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Preface 

Typical cancer clinical trials evaluate at least two survival endpoints for patients. For instance, 

a trial may adopt overall survival (OS) as the primary endpoint and time-to-tumour 

progression (TTP) as the secondary endpoint
1
. Often, the major goal of a cancer clinical trial 

is to estimate the effect of treatments or prognostic factors on either one or both of the 

endpoints. Nowadays, many databases for cancers offer individual-patient data containing at 

least two endpoints and a number of prognostic factors (gene expressions, age, residual 

tumour, cancer stage, etc.). 

In many cancers, the two endpoints can be strongly correlated. Indeed, one endpoint may 

be a surrogate endpoint of the other endpoint. This implies the need for an appropriate 

statistical model for dependence between event times. However, the standard tools, such as 

Cox regression, are not suitable to analyze two event times simultaneously, especially due to 

dependent censoring. For instance, early death can censor the occurrence of tumour 

progression. In this case, one cannot regard death as an independent censoring event from a 

progression event. Inappropriate account for the effect of dependent censoring may produce 

biased results in Cox regression. 

It is even more challenging to analyze survival data when patients are collected from 

multiple studies (meta-analysis or multi-center analysis) and patients have a large number of 

prognostic factors. Researchers may need an advanced statistical method to characterize 

                                                 
1
   Disease-free survival (DFS) and progression-free survival (PFS) are other frequently used endpoints in 

practice. More details about DFS, PFS, and TTP shall be discussed in Chapter 2.  
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heterogeneity across multiple studies and to perform a feature selection tool. In the analysis of 

such complex survival data, it is insufficient to apply the traditional Cox regression that can 

only deal with a single event, a single study, independent censoring, and a small number of 

prognostic factors. 

   The book provides advanced statistical models that incorporate heterogeneity of a 

population in terms of frailty and dependence between endpoints in terms of copulas. Our aim 

is to analyze two endpoints simultaneously, where one event time is called terminal event time 

(e.g., OS) and the other event time is called non-terminal event time (e.g., TTP). Our main 

statistical tool is the joint frailty-copula model that is particularly useful for analyzing two 

event times simultaneously using meta-analytic data.  

We focus on the pair (OS, TTP) because it is perhaps the most reasonable example to 

explain why the joint is useful for correlated endpoints. To understand the natural history of 

cancer, it would be informative to identify the prognostic factors of TTP and OS, as well as 

the association between TTP and OS through a single joint model. Once a joint model on the 

pair (OS, TTP) is established, TTP and other prognostic factors can be used predict OS 

(Chapter 5)
2
. For a methodological perspective, the pair (OS, TTP) can naturally explain the 

semi-competing risks relationship between two endpoints (Chapter 3).  

The book also discusses a feature selection method for incorporating high-dimensional 

covariates, such as gene-expressions, to the joint frailty-copula model. The book even aims to 

contribute to the development of personalized medicine by providing a dynamic survival 

prediction formula for a cancer patient, where copulas can effectively formulate the influence 

of tumour progression on survival. 

To allow readers to apply the statistical methods of this book to their own data, we include 

case studies to demonstrate the R package joint.Cox (freely available from CRAN; 

https://cran.r-project.org/). With this package, readers can easily reproduce the results of our 

case studies, and they can analyze their data.  

Our emphasis is placed on survival data arising from cancer research. Such data typically 

include survival endpoints, clinical covariates, and gene expressions collected on cancer 

patients. Accordingly, we provide case studies using survival data for cancer patients. Of 

course, statistical methods presented in this book can be applied to many branches of medical 

                                                 
2
 However, it is not suitable to predict OS using endpoints such as DFS and PFS that include OS in their 

definitions (Chapter 2). While technically possible to fit the joint frailty-copula model on other the pairs, such as 

(OS, PFS) and (PFS, TTP), we shall not discuss this approach in this book. 
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research, such as research on AIDS, cardio-vascular disorders, and neurological disorders. We 

also have seen that the statistical methods are useful outside medicine, especially in the field 

of reliability. 

 

 

Use as a textbook 

This book may be used as a textbook for a one-semester course aimed at master students or a 

short course aimed at (bio) statisticians. Instructors (readers) may begin with Chapter 2. 

Chapter 1 can be assigned for preview. After that, instructors (readers) may proceed gradually 

to teach (learn) advanced statistical methods in Chapters 3-5. Chapters 2 and 3 contain 

exercises useful for homework/self-study.  

Chapter 2 provides an introduction to multivariate survival analysis to review many of the 

basic terms used throughout the book. Our review on the term endpoint is unique, which is 

not available in other textbooks on survival analysis. This chapter also reviews frailty models 

and copula models, the core elements of multivariate survival models. Studying these models 

can help understand the subsequent materials. 

Chapter 3 introduces semi-competing risks data collected from multiple studies (meta-

analysis). This type of data is getting easier to be obtained through free open source software 

and public data repository. However, relevant statistical methods are less discussed in the 

standard textbooks on survival analysis, though there are a number of journal articles on this 

theme in the last decade. The aim of Chapter 3 is to provide the basis for fitting the joint 

frailty-copula model to analyze semi-competing risks data. 

