HW#2

• Exercise 7.2 (a) (b) Need details and R codes Solution (a).

Let X_1, \dots, X_n be independent and identical samples from $\Gamma(\alpha, \beta)$, that is

$$f_{\alpha,\beta}(x) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{-x/\beta}, \quad x > 0, \ \alpha > 0, \ \beta > 0.$$

Suppose α is known, we derive the maximum likelihood estimator (MLE) of β . The likelihood function is

$$L_n(\beta) = \prod_{i=1}^n f_{\alpha,\beta}(X_i) = \left(\frac{1}{\Gamma(\alpha)\beta^{\alpha}}\right)^n \left(\prod_{i=1}^n X_i\right)^{\alpha-1} \exp\left(-\frac{1}{\beta}\sum_{i=1}^n X_i\right).$$

The log-likelihood function is

$$\ell_n(\beta) = \log L_n(\beta) = -n\log\Gamma(\alpha) - n\alpha\log\beta + (\alpha - 1)\sum_{i=1}^n \log X_i - \frac{1}{\beta}\sum_{i=1}^n X_i.$$

The MLE can be obtained by solving $\partial \ell_n(\beta) / \partial \beta = 0$ which is equivalent to

$$\frac{1}{\beta^2} \sum_{i=1}^n X_i - \frac{n\alpha}{\beta} = 0.$$

Clearly, the MLE is

$$\hat{\beta} = \frac{1}{\alpha n} \sum_{i=1}^{n} X_i \, .$$

The MLE attains the maximum of log-likelihood function is ensured by examining its secondorder derivative

$$\frac{\partial^2}{\partial \beta^2} \ell_n(\beta) \bigg|_{\beta=\hat{\beta}} = \frac{n\alpha}{\hat{\beta}^2} - \frac{1}{\hat{\beta}^3} \sum_{i=1}^n X_i = -(n\alpha)^3 \left(\sum_{i=1}^n X_i\right)^{-2} < 0.$$

Solution (b).

Suppose both α and β are unknown, we aim to find the MLEs of α and β based on the data in Exercise 7.10 (c). The data consist n=14 samples and are given in Table 1. Now, the log-likelihood function becomes

$$\ell_n(\alpha,\beta) = -n\log\Gamma(\alpha) - n\alpha\log\beta + (\alpha-1)\sum_{i=1}^n \log X_i - \frac{1}{\beta}\sum_{i=1}^n X_i.$$

According to (a), we can replace β by $\sum_{i=1}^{n} X_i / n\alpha$. To be specific,

$$\ell_n(\alpha,\beta(\alpha)) = -n\log\Gamma(\alpha) - n\alpha\log\left(\frac{1}{n\alpha}\sum_{i=1}^n X_i\right) + (\alpha-1)\sum_{i=1}^n\log X_i - n\alpha.$$

Therefore, this problem has been reduced to the maximization of a univariate function. The MLEs can be obtained by solving $\partial \ell_n(\alpha, \beta(\alpha))/\alpha = 0$ which is equivalent to

$$\sum_{i=1}^{n} \log X_i - n\psi(\alpha) - n \log\left(\frac{1}{n\alpha} \sum_{i=1}^{n} X_i\right) = 0,$$

where $\psi(\alpha) = \partial \log \Gamma(\alpha) / \partial \alpha$ is the digamma function. Since there is no explicit formula for the MLE of α , one needs to use some numerical methods. We suggest applying the Newton-Raphson algorithm. Thus, we require the second-order derivative of $\ell_n(\alpha, \beta(\alpha))$,

$$\frac{\partial^2}{\partial \alpha^2} \ell_n(\alpha, \beta(\alpha)) = \frac{n}{\alpha} - n \psi'(\alpha) = 0,$$

where $\psi'(\alpha)$ is the trigamma function. Now, we state the Newton-Raphson algorithm.

