Homework#1

Name: 范又方 Fan, You-fang

Student number: 106225022

Exercise 6.3 [P300]

Let $X_1,...,X_n$ be a random sample from the pdf

$$f(x|\mu,\sigma) = \frac{1}{\sigma}e^{\frac{-(x-\mu)}{\sigma}}$$
, $\mu < x < \infty$, $0 < \sigma < \infty$.

Find a two-dimensional sufficient statistic for (μ, σ) .

Sol:

The joint pdf of the sample **X** is

$$f(\mathbf{x}|\mu,\sigma) = \prod_{i=1}^{n} \frac{1}{\sigma} \exp(-\frac{x_i - \mu}{\sigma})$$
, $\mu < x_i < \infty$, $0 < \sigma < \infty$, $i = 1, 2, ..., n$

We can use the indicator function. $I_A(x)$ is the indicator function of the set A; that is, it is equal to 1 if $x \in A$ and equal to 0 otherwise. Now $\mu < x_i < \infty$, i = 1,2,...,n if and only if $\min\{x_1, x_2, ..., x_n\} > \mu$.

So we have

$$f(\mathbf{x}|\mu,\sigma) = \prod_{i=1}^{n} \frac{1}{\sigma} \exp(-\frac{x_i - \mu}{\sigma}) I_{(\mu,\infty)}(x_i)$$

$$= \frac{1}{\sigma^n} \exp(-\frac{\sum_{i=1}^{n} (x_i - \mu)}{\sigma}) I_{(-\infty,\mathbf{x}_{(1)})}(\mu)$$

$$= \frac{1}{\sigma^n} \exp(\frac{n\mu}{\sigma}) \exp(-\frac{\sum_{i=1}^{n} x_i}{\sigma}) I_{(-\infty,\mathbf{x}_{(1)})}(\mu)$$

Since $f(x|\mu,\sigma) = h(x)g(T(\mathbf{X})|\mu,\sigma)$, where h(x) = 1 and

$$g(T(\mathbf{X})|\mu,\sigma) = \frac{1}{\sigma^n} \exp(\frac{n\mu}{\sigma}) \exp(-\frac{\sum_{i=1}^n x_i}{\sigma}) I_{(-\infty,\mathbf{X}_{(1)})}(\mu) , T_1(\mathbf{X}) = \mathbf{X}_{(1)}, T_2(\mathbf{X}) = \sum_{i=1}^n \mathbf{X}_i$$

Therefore, by the Factorization Theorem, $(X_{(1)}, \sum_{i=1}^{n} X_i)$ is a two-dimensional sufficient statistic for (μ, σ) .

Exercise 6.5 [P300]

Let $X_1,...,X_n$ be independent random variables with pdfs

$$f(x_i|\theta) = \begin{cases} \frac{1}{2i\theta} & -i(\theta-1) < x_i < i(\theta+1) \\ 0 & otherwise, \end{cases}$$

where $\theta > 0$. Find a two-dimensional sufficient statistic for θ .

Sol:

The joint pdf of the sample X is

$$f(\mathbf{x}|\theta) = \prod_{i=1}^{n} \frac{1}{2i\theta}$$
, $-i(\theta - 1) < x_i < i(\theta + 1)$, $\theta > 0$

Now $-i(\theta - 1) < x_i < i(\theta + 1)$, using the indicator function, we can see the inequality is $-i(\theta - 1) < \min x_i$ and $\max x_i < i(\theta + 1)$.

$$\Rightarrow \begin{cases} -i(\theta-1) < \min x_i \\ i(\theta+1) > \max x_i \end{cases} = \begin{cases} \theta-1 > -\min \frac{x_i}{i} \\ \theta+1 > \max \frac{x_i}{i} \end{cases} = \begin{cases} \theta > 1 -\min \frac{x_i}{i} \\ \theta > \max \frac{x_i}{i} - 1 \end{cases}$$

