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Ex3.3 

(a) Prove Gauss-Markov theorem: the least squares estimate of a parameter Ta  has 

variance no bigger than that of any other linear unbiased estimate of Ta  

(Section 3.2.2). 

Solution: 

Let  Ta  be our target. The least square estimate is yaa T-1TTT XX)(Xˆˆ   . 
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Here, let T-1T XX)X(X IH , eigenvalue equation of H  is: 

xx H . 
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T-1T XX)X(X IH  is positive semi-definite. 
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(b) The matrix inequality A B holds if BA  is positive semi-definite. Show that 

if V̂  is the variance-covariance matrix of the least squares estimate of   and 

V
~

 is the variance-covariance matrix of any other linear unbiased estimate, then 

V
~

 V̂  . 

Solution: 

Let other unbiased estimate of   be the form yDCy }XX)(X{
~ T-1T  , where 

the forward term is the least square and plus np  matrix D . 

Then, by definition of unbiase, 
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We have 
~

 is unbiased iff 0X D . 

Therefore, consider V̂V
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Because pRDDD  xxxx for0
2

TTT . Thus, V̂V
~
  is positive semi-definite 

and then V
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