Chapter 4 contains a feature selection method for high-dimensional gene expressions and 

the compound covariate method to be applied to the joint frailty-copula model. We detail the 

idea of compound covariate that was advocated by John Wilder Tukey in 1993 and its 

application to the joint frailty-copula model. 

Chapter 5 considers a dynamic prediction method of predicting survival for a cancer 

patient under the joint frailty-copula model. The prediction formulas incorporate the genetic 

and clinical covariates collected on the patient entry as well as the tumour progression history 

evolving after the entry.  

Chapter 6 collects additional remarks on the previous chapters, and several open problems 

for future research. This might help find research topics for students and researchers. 
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Use as a reference book 

This book is designed to allow readers to read each chapter independently. Each chapter 

defines all terminologies and symbols with minimal references to other chapters. Also, each 

chapter provides a case study that helps readers understand how to apply the statistical 

methods and how to interpret the results. Readers who wish to analyze gene expression data 

may read Chapter 4. Readers who wish to develop a clinical prediction model may read 

Chapter 5. If readers feel difficulty in reading Chapters 4 and 5, we suggest reading Chapters 

2 and 3 to build up basic skills. 

 

Takeshi Emura 

Shigeyuki Matsui 

Virginie Rondeau 
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DFS,   Disease-Free Survival 

FGM copula,   Farlie-Gumbel-Morgenstern copula 

GEO,   Gene Expression Omnibus 

IPD,   Individual Patient Data 

LCV,   Likelihood Cross-Validation 

OS,   Overall Survival 

PFS,   Progression-Free Survival 

RR,   Relative Risk 

SD,   Standard Deviation 

SE,   Standard Error 

TCGA,   The Cancer Genome Atlas 

TTP,   Time-to-Tumour Progression 

 

Notations 

Aa ,   an element a  belonging to a set A  

a ,   the transpose of a column vector a  

]|[ YXE ,   the conditional expectation of X  given Y  

BAf : ,   a function from the domain A  to the range B  

( ) ( ) /f x df x dx ,   the first derivative of a function f  

2 2( ) ( ) /f x d f x dx ,   the second derivative of a function f  

arg max ( )φ φ ,   the argument that maximizes a function  

)1,0(N ,   the standard normal distribution 

)( I ,   the indicator function: 1)( AI  if  A  is true, or 0)( AI  if  A  is false 

)|Pr( BA ,   the conditional probability of A  given B  

)(tr  ,   the trace of a square matrix   
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Chapter 1: Setting the scene 

 

Abstract: This chapter introduces the main theme of the book: statistical analysis of 

correlated endpoints using a joint/bivariate survival model. We first review statistical issues in 

the analysis of survival data involving correlated endpoints and censoring. We then illustrate 

our motivations of investigating the interrelationship between endpoints using joint/bivariate 

survival models. We finally illustrate how copulas and bivariate survival models have been 

grown through the literature. 

 

Keywords: censoring, competing risk, Cox regression, dependent censoring, endpoint, 

informative dropout, multivariate survival analysis, overall survival, time-to-tumour 

progression 

 

1.1 Endpoints and censoring 

Survival analysis is a branch of statistics concerned with event times. In many examples of 

survival analysis, event times may be time-to-death as the name survival suggests. Time-to-

death from any cause is termed overall survival (OS) which is considered as the most 

objective measure of patient health in cancer research (Chapter 2). More generally, event 

times can be time-to-tumour progression (TTP), progression-free survival (PFS), disease-free 

survival (DFS), and so on, which are all important measures of health status for cancer 

patients, 

Multivariate survival analysis is a branch of survival analysis, which deals with two or 

more events per subject. For instance, one may observe both TTP and OS for a cancer patient. 

In analysis of such multivariate survival data, the key element is an appropriate account for 

dependence between event times. Throughout this book, we focus on frailty and copulas as 

main tools to model dependence between event times and to develop estimation and 

prediction methods. 

Nowadays, statisticians and medical researchers can easily obtain multivariate survival 

data for patients through free open source software (e.g., R Bioconductor software) and public 

data repository (e.g., GEO and TCGA repositories). Many databases offer individual-patient 

data containing two or more endpoints (OS, TTP, PFS, etc.) and a number of covariates (gene 

expressions, age, cancer stage, etc.).  

However, analyzing such multivariate survival data remains a challenging task as it 
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requires model specifications on the association between endpoints. For instance, there exists 

positive association between OS and TTP for cancer patients (Burzykowski et al 2008; 

Piedbois and Croswell 2008; Rondeau et al. 2015; Emura et al. 2017; 2018). To build a 

prognostic model for OS, multivariate survival models are required to stipulate the form of 

the joint distribution of OS and TTP. In addition, adequate statistical methods are required to 

estimate the degrees of association between OS and TTP.  

