )/déc =0 which is equivalent to x*/o°-1/0=0.

Clearly, the MLE is 6 =| X |. The MLE attains the maximum of log-likelihood function is

ensured by examining its second-order derivative

o’ 1 3X? 2
oo ) =g =Tyl
Solution (c).
According to (a), we have
E(X?)=0".

By the method of moments, if there are n observations (say X,,---, X, ), we estimate &° by

~2_1n 2
o —n;Xi.

However, we only have one observation. Thus, we estimate o by &° = X?. Then it is natural

to estimate o by o=|X]|.



Exercise 7.9

Let X,,---, X, beindependent and identical samples from U (0, &), thatis
1
fg(x):g, 0<x<4.

Recall that the mean and variance under the uniform distribution are E(X )=6/2 and

var( X ) =6%/12, respectively. By the method of moments, we estimate 6 by

0 =EZ X, .
)
One can easily obtain its mean and variance as
~ 2 n _ 4 n 02
E(6)==>E(X;)=0, var(8)=—> var(X;)=——.
N n" 5o 3n
Now, we consider the likelihood-based approach. The likelihood function is
L(&)=]]f.(X)=[]0"(0<X;<0)=U(X,,<N]]o",
i=1 i=1 i=1
where X, =max( X,,---, X, ). One may observe that L (&) is a decreasing function of &
in the range X, <@. Thus, the MLE is é:X(n). To evaluate its mean and variance, one

(n) —

needs to find the distribution of X, . The cumulative distribution function of X, is
Fx(n)ﬂ(t) =Pr( X, <t)=Pr(max( X;,---, X, )<t)=Pr( X, X <t)
=Pr(X <t)"=t"/6".
Its probability density function is

0 n- n
fropo(t) = fy.o(t)=nt""/6".

Then one can obtain the mean and variance of the MLE as

0 n-1 0 n-1
E(9)=[tDat=-"o0, E&)=[rD_da-—""¢,
, 0" n+1 . 0" n+2
n> no?

A Ao A Z_L 2 —
var(9) =E(0")—{E(0)} _n+20 (n+1)29 S (n+2)(n+1)*

According to the results we obtained, 6 is an unbiased estimator and & is a biased

A

estimator. Note that the bias of & is small since n/(n+1)—>1 as n—oo, however, it may
be large if n is small. On the other hand, var(é)<var(§) forall n and @. Therefore, the

MLE @ is preferred if the sample size is large



® Detailed answers to Q3 below

Q3 [+2]
iid
Let X,,---, X, ~N(x, c°), where u is restricted to pz<a or u>b for some numbers a<b.

Assume that o is known. Hence, the parameter space is ®=(—o, a]U[b, ). Obtain the MLE
£ (with some figures to explain it).
Solution Q3.

Given o? is known, the likelihood is written as

LGo=TTLO0=T] —ew {ﬁli%ﬁl}.
72'0

20

Then the log-likelihood function is

() =logL, ()= log( 27)

The MLE is obtain by solving ¢ (u)/ou=0 and it is the sample mean =3, X, /n=X,
However, the parameter restriction is imposed, it is possible that X, ¢ (-, a]U[b, o). Therefore,
additional adjustments are required. The restricted MLE should be

if X <aor X, >b,
if a<X,<(a+h)/2,
if (a+b)/2<X, <b,
ab if X, =(a+b)/2.

n

o —
/ures -

o o X

Note that if X, =(a+b)/2 then there are two MLEs 4. =a and f. =b. However, one can

simply ignore this case since it happens with O probability. Figure 3 illustrates the other three
different cases.
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Figure 3. Three different cases of the restricted MLE with a=-0.25 and b=0.25. The points

denote the restricted MLE £, and the dotted vertical lines denote the location of X .



® Detailed answers to Q4 below

Q4 [+3]

Let X,,---, X, ~ Gamma(a, f) as in HW#1. Let z//(a):dilogl“(a) be the digamma
[94

function and y'(«) Dbe the trigamma function.
(1) Write down the score functions using the sufficient statistics (T, T, ).

Solution (1).
According to Exercise 7.2 (a), the joint density for i.i.d. samples from T'(«, £) is

n 1 n
=0, AT (X0 %, ),Tz(Xl,--n 2 ) 0K %),

where

CTESE | ERRACTE S E 38

ga,ﬁ(q,tz){mj tfexp(—%j, h(xl,m,xn):[]i[xij .

