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HW#2 

 Exercise 7.2 (a) (b) Need details and R codes 

Solution (a). 

Let nXX ,,1   be independent and identical samples from ),(  , that is 
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Suppose   is known, we derive the maximum likelihood estimator (MLE) of  . The 

likelihood function is 
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The log-likelihood function is 
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The MLE can be obtained by solving 0/)(  n  which is equivalent to 
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Clearly, the MLE is 
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The MLE attains the maximum of log-likelihood function is ensured by examining its second-

order derivative 
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Solution (b). 

Suppose both   and   are unknown, we aim to find the MLEs of   and   based on the 

data in Exercise 7.10 (c). The data consist 14n  samples and are given in Table 1. Now, the 

log-likelihood function becomes 
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According to (a), we can replace   by nX i

n

i /1 . To be specific,  




 nXX
n

nn
n

i

i

n

i

in 







 

 11

log)1(
1

log)(log))(,( . 



2 

Therefore, this problem has been reduced to the maximization of a univariate function. The 

MLEs can be obtained by solving 0/))(,(  n  which is equivalent to  
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where   /)(log)(  is the digamma function. Since there is no explicit formula for 

the MLE of  , one needs to use some numerical methods. We suggest applying the Newton-

Raphson algorithm. Thus, we require the second-order derivative of ))(,( n , 
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where )(  is the trigamma function. Now, we state the Newton-Raphson algorithm. 

Algorithm 1  Newton-Raphson algorithm 

Step 1.  Set initial value )0( . 

Step 2.  Repeat the Newton-Raphson iteration: 
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 If 5)()1( 10||   kk  , stop the algorithm and set the MLE as )1( k . 

We apply Algorithm 1 with initial value 1)0(   and it converges in 15 iterations. The result of 

estimation is 3354.514ˆ  . Then we obtain 0449.0ˆ/ˆ
1    nX i

n

i . Figure 1 reveals that 

the MLEs attain the maximum of the log-likelihood function. R codes are given in Appendix 1. 

 

Figure 1.  Log-likelihood functions under the gamma distribution based on the cuckoo’s egg 

data. The vertical lines are drawn at 3354.514ˆ  , 00449.0ˆ  . 

Table1.  The length (in millimeters) of cuckoo’s egg. 

22.0 23.9 20.9 23.8 25.0 24.0 21.7 

23.8 22.8 23.1 23.1 23.5 23.0 23.0 
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 Exercise 7.6 (a) Is it complete? (b) Draw the figure of the likelihood function to explain 

your answer (with R codes) 

Solution (a). 

Let nXX ,,1   be independent and identical samples from the probability density function 

2)(  xxf  ,    x0 . 

This is known as the Pareto type I distribution with the scale and shape parameters being   

and 1, respectively. The joint density is 

),,,(}),,({

)()()(),,(

11

1

2

)1(

1

2

1

1

nn

n

i

i

n
n

i

ii

n
n

i

in

xxhxxTg

xxxxxfxxf







 



 










II
 

where )( I  is the indicator function, ),,(),,min( 11)1( nn xxTxxx   , 

)()( ttg n   I ,   
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By the factorization theorem, we obtain )1(1 ),,( XXXT n   is a sufficient statistics. 

Now, we examine the completeness of )1(1 ),,( XXXT n  . The cumulative distribution 

function of T  is 
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Suppose that there exist function   such that 0})({ TE   for all 0 . Then, by 

straightforward calculations, we have for all 0 , 

.0)(

)()(

)()(

)()(})({})({
11















































nn

dt
t

n
tdt

t

n
tTETE

n

n

n

n

 

This implies 0)( t  for all t . Therefore, we have shown that T  is completes hence 

)1(1 ),,( XXXT n   is a completes sufficient statistics. 
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Solution (b). 

According to (a), the likelihood is 
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One may observe that )(nL  is an increasing function of   in the range )1(0 X . Thus, 

the MLE is )1(
ˆ X . For illustration, we apply the inverse transform method to generate 

100n  samples from the Pareto type I distribution with the scale and shape parameters being 

2  and 1, respectively (details of data generation are provided in Appendix 2). Then, we obtain 

the MLE 0293.2ˆ
)1(  X . Figure 2 plots the likelihood function and it shows that the MLE 

attains the maximum. R codes are available in Appendix 2. 

 

 

Figure 2.  Likelihood function under the Pareto type I distribution based on the generated data. 

The vertical line is drawn at 0293.2ˆ  . 

 

Solution (c). 

The general Pareto type I distribution is defined as 1)(  
  xxf , x , where 0  is 

a scale parameter and 0  is a shape parameter. Its k-th moment is derived as 
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The above formula implies that the k-th moment does not exist if k . Under our case 1 , 

the k-th moment does not exist for all 1k . Thus, we cannot find the moments estimator for  . 
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 Exercise 7.8 

Solution (a). 

Let X  be one observation from ),0( 2N  with probability density function is defined as 
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Clearly, one has 

)(})({)()var( 2222 XEXEXEX  . 

Thus, we obtain 2X  is an unbiased estimator for 2 . 

 

 

Solution (b). 

For one single observation, the likelihood function is its probability density function. Then, the 

log-likelihood function is 
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The MLE is obtained by solving 0/)(    which is equivalent to 0/1/ 32  x . 

Clearly, the MLE is ||ˆ X . The MLE attains the maximum of log-likelihood function is 

ensured by examining its second-order derivative 
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Solution (c). 

According to (a), we have  

22 )( XE . 

By the method of moments, if there are n  observations (say nXX ,,1  ), we estimate 2  by  
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However, we only have one observation. Thus, we estimate 2  by 22~ X . Then it is natural 

to estimate   by ||~ X . 
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 Exercise 7.9 

Let nXX ,,1   be independent and identical samples from ),0( U , that is 




1
)( xf ,    x0 . 