Analysis of survival data is further complicated by censoring. If patient follow-up is 

terminated before observing endpoints, they are said to be censored. Censoring is unavoidable 

in survival data; the study has a planned end of follow-up, or patients may decide to withdraw 

from the study. If censoring mechanisms involve the dropout due to a worsening of the 

symptoms, it may introduce bias into statistical inference. Generally, if an endpoint of interest 

is censored by any mechanism related to the endpoint, this phenomenon shall be referred to 

dependent censoring (Emura and Chen 2018). If the endpoint of interest is TTP, one might 

regard death as a censoring event; however, statistical inference on TTP may be biased due to 

dependence between tumour progression and death. Most of the traditional survival analysis 

methods give a valid result under the independent censoring assumption, that is, censoring 

mechanisms are unrelated to the endpoint of interest. 

The Cox proportional hazards regression model (Cox 1972) has been one of the traditional 

survival analysis tools among statisticians and medical researchers. The partial likelihood 

approach (Cox 1972) provides a statistical inference procedure for the Cox model. However, 

the Cox model with the partial likelihood approach is clearly insufficient to analyze 

multivariate survival data, such as the bivariate survival data in which TTP and OS are two 

endpoints of interest. In addition, it may not be a valid approach to fit the Cox model for TTP 

by treating death as independent censoring. This is because the independent censoring 

assumption made on the partial likelihood approach may be invalid. For a similar reason, it 

may not be a valid approach to fit the Cox model for OS if the censoring involves the dropout 

due to a worsening of the symptoms. Furthermore, if one wishes to study the link between 

TTP and OS, the Cox model for OS adjusted for TTP as a time-dependent covariate is not 

appropriate since the Cox model can only handle exogenous or external time-dependent 

covariates (that is, the covariate process develops independently of the event process). This is 

why the alternative framework of the joint/multivariate models for two time-to-event 

endpoints has been developed (Rondeau et al. 2015). 

The book hopes to provide statistical methods that appropriately account for the issues 

that have just been mentioned. 
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1.2 Motivations for investigating correlated endpoints 

Researchers may demand a joint/bivariate survival model to specify the interrelationship 

between endpoints. This book introduces frailty and copulas as main tools for constructing a 

joint model. Listed below are specific motivations for adopting a joint model to deal with 

correlated endpoints. 

 

Understanding disease progression mechanisms:  

In clinical trials, researchers often evaluate the treatment effect on selected endpoints such as 

OS and TTP. Clearly, these endpoints are associated and evaluation of how TTP relates OS is 

important to understand disease progression mechanisms and to develop anti-cancer drugs 

(Sherrill et al. 2008; Michiels et al. 2009; Rondeau et al. 2015). In the medical literature, the 

treatment effect on endpoints is estimated by fitting the Cox model separately for each 

endpoint, but the results do not allow one to study the dependence among endpoints. With a 

joint/multivariate model that accounts for dependence among endpoints, the results give more 

insight into the natural history of the disease and may provide physicians with a useful patient 

management strategy dealing with multiple event risks. Chapter 3 introduces our recently 

developed approaches through the joint frailty-copula model between TTP and OS (Emura et 

al. 2017). Chapter 4 extends the joint frailty-copula model to incorporate high-dimensional 

covariates based on Tukey’s compound covariate method (Matsui 2006; Emura et al. 2012; 

2019). Building such a prognostic model with high-dimensional covariates is an urgent issue 

to promote personalized or predictive medicine through statistical methodologies (Matsui et al. 

2015). Chapter 5 proposes a personalized prediction formula to predict OS according to TTP 

and covariates.  

 

Dynamic prediction of death:  

In cancer studies, predicting risk of death is fundamental for improving patient care and 

treatment strategies. There is a great interest in dynamic prediction that predicts risk of death 

at a certain moment by utilizing the record of intermediate events (van Houwelingen and 

Putter 2011; Mauguen et al. 2013; 2015; Rondeau et al. 2017; Sène et al. 2016; Emura et al. 

2018). For instance, dynamic prediction can utilize tumour progression histories (e.g., relapse) 

evolving over time to predict survival for an individual patient. Clearly, tumour progression 

histories are related to survival as a patient often encounters death immediately after tumour 

progression. This implies that the probability of death can substantially increases after 
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experiencing tumour progression (Figure 1.1). Accordingly, a bivariate survival model (joint 

model) for correlated endpoints is essential to build a prediction model. Such joint models for 

dependent endpoints have been developed under frailty models (Mauguen et al. 2013; 2015) 

and are utilized for the development of personalized medicine (Sène et al. 2016). Chapter 5 

introduces a different approach based on the joint frailty-copula model, which allows one to 

utilize meta-analytic data. 

 

Figure 1.1. The predicted probability of death can substantially increase after experiencing 

tumour progression. Prediction is made at time t according to tumour progression histories. If 

a patient experiences tumour progression before time t, TTP information x can be used for 

prediction. The details shall be discussed in Chapter 5. 

 

Validating surrogate endpoints:  

Measuring dependence between endpoints is an essential process to validate surrogate 

endpoints to be adopted in clinical trials. The formal statistical validation is possible by using 

meta-analysis (Burzykowski et al. 2005; Shi and Sargent 2009; Rotolo et al. 2018). In meta-

analytic studies, the process of validating surrogate endpoints utilizes two different kinds of 

dependency; study-level dependence and individual-level dependence (Buyse et al. 2008; 

Burzykowski et al. 2001; Burzykowski et al. 2005).  