By the factorization theorem, (T,,T,)=(ITX,, =" X, ) isa sufficient statistics.

Again, by Exercise 7.2 (b), the log-likelihood function is

t,(a, B)=-nlogT(a)—nalog f+ (1) log X, —%Zn:xi.

i=1 i=1

Then the score functions are

(@ )=t (e, f) =Y 0g X, ~nlog f-ny ().

S )= 25t )= DX -

Now we can express the score functions by using sufficient statistics (T, T, )=(ITX,, ", X, ).

Si(a, B)=logT,—nlog f—ny(a),

na
S =2 _—
(a, ) ﬂ 5

where T, =TT, X, and T,=%" X,.



(2) Write down the Hessian matrix H(e«, ).
Solution (2).

To obtain the Hessian matrix, one requires the second-order derivatives of ¢ (e, ). They are

o —ny o _n & _ha_ 2
gz (@B =wa@), St B)=—p. at(a )= ﬂsgxi-
Thus, the Hessian matrix is
0? 0? , n
g 27 (@ B) aaaﬁf"(“’ﬂ) ) -ny'(a) 5
| O ytap) Ziqapy || - M2yl
oadp " opr " g B pE

(3) Let (&, ) be the solution to S,(a, B)=S,(a, B)=0. Write down H(&, 3) in terms of
(&, B).

Solution (3).

Since (o?,ﬁ’) Is the solutionto S,(«a, f)=S,(«, #)=0, we have

~ 13 na
S,(a, f)=— X, ——=0.
i 7T
This implies
N
no=— Xi
2
Then one has the following simplification
o’ na 2 na
(. ) =Y K=
aﬂZ weii pof ﬂZ ﬂS — ﬂZ
Therefore, we obtain
oA n
i ny'(a) E
~ ﬁz



Appendix 1. R codes for Exercise 7.2

R codes

HEHHHHHHIHE EXercise 7.2 #iH#HHHHHIH
onedim.score_func = function(Alpha) {
n = length(x)
-n*digamma(Alpha)-n*log(sum(x)/(Alpha*n))+sum(log(x))
}
onedim.Hessian_func = function(Alpha) {
n = length(x)
-n*trigamma(Alpha)+n/Alpha
}
###### one-dimensional Newton-Raphson algorithm

X =¢(22,23.9,20.9,23.8,25,24,21.7,23.8,22.8,23.1,23.1,23.5,23,23)

count =0
epsilon = 1le-5
par_old =1
repeat {

par_new = par_old-onedim.Hessian_func(par_old)*-1*onedim.score_func(par_old)
count = count+1

if (abs(par_new-par_old) < epsilon) {break}
par_old = par_new

}
par_new
count

Alpha = par_new; Alpha
Beta = sum(x)/(par_new*length(x)); Beta

10



Appendix 2. Data generation and R codes in Exercise 7.6

Suppose X follows the Pareto type I distribution, its cumulative distribution function is
9 a
FX(X)=1—(;j , 0<f<x<w, a>0.

By the probability integral transform, we have

9 a
U :FX(X):l—(Y) ,

where U ~U(0,1). This implies

__ 0
(l—U )1/a )

Thus, one can easily generate random samples X,,---, X, from the Pareto type | distribution by

transforming random samples U, ~U(0,1), i=12,---,n.

R codes

HEHHEHEHIHE eXercise 7.6 #iHHHHHHIHT
L_func = function(theta) {theta"n*prod(x)}

n =100
theta =2

set.seed(10)

u = runif(n)

x = theta/(1-u)
min(x)

theta_v = seq(1.7,min(x),length.out = 100)
plot(theta_v,sapply(theta_v,L_func),type = "I",xlim = ¢(1.8,2.1),lwd = 3,

ylab = "likelihood" ,xlab = expression(theta),cex.axis = 1.5,cex.lab = 1.8)
lines(seq(min(x),2.2,length.out = 100),rep(0,100),Iwd = 3)
points(min(x),L_func(min(x)),pch = 16,cex = 2)
points(min(x),0,cex = 2)
abline(v = min(x),lty = 2,lwd = 2)
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