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HW#2 

 Exercise 7.2 (a) (b) Need details and R codes 

Solution (a). 

Let nXX ,,1   be independent and identical samples from ),(  , that is 
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Suppose   is known, we derive the maximum likelihood estimator (MLE) of  . The 

likelihood function is 
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The log-likelihood function is 
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The MLE can be obtained by solving 0/)(  n  which is equivalent to 
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Clearly, the MLE is 
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The MLE attains the maximum of log-likelihood function is ensured by examining its second-

order derivative 
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Solution (b). 

Suppose both   and   are unknown, we aim to find the MLEs of   and   based on the 

data in Exercise 7.10 (c). The data consist 14n  samples and are given in Table 1. Now, the 

log-likelihood function becomes 
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According to (a), we can replace   by nX i
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Therefore, this problem has been reduced to the maximization of a univariate function. The 

MLEs can be obtained by solving 0/))(,(  n  which is equivalent to  
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where   /)(log)(  is the digamma function. Since there is no explicit formula for 

the MLE of  , one needs to use some numerical methods. We suggest applying the Newton-

Raphson algorithm. Thus, we require the second-order derivative of ))(,( n , 
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where )(  is the trigamma function. Now, we state the Newton-Raphson algorithm. 

Algorithm 1  Newton-Raphson algorithm 

Step 1.  Set initial value )0( . 

Step 2.  Repeat the Newton-Raphson iteration: 
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 If 5)()1( 10||   kk  , stop the algorithm and set the MLE as )1( k . 

We apply Algorithm 1 with initial value 1)0(   and it converges in 15 iterations. The result of 

estimation is 3354.514ˆ  . Then we obtain 0449.0ˆ/ˆ
1    nX i

n

i . Figure 1 reveals that 

the MLEs attain the maximum of the log-likelihood function. R codes are given in Appendix 1. 

 

Figure 1.  Log-likelihood functions under the gamma distribution based on the cuckoo’s egg 

data. The vertical lines are drawn at 3354.514ˆ  , 00449.0ˆ  . 

Table1.  The length (in millimeters) of cuckoo’s egg. 

22.0 23.9 20.9 23.8 25.0 24.0 21.7 

23.8 22.8 23.1 23.1 23.5 23.0 23.0 
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 Exercise 7.6 (a) Is it complete? (b) Draw the figure of the likelihood function to explain 

your answer (with R codes) 

Solution (a). 

Let nXX ,,1   be independent and identical samples from the probability density function 

2)(  xxf  ,    x0 . 

This is known as the Pareto type I distribution with the scale and shape parameters being   
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By the factorization theorem, we obtain )1(1 ),,( XXXT n   is a sufficient statistics. 
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Suppose that there exist function   such that 0})({ TE   for all 0 . Then, by 
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This implies 0)( t  for all t . Therefore, we have shown that T  is completes hence 

)1(1 ),,( XXXT n   is a completes sufficient statistics. 
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Solution (b). 

According to (a), the likelihood is 
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One may observe that )(nL  is an increasing function of   in the range )1(0 X . Thus, 

the MLE is )1(
ˆ X . For illustration, we apply the inverse transform method to generate 

100n  samples from the Pareto type I distribution with the scale and shape parameters being 

2  and 1, respectively (details of data generation are provided in Appendix 2). Then, we obtain 

the MLE 0293.2ˆ
)1(  X . Figure 2 plots the likelihood function and it shows that the MLE 

attains the maximum. R codes are available in Appendix 2. 

 

 

Figure 2.  Likelihood function under the Pareto type I distribution based on the generated data. 

The vertical line is drawn at 0293.2ˆ  . 

 

Solution (c). 

The general Pareto type I distribution is defined as 1)(  
  xxf , x , where 0  is 

a scale parameter and 0  is a shape parameter. Its k-th moment is derived as 
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The above formula implies that the k-th moment does not exist if k . Under our case 1 , 

the k-th moment does not exist for all 1k . Thus, we cannot find the moments estimator for  . 
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 Exercise 7.8 

Solution (a). 

Let X  be one observation from ),0( 2N  with probability density function is defined as 
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Thus, we obtain 2X  is an unbiased estimator for 2 . 
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For one single observation, the likelihood function is its probability density function. Then, the 
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The MLE is obtained by solving 0/)(    which is equivalent to 0/1/ 32  x . 

Clearly, the MLE is ||ˆ X . The MLE attains the maximum of log-likelihood function is 

ensured by examining its second-order derivative 
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Solution (c). 