Recall that the mean and variance under the uniform distribution are 2/)( XE  and 

12/)var( 2X , respectively. By the method of moments, we estimate   by 





n

i

iX
n 1

2~
 . 

One can easily obtain its mean and variance as  
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Now, we consider the likelihood-based approach. The likelihood function is 
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where ),,max( 1)( nn XXX  . One may observe that )(nL  is a decreasing function of   

in the range )(nX . Thus, the MLE is )(
ˆ

nX . To evaluate its mean and variance, one 

needs to find the distribution of )(nX . The cumulative distribution function of )(nX  is 
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Then one can obtain the mean and variance of the MLE as 
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According to the results we obtained, 
~

 is an unbiased estimator and ̂  is a biased 

estimator. Note that the bias of ̂  is small since 1)1/( nn  as n , however, it may 

be large if n  is small. On the other hand, )
~

var()ˆvar(    for all n  and  . Therefore, the 

MLE ̂  is preferred if the sample size is large 
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 Detailed answers to Q3 below 

Q3  [+2]  

Let ),(~,, 2

1 NXX
iid

n , where   is restricted to a  or b  for some numbers ba  . 

Assume that 2  is known. Hence, the parameter space is ),[],(  ba  . Obtain the MLE 

̂  (with some figures to explain it). 

Solution Q3. 

Given 2  is known, the likelihood is written as 
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Then the log-likelihood function is 





n

i

inn XL
1

2

2

2 )(
2

1
log

2

1
)2log(

2

1
)(log)( 


 . 

The MLE is obtain by solving 0/)(  n  and it is the sample mean ni

n

i XnX   /ˆ
1 . 

However, the parameter restriction is imposed, it is possible that ),[],(  baXn  . Therefore, 

additional adjustments are required. The restricted MLE should be 
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Note that if 2/)( baXn   then there are two MLEs areŝ  and breŝ . However, one can 

simply ignore this case since it happens with 0 probability. Figure 3 illustrates the other three 

different cases. 

 

Figure 3.  Three different cases of the restricted MLE with 25.0a  and 25.0b . The points 

denote the restricted MLE reŝ  and the dotted vertical lines denote the location of nX . 
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 Detailed answers to Q4 below 

Q4  [+3]  

Let ),(~,,
...

1 GammaXX
dii

n  as in HW#1. Let )(log)( 


 
d

d
 be the digamma 

function and )(  be the trigamma function. 

(1) Write down the score functions using the sufficient statistics ),( 21 TT . 

Solution (1). 

According to Exercise 7.2 (a), the joint density for i.i.d. samples from ),(   is 
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By the factorization theorem, ),(),( 1121 i
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Again, by Exercise 7.2 (b), the log-likelihood function is 
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(2) Write down the Hessian matrix ),( H . 

Solution (2). 

To obtain the Hessian matrix, one requires the second-order derivatives of ),( n . They are 

)(),(
2

2








nn ,   






n
n 




),(

2

 ,   





 n

i

in X
n

1
322

2 2
),(







 . 

Thus, the Hessian matrix is 
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(3) Let )ˆ,ˆ(   be the solution to 0),(),( 21   SS . Write down )ˆ,ˆ( H  in terms of 

)ˆ,ˆ(  . 

Solution (3). 

Since )ˆ,ˆ(   is the solution to 0),(),( 21   SS , we have 
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Appendix 1.  R codes for Exercise 7.2 

 

R codes 

########## Exercise 7.2 ########## 

 

onedim.score_func = function(Alpha) { 

   

  n = length(x) 

   

  -n*digamma(Alpha)-n*log(sum(x)/(Alpha*n))+sum(log(x)) 

   

} 

 

onedim.Hessian_func = function(Alpha) { 

   

  n = length(x) 

   

  -n*trigamma(Alpha)+n/Alpha 

   

} 

 

##### one-dimensional Newton-Raphson algorithm 

 

x = c(22,23.9,20.9,23.8,25,24,21.7,23.8,22.8,23.1,23.1,23.5,23,23) 

 

count   = 0 

epsilon = 1e-5 

par_old = 1 

 

repeat { 

   

  par_new = par_old-onedim.Hessian_func(par_old)^-1*onedim.score_func(par_old) 

  count = count+1 

   

  if (abs(par_new-par_old) < epsilon) {break} 

  par_old = par_new 

   

} 

par_new 

count 

 

Alpha = par_new; Alpha 

Beta  = sum(x)/(par_new*length(x)); Beta 
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Appendix 2.  Data generation and R codes in Exercise 7.6 

 

Suppose X  follows the Pareto type I distribution, its cumulative distribution function is 
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By the probability integral transform, we have 
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where )1,0(~UU . This implies 
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Thus, one can easily generate random samples nXX ,,1   from the Pareto type I distribution by 

transforming random samples )1,0(~UUi , ni ,,2,1  . 

 

R codes  

########## exercise 7.6 ########## 

 

L_func = function(theta) {theta^n*prod(x)} 

 

n = 100 

theta = 2 

 

set.seed(10) 

u = runif(n) 

x = theta/(1-u) 

min(x) 

 

theta_v = seq(1.7,min(x),length.out = 100) 

plot(theta_v,sapply(theta_v,L_func),type = "l",xlim = c(1.8,2.1),lwd = 3, 

     ylab = "likelihood",xlab = expression(theta),cex.axis = 1.5,cex.lab = 1.8) 

lines(seq(min(x),2.2,length.out = 100),rep(0,100),lwd = 3) 

points(min(x),L_func(min(x)),pch = 16,cex = 2) 

points(min(x),0,cex = 2) 

abline(v = min(x),lty = 2,lwd = 2) 

 

 