Algorithm 1 Newton-Raphson algorithm

- **Step 1.** Set initial value $\alpha^{(0)}$.
- Step 2. Repeat the Newton-Raphson iteration:

$$\alpha^{(k+1)} = \alpha^{(k)} - \left\{ \frac{\partial^2}{\partial \alpha^2} \ell_n(\alpha, \beta(\alpha)) \right\}^{-1} \left\{ \frac{\partial}{\partial \alpha} \ell_n(\alpha, \beta(\alpha)) \right\}_{\alpha = \alpha^{(k)}}$$

• If $|\alpha^{(k+1)} - \alpha^{(k)}| < 10^{-5}$, stop the algorithm and set the MLE as $\alpha^{(k+1)}$.

We apply Algorithm 1 with initial value $\alpha^{(0)} = 1$ and it converges in 15 iterations. The result of estimation is $\hat{\alpha} = 514.3354$. Then we obtain $\hat{\beta} = \sum_{i=1}^{n} X_i / n\hat{\alpha} = 0.0449$. Figure 1 reveals that the MLEs attain the maximum of the log-likelihood function. R codes are given in Appendix 1.

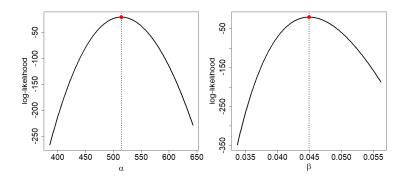


Figure 1. Log-likelihood functions under the gamma distribution based on the cuckoo's egg data. The vertical lines are drawn at $\hat{\alpha} = 514.3354$, $\hat{\beta} = 0.00449$.

Table1. The length (in millimeters) of cuckoo's egg.

22.0	23.0	20.9	23.8	25.0	24.0	21.7
22.0	23.9	20.9	23.8	25.0	24.0	21.7
23.8	$\gamma\gamma\delta$	23.1	23.1	23.5	23.0	22.0
23.8	22.0	23.1	23.1	23.3	23.0	23.0

• Exercise 7.6 (a) Is it complete? (b) Draw the figure of the likelihood function to explain your answer (with R codes)

Solution (a).

Let X_1, \dots, X_n be independent and identical samples from the probability density function

$$f_{\theta}(x) = \theta x^{-2}, \qquad 0 < \theta \le x < \infty.$$

This is known as the Pareto type I distribution with the scale and shape parameters being θ and 1, respectively. The joint density is

$$f_{\theta}(x_{1}, \dots, x_{n}) = \prod_{i=1}^{n} f_{\theta}(x_{i}) = \theta^{n} \prod_{i=1}^{n} x_{i}^{-2} \mathbf{I}(\theta \le x_{i}) = \theta^{n} \mathbf{I}(\theta \le x_{(1)}) \prod_{i=1}^{n} x_{i}^{-2}$$
$$= g_{\theta}\{T(x_{1}, \dots, x_{n})\}h(x_{1}, \dots, x_{n}),$$

where $\mathbf{I}(\cdot)$ is the indicator function, $x_{(1)} = \min(x_1, \dots, x_n) = T(x_1, \dots, x_n)$,

$$g_{\theta}(t) = \theta^{n} \mathbf{I}(\theta \le t), \qquad h(x_{1}, \dots, x_{n}) = \prod_{i=1}^{n} x_{i}^{-2}$$

By the factorization theorem, we obtain $T(X_1, \dots, X_n) = X_{(1)}$ is a sufficient statistics.

Now, we examine the completeness of $T(X_1, \dots, X_n) = X_{(1)}$. The cumulative distribution function of T is

$$F_T(t) = \Pr(T \le t) = \Pr(\min(X_1, \dots, X_n) \le t) = 1 - \Pr(\min(X_1, \dots, X_n) > t)$$

= 1 - Pr(X > t)ⁿ = 1 - \theta^n / x^n.