A strong individual-level dependency between progression-free survival (PFS) and OS 

was found in patients with colorectal cancer (Buyse et al. 2008), head and neck cancer 

(Michiels et al. 2009), gastric cancer (Oba et al. 2013) and other cancers. A strong individual-

level dependence between time-to-recurrence and OS was observed in advanced and early 

colon cancers (Alonso and Molenberghs 2008). These analyses adopted copulas to measure 

dependence between two endpoints. We shall discuss the topic of surrogate endpoints shortly 

as an important direction for future research in Chapter 6. 
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1.3 Copulas and bivariate survival models: a brief history 

A copula is a function to link two random variables together to form a joint distribution. The 

concept of copulas was introduced by a mathematician, Abe Sklar, in his study of 

probabilistic metric space (Sklar 1959). From a modeling point of view, copulas allow one to 

create a dependence structure between two variables by specifying a copula function. 

Remarkably, a copula function does not restrict the structure of the marginal distributions. 

Consequently, measures of dependence, such as Kendall’s tau, can be derived from a copula 

without influenced by the marginal distributions. More about copulas can be found in the 

book of Nelsen (2006).  

Apparently, the applications of copulas in multivariate survival analysis became active 

after David George Clayton introduced his bivariate survival model (Clayton 1978). His 

work yielded one of the most important copulas for bivariate survival analysis, later known 

as the Clayton copula. The Clayton copula is a special case of Archimedean copulas (Genest 

and MacKay 1986) that contain several useful copulas, such as the Gumbel and Frank 

copulas. On the other hand, Clayton’s model is also regarded as the gamma frailty model 

(Oakes 1989). More details shall be discussed in Chapter 2. 

One of the most successful papers on copula-based survival models is Burzykowski et al. 

(2001) who developed the two-step method for analyzing dependence between two 

correlated endpoints. In the design of cancer clinical trials with surrogate endpoints, the 

current consensus is to base the copula-based validation approach using the two-step method 

(Burzykowski et al. 2005). An R package for implementing the two-step method is recently 

developed by Rotolo et al. (2018). 

While the two-step approach considers dependence between two event times via copulas, 

their estimation algorithm relies on the assumption of independent censorship. An 

inconvenience occurs if one event censors the other. For instance, early death censors the 

occurrence of tumour progression, and hence, TTP is dependently censored by death. Hence, 

it is not a valid way to apply the two-step method by treating TTP and OS as bivariate event 

times subject to independent censoring. This problem is known as competing risks or 

dependent censoring. If one fits the Cox model to TTP endpoint by treating death as an 

independent censoring, the estimates of the effects of prognostic factors are systematically 

biased (Emura and Chen 2016; 2018; Moradian et al. 2017). 

Fine et al. (2001) introduced the concept of semi-competing risks in which a terminal 

event censors a non-terminal event, but not nice versa. The statistical approach developed by 
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Fine et al (2001) provides a valid way to fit Clayton’s model to data with TTP and OS. Their 

statistical approach was developed under Clayton’s model and it was later extended to 

Archimedean copula models by Wang (2003). Chen (2012) further extended the copula 

models to implement semiparametric regression analysis on the transformation Cox model.  

For a methodological point of view, copulas offer a unified strategy for 

modeling/analyzing survival data. For instance, the goodness-of-fit test of Emura et al. (2010) 

for Archimedean copulas is more general than that of Shih (1998) that is tailored for 

Clayton’s model. The likelihood-based method of Chen (2012) for copulas is more general 

than the moment-based method of Fine et al. (2001) for Clayton’s model. 

Indeed, copula-based methods are adaptive to survival data with complex dependence 

structures, such as clustered survival data (Rotolo et al. 2013; Emura et al. 2017; Peng et al. 

2018), dependent competing risks data (Lo and Wilke 2010; Chen 2010; de Uña-Á lvarez and 

Veraverbeke 2013; 2017; Emura and Michimae 2017; Shih and Emura 2018), dependently 

censored data with one covariate (Braekers and Veraverbeke 2005) or high-dimensional 

covariates (Emura and Chen 2016), dependently truncated data (Chaieb et al. 2006; Emura 

and Murotani 2015; Emura and Pan 2017), multivariate survival data with complex 

association pattern (Barthel et al. 2018), and recurrent event data (Ling et al. 2016; Li et al. 

2019). 

In summary, copulas have provided flexible survival models and unified statistical 

methods. Here, copulas stipulate a dependence structure between two endpoints while they 

impose no restriction on their marginal distributions. Consequently, copulas provide 

measures of dependence, such as Kendall’s tau, that are free from the model specifications 

of the marginal survival distributions. One can choose any copula that he/she likes from a 

large pool of existing copulas. One can also choose any specific type of regression models 

for marginal survival distribution, e.g., the Cox model with parametric or nonparametric 

baseline hazard function. This modeling strategy, which is adopted in this book, provides 

considerable flexibility/adaptability to different types of survival data. Copulas would 

continue to be the heart of modeling survival data with correlated endpoints. 
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Chapter 2: Introduction to multivariate survival analysis 

 

Abstract: This chapter introduces a framework for multivariate survival analysis that is used 

in later chapters. We first explain the concepts of endpoint and censoring in medical follow-

up studies. Next, we review the basic tools in survival analysis, such as the survival/hazard 

function, Cox regression, and likelihood-based method. Finally, we introduce two major 

procedures for describing dependence among event times: (i) the shared frailty models for 

clustered survival data (ii) the copula models for bivariate survival data. We provide some 

exercises at the end of this chapter. 