According to (a), we have  
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By the method of moments, if there are n  observations (say nXX ,,1  ), we estimate 2  by  
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However, we only have one observation. Thus, we estimate 2  by 22~ X . Then it is natural 

to estimate   by ||~ X . 
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 Exercise 7.9 

Let nXX ,,1   be independent and identical samples from ),0( U , that is 
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Now, we consider the likelihood-based approach. The likelihood function is 
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According to the results we obtained, 
~

 is an unbiased estimator and ̂  is a biased 

estimator. Note that the bias of ̂  is small since 1)1/( nn  as n , however, it may 

be large if n  is small. On the other hand, )
~

var()ˆvar(    for all n  and  . Therefore, the 

MLE ̂  is preferred if the sample size is large 
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 Detailed answers to Q3 below 

Q3  [+2]  

Let ),(~,, 2

1 NXX
iid

n , where   is restricted to a  or b  for some numbers ba  . 

Assume that 2  is known. Hence, the parameter space is ),[],(  ba  . Obtain the MLE 

̂  (with some figures to explain it). 

Solution Q3. 

Given 2  is known, the likelihood is written as 
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Note that if 2/)( baXn   then there are two MLEs ares̂  and bres̂ . However, one can 

simply ignore this case since it happens with 0 probability. Figure 3 illustrates the other three 

different cases. 

 

Figure 3.  Three different cases of the restricted MLE with 25.0a  and 25.0b . The points 

denote the restricted MLE res̂  and the dotted vertical lines denote the location of nX . 
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 Detailed answers to Q4 below 

Q4  [+3]  

Let ),(~,,
...

1 GammaXX
dii

n  as in HW#1. Let )(log)( 


 
d

d
 be the digamma 

function and )(  be the trigamma function. 

(1) Write down the score functions using the sufficient statistics ),( 21 TT . 

Solution (1). 

According to Exercise 7.2 (a), the joint density for i.i.d. samples from ),(   is 
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(2) Write down the Hessian matrix ),( H . 

Solution (2). 

To obtain the Hessian matrix, one requires the second-order derivatives of ),( n . They are 
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Appendix 1.  R codes for Exercise 7.2 

 

R codes 

########## Exercise 7.2 ########## 

 

onedim.score_func = function(Alpha) { 

   

  n = length(x) 

   

  -n*digamma(Alpha)-n*log(sum(x)/(Alpha*n))+sum(log(x)) 

   

} 

 

onedim.Hessian_func = function(Alpha) { 

   

  n = length(x) 

   

  -n*trigamma(Alpha)+n/Alpha 

   

} 

 

##### one-dimensional Newton-Raphson algorithm 

 

x = c(22,23.9,20.9,23.8,25,24,21.7,23.8,22.8,23.1,23.1,23.5,23,23) 

 

count   = 0 

epsilon = 1e-5 

par_old = 1 

 

repeat { 

   

  par_new = par_old-onedim.Hessian_func(par_old)^-1*onedim.score_func(par_old) 

  count = count+1 

   

  if (abs(par_new-par_old) < epsilon) {break} 

  par_old = par_new 

   

} 

par_new 

count 

 

Alpha = par_new; Alpha 

Beta  = sum(x)/(par_new*length(x)); Beta 
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Appendix 2.  Data generation and R codes in Exercise 7.6 

 

Suppose X  follows the Pareto type I distribution, its cumulative distribution function is 













x
xFX 1)( ,    x0 , 0 . 

By the probability integral transform, we have 













X
XFU X 1)( , 

where )1,0(~UU . This implies 




/1)1( U

X


 . 

Thus, one can easily generate random samples nXX ,,1   from the Pareto type I distribution by 

transforming random samples )1,0(~UUi , ni ,,2,1  . 

 

R codes  

########## exercise 7.6 ########## 

 

L_func = function(theta) {theta^n*prod(x)} 

 

n = 100 

theta = 2 

 

set.seed(10) 

u = runif(n) 

x = theta/(1-u) 

min(x) 

 

theta_v = seq(1.7,min(x),length.out = 100) 

plot(theta_v,sapply(theta_v,L_func),type = "l",xlim = c(1.8,2.1),lwd = 3, 

     ylab = "likelihood",xlab = expression(theta),cex.axis = 1.5,cex.lab = 1.8) 

lines(seq(min(x),2.2,length.out = 100),rep(0,100),lwd = 3) 

points(min(x),L_func(min(x)),pch = 16,cex = 2) 

points(min(x),0,cex = 2) 

abline(v = min(x),lty = 2,lwd = 2) 

 

 