Its density function is

$$f_T(t) = \frac{\partial}{\partial t} F_T(t) = \frac{n\theta^n}{t^{n+1}}.$$

Suppose that there exist function ϕ such that $E_{\theta}\{\phi(T)\}=0$ for all $\theta > 0$. Then, by straightforward calculations, we have for all $\theta > 0$,

$$\begin{split} E_{\theta}\{\phi^{+}(T)\} &= E_{\theta}\{\phi^{-}(T)\} \Longrightarrow \int_{\theta}^{\infty} \phi^{+}(t) \frac{n\theta^{n}}{t^{n+1}} dt = \int_{\theta}^{\infty} \phi^{-}(t) \frac{n\theta^{n}}{t^{n+1}} dt \\ & \Rightarrow \phi^{+}(\theta) \frac{n}{\theta} = \phi^{-}(\theta) \frac{n}{\theta} \\ & \Rightarrow \phi^{+}(\theta) = \phi^{-}(\theta) \\ & \Rightarrow \phi(\theta) = 0. \end{split}$$

This implies $\phi(t) = 0$ for all $t \ge \theta$. Therefore, we have shown that T is completes hence $T(X_1, \dots, X_n) = X_{(1)}$ is a completes sufficient statistics.

Solution (b).

According to (a), the likelihood is

$$L_n(\theta) = \prod_{i=1}^n f_{\theta}(X_i) = \theta^n \mathbf{I}(\theta \le X_{(1)}) \prod_{i=1}^n X_i^{-2}$$

One may observe that $L_n(\theta)$ is an increasing function of θ in the range $0 < \theta \le X_{(1)}$. Thus, the MLE is $\hat{\theta} = X_{(1)}$. For illustration, we apply the inverse transform method to generate n=100 samples from the Pareto type I distribution with the scale and shape parameters being 2 and 1, respectively (details of data generation are provided in Appendix 2). Then, we obtain the MLE $\hat{\theta} = X_{(1)} = 2.0293$. Figure 2 plots the likelihood function and it shows that the MLE attains the maximum. R codes are available in Appendix 2.

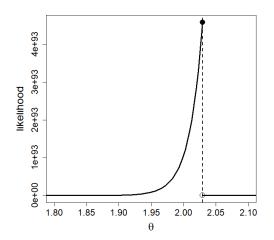


Figure 2. Likelihood function under the Pareto type I distribution based on the generated data. The vertical line is drawn at $\hat{\theta} = 2.0293$.

Solution (c).

The general Pareto type I distribution is defined as $f_{\theta}(x) = \theta^{\alpha} \alpha x^{-\alpha-1}$, $x > \theta$, where $\theta > 0$ is a scale parameter and $\alpha > 0$ is a shape parameter. Its *k*-th moment is derived as

$$E_{\theta}(X^{k}) = \int_{\theta}^{\infty} x^{k} f_{\theta}(x) dx = \theta^{\alpha} \alpha \int_{\theta}^{\infty} x^{k-\alpha-1} dx = \frac{\theta^{k} \alpha}{\alpha-k}, \qquad \alpha > k$$

The above formula implies that the *k*-th moment does not exist if $\alpha \le k$. Under our case $\alpha = 1$, the *k*-th moment does not exist for all $k \ge 1$. Thus, we cannot find the moments estimator for θ .

• Exercise 7.8

Solution (a).

Let X be one observation from $N(0, \sigma^2)$ with probability density function is defined as

$$f_{\sigma}(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{x^2}{2\sigma^2}\right), \quad -\infty < x < \infty, \quad \sigma > 0.$$

Clearly, one has

$$\sigma^{2} = \operatorname{var}(X) = E(X^{2}) - \{ E(X) \}^{2} = E(X^{2}).$$

Thus, we obtain X^2 is an unbiased estimator for σ^2 .

Solution (b).