 

Keywords: censoring, copula, Cox regression, endpoint, frailty, independent censoring, 

overall survival, time-to-tumour progression 

 

2.1 Endpoints and censoring 

In survival analysis, the term survival time refers to the time elapsed from an origin to the 

occurrence of an event. In many medical studies, the origin may be the time at study entry that 

can be the start of a medical treatment, the initiation of a randomized experiment, or the 

operation date of surgery. In epidemiological studies, the origin is often the date of birth. The 

event may be the occurrence of death, cancer relapse, or tumour progression, which depends 

on the research design.  

The term endpoint has the same definition as survival time, but is more specifically used 

as a primary measure of evaluating medical treatments. Time-to-death is also called overall 

survival. For instance, if one is interested in measuring the effect of chemotherapy or 

radiotherapy in locally advanced head and neck cancer, the primary endpoint is overall 

survival (Michiels et al. 2009; Le Tourneau et al. 2009). 

   Several different endpoints have been employed to measure a clinically convincing effect of 

treatments or drugs for cancer patients (Pazdur 2008; Piedbois and Croswell 2008; Le 

Tourneau et al. 2009; Soria et al. 2010; Hamasaki et al. 2016). Endpoints should be well-

defined and unambiguous measures that objectively assess clinically important aspects of a 

patient. The most popular endpoint is overall survival, which is precisely defined as follows: 

 

Definition 1: Overall survival (OS) is defined as the time elapsed from study entry to death 

from any cause. 
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Owing to the unambiguity of the definition of death, OS has been the gold standard endpoint 

in many cancer studies (Pazdur 2008; Shi and Sargent 2009; Michiels et al. 2009; Oba et al. 

2013). 

     Another endpoint of interest is the elapsed time from study entry to any increase in tumour 

size, appearance of new tumour, or distant metastasis (collectively called progression): 

 

Definition 2: Time-to-tumour progression (TTP) is defined as the time elapsed from study 

entry to the first evidence of tumour progression. 

 

In cancer research, TTP may stand for time-to-progression rather than time-to-tumour 

progression. However, the distinction between time-to-progression and time-to-tumour 

progression is not always clear in the literature, and hence, they may be used interchangeably. 

In either case, a careful and precise definition of “progression event” is necessary by 

following some guideline (e.g., RECIST guideline; Eisenhauer et al. 2009). 

The occurrence of death is not considered as a tumour progression event. Hence, OS and 

TTP are distinct event times. The first occurring event between TTP and OS is referred to 

progression-free survival (PFS), i.e., }TTP,OSmin{PFS . Hence, OS and PFS are not 

distinct event times as OS is part of PFS. Since TTP may be shorter than OS in patients with 

cancer-related deaths, TTP and PFS generally allow faster clinical trials, compared with those 

evaluating OS.  

Disease-free survival (DFS) is another endpoint defined as the time from a medical 

treatment until recurrence of disease or death from any cause. DFS is similar to PFS, but is 

more specifically used for the adjuvant setting after surgery or radiotherapy, where long 

survivors are expected. 

   The endpoints such as OS, TTP, PFS, and DFS are popular in applications of survival 

analysis to cancer research. The adequate choice of the endpoints depends on the type of 

diseases (or types of cancers), sample sizes (or powers), study period, and the goal of the 

research. Some discussions about OS, TTP, PFS, and DFS can be found in the medical 

literature (Pazdur 2008; Green et al. 2008; Soria et al. 2010; Cheema and Burkes 2013) and in 

the biostatistical literature (Rondeau et al. 2015; Emura et al. 2017; 2018; Matsui et al. 2015; 

and Hamasaki et al. 2016; Sugimoto et al. 2017). 

Unlike OS, the definitions of TTP, PFS, and DFS vary with the clinicians – i.e., the 

tumour progression may be defined by their own timing and assessment criteria. This often 
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brings some ambiguity as a primary measure of evaluating a medical treatment. Hence, the 

definition of tumour progression or disease recurrence should clearly be described in the study 

protocol. In addition, tumour progression assessments generally should be verified by central 

reviewers blinded to the treatments under study, especially when the study is not blinded (e.g., 

in the absence of a placebo control). 

In medical follow-up studies, OS for a patient is possibly censored by some mechanisms 

to terminate the studies. For example, a clinical trial typically has a pre-determined follow-up 

period. Clinicians may not obtain OS information for those patients who are still alive after 

the study end. For another example, clinicians may fail to obtain OS if a patient drops out of 

(or withdraws from) the trial before he/she dies. In such circumstances, clinicians acquire 

partial information about OS as the elapsed time until the censoring point.  

 

Definition 3: If OS is the primary endpoint, censoring time is defined as the time elapsed 

from study entry to the censoring event due to dropout (or withdrawal) from a study, or the 

end of a predetermined follow-up period. If TTP is the primary endpoint, the censoring event 

also includes death. 