So we have

$$f(\mathbf{x}|\theta) = \prod_{i=1}^{n} \frac{1}{2i\theta} I_{(-i(\theta-1),i(\theta+1))}(x_i)$$
$$= \left(\frac{1}{2\theta}\right)^n \prod_{i=1}^{n} \frac{1}{i} I_{\left(1-\min\frac{x_i}{i},\infty\right)}(\theta) I_{\left(\max\frac{x_i}{i}-1,\infty\right)}(\theta)$$

Since $f(x|\mu,\sigma) = h(x)g(T(\mathbf{X})|\mu,\sigma)$, where $h(x) = \prod_{i=1}^{n} \frac{1}{i}$ and $g(T(\mathbf{X})|\theta) = \prod_{i=1}^{n} \frac{1}{i}$

$$\left(\frac{1}{2\theta}\right)^n I_{\left(1-\min\frac{X_i}{i},\infty\right)}(\theta) I_{\left(\max\frac{X_i}{i}-1,\infty\right)}(\theta) \ , \ T_1(\mathbf{X}) = \min\frac{X_i}{i}, \ T_2(\mathbf{X}) = \max\frac{X_i}{i}$$

Therefore, by the Factorization Theorem, $(\min \frac{X_i}{i}, \max \frac{X_i}{i})$ is a two-dimensional sufficient statistic for θ .

Exercise 6.6 [P300]

Let $X_1,...,X_n$ be a random sample from a gamma(α , β) population. Find a two-dimensional sufficient statistic for (α , β).

Sol:

The joint pdf of the sample X is

$$f(\mathbf{x}|\alpha,\beta) = \prod_{i=1}^{n} \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x_i^{\alpha-1} \exp(-\frac{x_i}{\beta})$$
$$= \left(\frac{1}{\Gamma(\alpha)\beta^{\alpha}}\right)^n \left(\prod_{i=1}^{n} x_i\right)^{\alpha-1} \exp(-\frac{\sum_{i=1}^{n} x_i}{\beta})$$

Since $f(x|\alpha,\beta) = h(x)g(T(\mathbf{X})|\alpha,\beta)$, where h(x) = 1 and $g(T(\mathbf{X})|\alpha,\beta) = \left(\frac{1}{\Gamma(\alpha)\beta^{\alpha}}\right)^n \left(\prod_{i=1}^n x_i\right)^{\alpha-1} \exp(-\frac{\sum_{i=1}^n x_i}{\beta})$, $T_1(\mathbf{X}) = \prod_{i=1}^n X_i$, $T_2(\mathbf{X}) = \sum_{i=1}^n X_i$

Therefore, by the Factorization Theorem, $(\prod_{i=1}^{n} X_i, \sum_{i=1}^{n} X_i)$ is a two-dimensional sufficient statistic for (α, β) .

Exercise 6.7 [P300]

Let $f(x, y | \theta_1, \theta_2, \theta_3, \theta_4)$ be the bivariate pdf for the uniform distribution on the rectangle with lower left corner (θ_1, θ_2) and upper right corner (θ_3, θ_4) in \Re^2 . The parameters satisfy $\theta_1 < \theta_3$ and $\theta_2 < \theta_4$. Let $(X_1, Y_1), ..., (X_n, Y_n)$ be a random sample from this pdf. Find a four-dimensional sufficient statistic for $(\theta_1, \theta_2, \theta_3, \theta_4)$.