For one single observation, the likelihood function is its probability density function. Then, the log-likelihood function is

$$\ell(\sigma) = \log f_{\sigma}(x) = -\frac{1}{2}\log(2\pi) - \log\sigma - \frac{x^2}{2\sigma^2}.$$

The MLE is obtained by solving $\partial \ell(\sigma)/\partial \sigma = 0$ which is equivalent to $x^2/\sigma^3 - 1/\sigma = 0$. Clearly, the MLE is $\hat{\sigma} = |X|$. The MLE attains the maximum of log-likelihood function is ensured by examining its second-order derivative

$$\left. \frac{\partial^2}{\partial \sigma^2} \ell_n(\sigma) \right|_{\sigma=\hat{\sigma}} = \frac{1}{\hat{\sigma}^2} - \frac{3X^2}{\hat{\sigma}^4} = -\frac{2}{X^2} < 0.$$

Solution (c).

According to (a), we have

$$E(X^2) = \sigma^2.$$

By the method of moments, if there are *n* observations (say X_1, \dots, X_n), we estimate σ^2 by

$$\tilde{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 \, .$$

However, we only have one observation. Thus, we estimate σ^2 by $\tilde{\sigma}^2 = X^2$. Then it is natural to estimate σ by $\tilde{\sigma} = |X|$.

• Exercise 7.9

Let X_1, \dots, X_n be independent and identical samples from $U(0, \theta)$, that is

$$f_{\theta}(x) = \frac{1}{\theta}, \quad 0 \le x \le \theta.$$

Recall that the mean and variance under the uniform distribution are $E(X) = \theta/2$ and $var(X) = \theta^2/12$, respectively. By the method of moments, we estimate θ by

$$\widetilde{\theta} = \frac{2}{n} \sum_{i=1}^{n} X_i \, .$$

One can easily obtain its mean and variance as

$$E(\tilde{\theta}) = \frac{2}{n} \sum_{i=1}^{n} E(X_i) = \theta, \quad \operatorname{var}(\tilde{\theta}) = \frac{4}{n^2} \sum_{i=1}^{n} \operatorname{var}(X_i) = \frac{\theta^2}{3n}.$$

Now, we consider the likelihood-based approach. The likelihood function is

$$L_n(\theta) = \prod_{i=1}^n f_{\theta}(X_i) = \prod_{i=1}^n \theta^{-n} \mathbf{I}(0 \le X_i \le \theta) = \mathbf{I}(X_{(n)} \le \theta) \prod_{i=1}^n \theta^{-n},$$

where $X_{(n)} = \max(X_1, \dots, X_n)$. One may observe that $L_n(\theta)$ is a decreasing function of θ in the range $X_{(n)} \le \theta$. Thus, the MLE is $\hat{\theta} = X_{(n)}$. To evaluate its mean and variance, one needs to find the distribution of $X_{(n)}$. The cumulative distribution function of $X_{(n)}$ is

$$F_{X_{(n)},\theta}(t) = \Pr(X_{(n)} \le t) = \Pr(\max(X_1, \dots, X_n) \le t) = \Pr(X_1, \dots, X_n \le t)$$

= $\Pr(X \le t)^n = t^n / \theta^n.$

Its probability density function is

$$f_{X_{(n)},\theta}(t) = \frac{\partial}{\partial t} f_{X_{(n)},\theta}(t) = nt^{n-1}/\theta^n.$$

Then one can obtain the mean and variance of the MLE as

$$E(\hat{\theta}) = \int_{0}^{\theta} t \frac{nt^{n-1}}{\theta^{n}} dt = \frac{n}{n+1}\theta, \qquad E(\hat{\theta}^{2}) = \int_{0}^{\theta} t^{2} \frac{nt^{n-1}}{\theta^{n}} dt = \frac{n}{n+2}\theta^{2},$$

$$\operatorname{var}(\hat{\theta}) = E(\hat{\theta}^{2}) - \{E(\hat{\theta})\}^{2} = \frac{n}{n+2}\theta^{2} - \frac{n^{2}}{(n+1)^{2}}\theta^{2} = \frac{n\theta^{2}}{(n+2)(n+1)^{2}}$$