 

In the presence of censoring, clinicians can access either OS or censoring time, whichever 

comes first for a patient. OS is available if the patient dies during the follow-up. Alternatively, 

censoring time is available if the patient is alive at the end of the study period or at the time of 

dropout. 

Similarly, PFS and DFS are subject to censoring due to the termination of follow-up or 

patients’ early withdrawals. Unlike PFS and DFS, TTP can also be censored by death because 

TTP and OS are distinct event times as noted previously. Therefore, the use of TTP endpoint 

for cancer patients would be more effective than PFS and DFS in situations where the 

majority of deaths are unrelated to cancer. 

Multivariate survival analysis is a branch of survival analysis that deals with more than 

one event times per subject. For instance, one may observe both TTP and OS for a cancer 

patient. In analysis of such multivariate survival data, the key element is an appropriate 

account for dependence between event times.  

 

2.2 Basic terminologies 

This section summarizes basic terminologies and notations used in survival analysis. 

Consider random variables, defined as 
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  X  : event time 

  C :  censoring time 

 

Due to censoring, either one of X  or C  is observed. One can observe X  if an event comes 

faster than censoring ( X C ). On the other hand, one cannot exactly observe X  if censoring 

comes faster than an event ( X C ). Even if the exact value of X  is unknown for the 

censored case, X  is known to be greater than C . What we observe are the first occurring 

time ( min{ , }X C  ) and the censoring status ( X C  or X C  ).  

Survival data consist of { ( , ); 1, ..., }i iT i n  , where 

 

 iT   :  event time or censoring time whichever comes first, 

 i  :  censoring indicator ( 1i  if  iT  is event time, or 0i  if iT  is censoring time ). 

 

One can write min{ , }i i iT X C  and ( )i i iX C  I , where )( I  is the indicator function.  

Survival data often include covariates, such as gender, tumour size, and cancer stage. In 

medical applications, covariates are usually prognostic factors that are associated with event 

time. With covariates, the dataset consists of { ( , , ); 1, ..., }i i iT i n Z , where 

 

 1( , ..., )i i ipZ Z Z :  p -dimensional covariates. 

 

Throughout this Chapter, we impose the following assumption: 

 

Independent censoring assumption: X  and C  are conditionally independent given Z . 

 

This assumption is imposed on most statistical methods for analyzing survival data, such as 

Cox regression (Section 2.3). If the independent censoring assumption does not hold, X  can 

be dependently censored by C . However, throughout this book, the symbol C  always 

represents censoring time that satisfies the independent censoring assumption. 

   The survival function is defined as ( | ) Pr( | )i i iS t X t Z Z  that is the probability that the 

patient with covariates iZ  is event-free at time t . This is the patient-level survival function as 
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it is conditionally on patient characteristics. The survival function at i Z 0  is called the 

baseline survival function and denoted as 0( ) ( | )iS t S t Z 0 . 

Hereafter, we suppose that ( | )iS t Z  is continuous and differentiable in t . The 

instantaneous probability of experiencing an event between t  and dtt   is 

( | ) ( | )i iS t S t dt Z Z , where dt  is an infinitely small number. Since this probability is 

equal to zero, we consider the rate by dividing by dt  such that  

( | ) ( | ) ( | )
( | ) i i i

i

S t S t dt dS t
f t

dt dt

 
  

Z Z Z
Z . 

This is the density function.  

The density function represents the frequency of events at time t . While the density is an 

important measure in epidemiology or demography, it is not frequently used in prognostic 

analysis of a patient. This is because a patient or clinician is more interested in the risk than 

the frequency. 

We formulate the risk of a patient as the instantaneous event rate between t  and dtt   

given that the patient is surviving at time time t . The risk, expressed as a function of t , is 

called the hazard function:  

 

Definition 4: The hazard function is defined as 

 
Pr( | , )

( | ) log ( | )i i i
i i

t X t dt X t d
t S t

dt dt


   
  

Z
Z Z . 

The cumulative hazard function is defined as 

0

( | ) ( | )

t

i it u du  Z Z . 

 

The hazard function at i Z 0  is called the baseline hazard function and denoted as 

0( ) ( | )it t  Z 0 . Also, the baseline cumulative hazard function is defined as 

0 0
0

( ) ( )
t

t u du   .  

The survival function and the cumulative hazard function is related through 

( | ) exp{ ( | ) }i iS t t Z Z . The hazard function is written as ( | ) ( | ) / ( | )i i it f t S t Z Z Z . 

A parametric model is defined by a survival function or hazard function that has a 

specified distributional form such as the exponential, Weibull, and log-normal distributions. 

In parametric models, the effects of covariates on survival also have a specific form. An 
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example is an Weibull model ( | ) exp( )i

iS t t e


 
β Z

Z , 0t , where 0  is a scale 

parameter, 0   is a shape parameter, and β  are regression coefficients. It can be shown that 

exp( )

0( | ) ( ) i

iS t S t



β Z

Z  for 0t , where 0( ) ( | ) exp( )iS t S t t   Z 0  is the baseline 

survival function. With this model, the effects of the covariates on survival is captured by β .  