Sol:

The joint pdf is

$$f(\mathbf{x}, \mathbf{y}|\theta) = \prod_{i=1}^{n} \frac{1}{\theta_3 - \theta_1} \frac{1}{\theta_4 - \theta_2}$$
 , $\theta_1 \le x_i \le \theta_3$, $\theta_2 \le y_i \le \theta_4$

Using the indicator function,

$$\begin{aligned} \theta_1 & \leq \min\{x_1, \dots, x_n\} = x_{(1)} \text{ , } \max\{x_1, \dots, x_n\} = x_{(n)} \leq \theta_3 \text{ ,} \\ \theta_2 & \leq \min\{y_1, \dots, y_n\} = y_{(1)} \text{ , } \max\{y_1, \dots, y_n\} = y_{(n)} \leq \theta_4 \end{aligned}$$

So we have

$$f(\mathbf{x}, \mathbf{y}|\theta) = \prod_{i=1}^{n} \frac{1}{\theta_{3} - \theta_{1}} \frac{1}{\theta_{4} - \theta_{2}} I_{(\theta_{1}, \theta_{3})}(x_{i}) I_{(\theta_{2}, \theta_{4})}(y_{i})$$

$$= \left(\frac{1}{\theta_{3} - \theta_{1}}\right)^{n} \left(\frac{1}{\theta_{4} - \theta_{2}}\right)^{n} I_{(-\infty, x_{(1)})}(\theta_{1}) I_{(-\infty, y_{(1)})}(\theta_{2}) I_{(x_{(n)}, \infty)}(\theta_{3}) I_{(y_{(n)}, \infty)}(\theta_{4})$$

Since $f(x, y|\theta) = h(x)g(T(\mathbf{X})|\theta)$, where h(x) = 1 and $g(T(\mathbf{X})|\theta) =$

$$\left(\frac{1}{\theta_{3}-\theta_{1}}\right)^{n} \left(\frac{1}{\theta_{4}-\theta_{2}}\right)^{n} I_{(-\infty,x_{(1)})}(\theta_{1}) I_{(-\infty,y_{(1)})}(\theta_{2}) I_{(x_{(n)},\infty)}(\theta_{3}) I_{(y_{(n)},\infty)}(\theta_{4}),$$

$$T_1(\mathbf{X}) = X_{(1)}$$
, $T_2(\mathbf{X}) = Y_{(1)}$, $T_3(\mathbf{X}) = X_{(n)}$, $T_4(\mathbf{X}) = Y_{(n)}$.

Therefore, by the Factorization Theorem, $(X_{(1)}, Y_{(1)}, X_{(n)}, Y_{(n)})$ is a four-dimensional sufficient statistic for $(\theta_1, \theta_2, \theta_3, \theta_4)$.

Exercise 6.8 [P301]

Let $X_1,...,X_n$ be a random sample from a population with location pdf $f(x - \theta)$. Show that the order statistics, $T(X_1,...,X_n) = (X_{(1)},...,X_{(n)})$, are a sufficient statistic for θ and no further reduction is possible.

Sol:

We know $X_1, ..., X_n \sim f(x - \theta)$, $\theta \in \mathbb{R}$. The joint pdf is

$$f(\mathbf{x}|\theta) = \prod_{i=1}^{n} f(x_i|\theta) = \prod_{i=1}^{n} f(x_i - \theta) = \prod_{i=1}^{n} f(x_{(i)} - \theta)$$

Where $x_{(1)} \le x_{(2)} \le \cdots \le x_{(n)}$ are the order statistics of X_1, \dots, X_n .

Since $f(x, y|\theta) = h(x)g(T(\mathbf{X})|\theta)$, where h(x) = 1 and

$$g(T(\mathbf{X})|\theta) = \prod_{i=1}^n f \left(x_{(i)} - \theta\right)$$
 , $T_i(\mathbf{X}) = X_{(i)}$, $i = 1, \dots, n$

Therefore, by the Factorization Theorem, $(X_{(1)}, ..., X_{(n)})$ are a sufficient statistic for θ .

That no further reduction is possible without further restrictions on f. In this case, it suffices to notice the ratio

$$\frac{\prod_{i=1}^{n} f(x_{(i)} - \theta)}{\prod_{i=1}^{n} f(y_{(i)} - \theta)}$$

is general independent of θ only when $T(\mathbf{X}) = T(\mathbf{Y})$.