According to the results we obtained, $\tilde{\theta}$ is an unbiased estimator and $\hat{\theta}$ is a biased estimator. Note that the bias of $\hat{\theta}$ is small since $n/(n+1) \rightarrow 1$ as $n \rightarrow \infty$, however, it may be large if n is small. On the other hand, $var(\hat{\theta}) < var(\tilde{\theta})$ for all n and θ . Therefore, the MLE $\hat{\theta}$ is preferred if the sample size is large

• Detailed answers to Q3 below

Q3 [+2]

Let $X_1, \dots, X_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$, where μ is restricted to $\mu \le a$ or $\mu \ge b$ for some numbers a < b. Assume that σ^2 is known. Hence, the parameter space is $\Theta = (-\infty, a] \bigcup [b, \infty)$. Obtain the MLE $\hat{\mu}$ (with some figures to explain it).

Solution Q3.

Given σ^2 is known, the likelihood is written as

$$L_n(\mu) = \prod_{i=1}^n f_{\mu}(X_i) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(X_i - \mu)^2}{2\sigma^2}\right\}.$$

Then the log-likelihood function is

$$\ell_n(\mu) = \log L_n(\mu) = -\frac{1}{2}\log(2\pi) - \frac{1}{2}\log\sigma^2 - \frac{1}{2\sigma^2}\sum_{i=1}^n (X_i - \mu)^2.$$

The MLE is obtain by solving $\partial \ell_n(\mu)/\partial \mu = 0$ and it is the sample mean $\hat{\mu} = \sum_{i=1}^n X_i / n \equiv \overline{X}_n$. However, the parameter restriction is imposed, it is possible that $\overline{X}_n \notin (-\infty, a] \cup [b, \infty)$. Therefore, additional adjustments are required. The restricted MLE should be

$$\hat{\mu}_{\text{res}} = \begin{cases} \overline{X}_n & \text{if } \overline{X}_n \leq a \text{ or } \overline{X}_n \geq b, \\ a & \text{if } a < \overline{X}_n < (a+b)/2, \\ b & \text{if } (a+b)/2 < \overline{X}_n < b, \\ a, b & \text{if } \overline{X}_n = (a+b)/2. \end{cases}$$

Note that if $\overline{X}_n = (a+b)/2$ then there are two MLEs $\hat{\mu}_{res} = a$ and $\hat{\mu}_{res} = b$. However, one can simply ignore this case since it happens with 0 probability. Figure 3 illustrates the other three different cases.

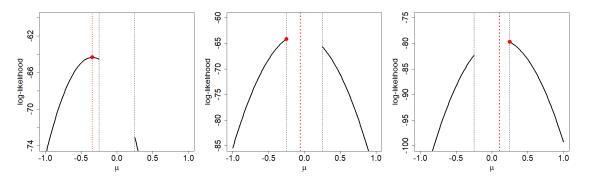


Figure 3. Three different cases of the restricted MLE with a = -0.25 and b = 0.25. The points denote the restricted MLE $\hat{\mu}_{res}$ and the dotted vertical lines denote the location of \overline{X}_n .

• Detailed answers to Q4 below

Q4 [+3]

Let $X_1, \dots, X_n \sim Gamma(\alpha, \beta)$ as in HW#1. Let $\psi(\alpha) = \frac{d}{d\alpha} \log \Gamma(\alpha)$ be the digamma function and $\psi'(\alpha)$ be the trigamma function.

(1) Write down the score functions using the sufficient statistics (T_1, T_2) .

Solution (1).