A semi-parametric model is defined by a survival function or hazard function that has a 

specified form of covariate effects on survival without a specified distributional form. Semi-

parametric models are more flexible and usually fit better to data than parametric models.  

To make statistical inference on semi-parametric models, some mild assumptions should 

still be made for the unspecified part. For instance, the baseline survival function 0 ( )S   is 

assumed to be a decreasing step function with jumps at observed times of death, or the 

baseline hazard function 0 ( )   is assumed to be a weighted sum of spline basis functions. In 

either case, these assumptions do not restrict too much the shape of the survival or hazard 

function by allowing a large number of parameters to be determined by data. 

Unfortunately, parametric models, such as the exponential, Weibull and lognormal models, 

may not adequately fit survival data from cancer patients. This implies that survival 

experience of cancer patients do not show a simple pattern probably because they may 

experience complex treatment regimens and disease progression. This is why semi-parametric 

models are more useful and widely applied in medical research. One may still accept the 

assumptions that the hazard function is continuous, does not abruptly change over time, and 

smooth (continuously differentiable). Hazard models with cubic splines meet these 

assumptions without restricting too much the shape of the hazard function (see Section 2.4.1 

for more details).  

 

2.3 Cox regression 

The hazard function is a sensible measure for describing the risk of experiencing an event, 

and hence can be used for prognostic analysis for a patient. It is then natural to incorporate the 

effect of covariates into the hazard function. 

 

Definition 5: The Cox proportional hazards model (Cox 1972) is defined as 

0( | ) ( )exp( )i it t  Z βZ , 

where )...,,( 1
 pβ  are unknown coefficients and 0 ( )   is an unknown baseline hazard 

function. 
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The Cox model states that all patients share the same time-trend function 0 ( )t . An important 

property of the Cox model is that the form of 0 ( )   is unspecified, meaning that the model is 

semi-parametric. Hence, the Cox model offers greater flexibility over parametric models that 

specify the form of 0 ( )  . The Cox model is also specified as exp( )

0( | ) ( ) i

iS t S t



β Z

Z  for 0t , 

where the form of 0 ( )S t  is unspecified. 

Let iZ  be a dichotomous covariate, such as gender with 1iZ   for male and 0iZ   for 

female. Under the Cox model 0( | ) ( )exp( )i it Z t Z   , the relative risk (RR) is defined as 

( | 1)
exp( )

( | 0)

i

i

t Z
RR

t Z







 


. 

For instance, the value 2RR  implies that the event rate under 1iZ   is twice the event rate 

under 0iZ  .  

Let iZ  be a continuous covariate, such as a gene expression. Under the Cox model 

0( | ) ( )exp( )i it Z t Z   , if the scale of iZ  is standardized (to be mean=0 and SD=1), the 

value exp( )  is interpreted as the RR for a one SD increase in iZ . That is, 

( | 1)
exp( )

( | )

i

i

t Z
RR

t Z







  . 

Under the Cox model, one can use survival data { ( , , ); 1, ..., }i i iT i n Z  to estimate β . 

Let { : }i iR T T   be the risk set that contains patients at-risk at time it . The partial 

likelihood estimator )ˆ...,,ˆ(ˆ
1

 pβ  is defined by maximizing the partial likelihood function 

(Cox 1972) 

1

exp( )
( )

exp( )

i

i

n
i

i R

L



 

 
 

 
 




β Z
β

β Z
 . 

The estimator β̂  is consistent when the independent censoring assumption holds and the 

model specification is correct (Fleming and Harrington 1991). If the independent censoring 

assumption does not hold, β̂  is a biased estimate for the true regression coefficients (Emura 

and Chen 2016; 2018). 

The log-partial likelihood is 
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1

( ) log ( ) log exp( )
i

n

i i

i R

L 
 

   
     

    
 β β β Z β Z . 

The derivatives of )(β  give the score function, 

1

exp( )( )
( )

exp( )

i

i

n
R

i i

i R




 

 
   

  
 






Z β Zβ
S β Z

β β Z
. 

The second-order derivatives of )(β  constitute the Hessian matrix, 

2

1

( )
( )

exp( ) exp( ) exp( )
.

exp( ) exp( ) exp( )

i i i

i i i

n
R R R

i

i R R R

H


  

   




 

 
      

          
 

  


  

β
β

β β

Z Z β Z Z β Z Z β Z

β Z β Z β Z

 

Interval estimates for β  are obtained by applying the asymptotic theory (Fleming and 

Harrington 1991). The information matrix is defined as )ˆ()ˆ( ββ Hi  . The standard error 

(SE) of j̂  is jjj iSE })ˆ({)ˆ( 1
β

 , where 1 ˆ{ ( ) } jji β  is the j-th diagonal element of the 

inverse information matrix. The 95% confidence interval (CI) is )ˆ(96.1ˆ
jj SE   . The 

Wald test for the null hypothesis 0 : 0jH    is based on the Z-value ˆ ˆ/ ( )j jz SE  . The 

P-value is computed as )||||Pr( zZ  , where )1,0(~ NZ . 

 

2.3.1 R survival package 

We shall briefly introduce the R package survival to perform Cox regression.  