According to Exercise 7.2 (a), the joint density for i.i.d. samples from $\Gamma(\alpha, \beta)$ is

$$f_{\alpha,\beta}(x_1,\dots,x_n) = \prod_{i=1}^n f_{\alpha,\beta}(x_i) = \left(\frac{1}{\Gamma(\alpha)\beta^{\alpha}}\right)^n \left(\prod_{i=1}^n x_i\right)^{\alpha-1} \exp\left(-\frac{1}{\beta}\sum_{i=1}^n x_i\right)$$
$$= g_{\alpha,\beta}\{T_1(x_1,\dots,x_n), T_2(x_1,\dots,x_n)\}h(x_1,\dots,x_n),$$

where

$$T_{1}(x_{1}, \dots, x_{n}) = \prod_{i=1}^{n} x_{i}, \qquad T_{2}(x_{1}, \dots, x_{n}) = \sum_{i=1}^{n} x_{i},$$
$$g_{\alpha,\beta}(t_{1}, t_{2}) = \left(\frac{1}{\Gamma(\alpha)\beta^{\alpha}}\right)^{n} t_{1}^{\alpha} \exp\left(-\frac{t_{2}}{\beta}\right), \qquad h(x_{1}, \dots, x_{n}) = \left(\prod_{i=1}^{n} x_{i}\right)^{-1}.$$

By the factorization theorem, $(T_1, T_2) = (\prod_{i=1}^n X_i, \sum_{i=1}^n X_i)$ is a sufficient statistics.

Again, by Exercise 7.2 (b), the log-likelihood function is

$$\ell_n(\alpha,\beta) = -n\log\Gamma(\alpha) - n\alpha\log\beta + (\alpha-1)\sum_{i=1}^n \log X_i - \frac{1}{\beta}\sum_{i=1}^n X_i.$$

Then the score functions are

$$S_{1}(\alpha,\beta) = \frac{\partial}{\partial \alpha} \ell_{n}(\alpha,\beta) = \sum_{i=1}^{n} \log X_{i} - n \log \beta - n \psi(\alpha)$$
$$S_{2}(\alpha,\beta) = \frac{\partial}{\partial \beta} \ell_{n}(\alpha,\beta) = \frac{1}{\beta^{2}} \sum_{i=1}^{n} X_{i} - \frac{n\alpha}{\beta}.$$

Now we can express the score functions by using sufficient statistics $(T_1, T_2) = (\prod_{i=1}^n X_i, \sum_{i=1}^n X_i)$.

$$S_{1}(\alpha,\beta) = \log T_{1} - n\log\beta - n\psi(\alpha),$$
$$S_{2}(\alpha,\beta) = \frac{T_{2}}{\beta^{2}} - \frac{n\alpha}{\beta},$$

where $T_1 = \prod_{i=1}^n X_i$ and $T_2 = \sum_{i=1}^n X_i$.

(2) Write down the Hessian matrix $H(\alpha, \beta)$.

Solution (2).

To obtain the Hessian matrix, one requires the second-order derivatives of $\ell_n(\alpha, \beta)$. They are

$$\frac{\partial^2}{\partial \alpha^2} \ell_n(\alpha,\beta) = -n\psi'(\alpha), \qquad \frac{\partial^2}{\partial \alpha \partial \beta} \ell_n(\alpha,\beta) = -\frac{n}{\beta}, \qquad \frac{\partial^2}{\partial \beta^2} \ell_n(\alpha,\beta) = \frac{n\alpha}{\beta^2} - \frac{2}{\beta^3} \sum_{i=1}^n X_i.$$

Thus, the Hessian matrix is

$$H(\alpha,\beta) = \begin{bmatrix} \frac{\partial^2}{\partial \alpha^2} \ell_n(\alpha,\beta) & \frac{\partial^2}{\partial \alpha \partial \beta} \ell_n(\alpha,\beta) \\ \frac{\partial^2}{\partial \alpha \partial \beta} \ell_n(\alpha,\beta) & \frac{\partial^2}{\partial \beta^2} \ell_n(\alpha,\beta) \end{bmatrix} = \begin{bmatrix} -n\psi'(\alpha) & -\frac{n}{\beta} \\ -\frac{n}{\beta} & \frac{n\alpha}{\beta^2} - \frac{2}{\beta^3} \sum_{i=1}^n X_i \end{bmatrix}$$

(3) Let $(\hat{\alpha}, \hat{\beta})$ be the solution to $S_1(\alpha, \beta) = S_2(\alpha, \beta) = 0$. Write down $H(\hat{\alpha}, \hat{\beta})$ in terms of $(\hat{\alpha}, \hat{\beta})$.

Solution (3).

Since $(\hat{\alpha}, \hat{\beta})$ is the solution to $S_1(\alpha, \beta) = S_2(\alpha, \beta) = 0$, we have

$$S_2(\hat{\alpha},\hat{\beta}) = \frac{1}{\hat{\beta}^2} \sum_{i=1}^n X_i - \frac{n\hat{\alpha}}{\hat{\beta}} = 0.$$

This implies

$$n\hat{\alpha} = \frac{1}{\hat{\beta}} \sum_{i=1}^{n} X_i \, .$$

Then one has the following simplification

$$\frac{\partial^2}{\partial \beta^2} \ell_n(\alpha,\beta) \bigg|_{\alpha=\hat{\alpha},\beta=\hat{\beta}} = \frac{n\hat{\alpha}}{\hat{\beta}^2} - \frac{2}{\hat{\beta}^3} \sum_{i=1}^n X_i = -\frac{n\hat{\alpha}}{\hat{\beta}^2}$$

Therefore, we obtain

$$H(\hat{\alpha},\hat{\beta}) = -\begin{bmatrix} n\psi'(\hat{\alpha}) & \frac{n}{\hat{\beta}} \\ \frac{n}{\hat{\beta}} & \frac{n\hat{\alpha}}{\hat{\beta}^2} \end{bmatrix}.$$

Appendix 1. R codes for Exercise 7.2

R codes

```
}
```

```
##### one-dimensional Newton-Raphson algorithm
```

```
\mathbf{x} = \mathbf{c}(22, 23.9, 20.9, 23.8, 25, 24, 21.7, 23.8, 22.8, 23.1, 23.1, 23.5, 23, 23)
```

```
count = 0
epsilon = 1e-5
par_old = 1
```

repeat {

```
par_new = par_old-onedim.Hessian_func(par_old)^-1*onedim.score_func(par_old)
count = count+1
```

```
if (abs(par_new-par_old) < epsilon) {break}
par_old = par_new</pre>
```

} par_new

count

```
Alpha = par_new; Alpha
Beta = sum(x)/(par_new*length(x)); Beta
```

Appendix 2. Data generation and R codes in Exercise 7.6

Suppose X follows the Pareto type I distribution, its cumulative distribution function is

$$F_{X}(x) = 1 - \left(\frac{\theta}{x}\right)^{\alpha}, \quad 0 < \theta \le x < \infty, \ \alpha > 0.$$

By the probability integral transform, we have

$$U = F_X(X) = 1 - \left(\frac{\theta}{X}\right)^{\alpha},$$

where $U \sim U(0,1)$. This implies

$$X = \frac{\theta}{\left(1 - U\right)^{1/\alpha}}.$$

Thus, one can easily generate random samples X_1, \dots, X_n from the Pareto type I distribution by transforming random samples $U_i \sim U(0,1), i = 1, 2, \dots, n$.

R codes

 $L_func = function(theta) \{theta^n*prod(x)\}$

n = 100theta = 2 set.seed(10) u = runif(n) x = theta/(1-u) min(x) theta_v = seq(1.7,min(x),length.out = 100) plot(theta_v,sapply(theta_v,L_func),type = "1",xlim = c(1.8,2.1),lwd = 3, ylab = "likelihood",xlab = expression(theta),cex.axis = 1.5,cex.lab = 1.8) lines(seq(min(x),2.2,length.out = 100),rep(0,100),lwd = 3) points(min(x),L_func(min(x)),pch = 16,cex = 2) points(min(x),0,cex = 2) abline(v = min(x),lty = 2,lwd = 2)