As a running example, we use a dataset consisting of 58n   ovarian cancer patients 

obtained from “Study 2” that shall be mentioned in Section 2.5. The event time of interest is 

time-to-recurrence after surgery. In the data, 48 patients experience cancer recurrence and 

other 10 patients are censored. The covariate is a binary variable ( jZ =0 vs. jZ =1) on the 

residual tumour size at surgery ( 1cm vs. >1cm).  

After installing the package, we enter event time it , censoring indicator i , and covariate 

iZ  for 58n   patients. Then, we run the codes: 

 

library(survival) 
t.event=c(385, 2582,  175,  162,  860, 3025,  454,   89,  252,   30,  401,  505,  511,  494,  195,   

31,  242, 2195, 2282,  309, 3315,  387,  287,  367,  542,  165,   31, 2246,  481, 1003,  
380, 367,  342,  265,  480,  664, 4208,  321,  431,  929,  125,  328, 3644,  811,  872,   
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804,  580,  298, 12,  282,  218,  114,  566,  803,  265,  407,  208,  309)  ## event times 
event=c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 

1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1)  ## censoring indicators 
Z=c(1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 

1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1)  ## covariates 
coxph(Surv(t.event,event)~Z)  

 

Below are the outputs: 

 

> coxph(Surv(t.event,event)~Z) 
Call: 
coxph(formula = Surv(t.event, event) ~ Z) 
 
     coef       exp(coef)   se(coef)    z         p 
Z   0.849     2.338          0.307       2.76    0.0057 
 
Likelihood ratio test=7.9  on 1 df, p=0.00495 
n= 58, number of events= 48  

 

The results on Cox regression show ˆ 0.849  , ˆexp( ) 2.338RR   , ˆ( ) 0.307SE   , 

and ˆ ˆ/ ( ) 2.76z SE   . The P-value of the Wald test is 0.0057, and hence the residual 

tumour size is significantly associated with time-to-recurrence. The result implies that patients 

having a residual tumour ( >1cm ) are more than twice as likely to experience cancer relapse 

after surgery. Hence, the residual tumour would be an important prognostic factor for cancer 

recurrence. 

 

2.4 Likelihood-based method 

This section considers likelihood-based methods for analyzing the dataset 

{ ( , , ); 1, ..., }i i iT i n Z . These methods are applicable to both parametric and 

semiparametric models, and hence, provide more general tools than the partial likelihood 

method. 

Event time iX  and censoring time iC  are related to the observation ( , )i iT   through 

 i iX T  and i iC T  if 1i , 

 i iX T  and i iC T  if 0i . 

Each patient experiences either one of the two cases. Hence, the probability of observing the 

data ( , , )i i iT  Z  for the i -th patient is 

1
Pr( , | ) Pr( , | )i i

i i i i i i i i i i iL X T C T X T C T
 

    Z Z . 

This is the likelihood of binary outcomes. Under the independent censoring assumption,  
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1

1

1 1

[ Pr( | ) Pr( | ) ] [ Pr( | ) Pr( | ) ]

    [ ( | ) ( | ) ] [ ( | ) ( | ) ]

    [ ( | ) ( | ) ][ ( | ) ( | ) ].

i i

i i

i i i i

i i i i i i i i i i i i i

X i i C i i C i i X i i

X i i X i i C i i C i i

L X T C T C T X T

f T S T f T S T

f T S T f T S T

 

 

   





 

    





Z Z Z Z

Z Z Z Z

Z Z Z Z

 

where ( | ) Pr( | )X i i iS t X t Ζ Ζ , ( | ) ( | ) /X i X if t dS t dt Ζ Ζ , ( | ) Pr( | )C i i iS t C t Ζ Ζ , and 

( | ) ( | ) /C i C if t dS t dt Ζ Ζ . In addition to the independent censoring assumption, we further 

impose the following assumption: 

 

Non-informative censoring assumption: ( | )C iS t Z  does not contain any parameters related 

to ( | )X iS t Z  . 

 

Under the non-informative censoring assumption, the term 1
( | ) ( | )i i

C i i C i if T S T
 

Z Z  can 

be ignored. Therefore, the likelihood function is re-defined as 

1

1 1

( | ) ( | ) ( | ) exp[ ( | ) ]i i i

n n

X i i X i i X i i X i i

i i

L f T S T T T
  

 

   Z Z Z Z ,        (2.1) 

The log-likelihood is  

1

log [ log ( | ) ( | ) ]
n

i X i i X i i

i

L T T 


   Z Z . 

   Independent censoring and non-informative censoring are mathematically different concepts. 

However, independent censoring in real-world applications usually implies non-informative 

censoring. An artificial or unusual example may exist for informative but independent 

censoring (p.150 of Andersen et al. 1993; p. 196 of Kalbfleish and Prentice 2002). 

Independent censoring is more crucial assumption than non-informative censoring since 

dependent censoring leads to bias in estimation (Emura and Chen 2018). 

Suppose that the log-likelihood is written as ( )φ , where φ  is a vector of parameters. 

Then, the maximum likelihood estimator (MLE) is defined by )(maxargˆ φφ φ  . The first 

derivatives of the log-likelihood give the score function, φφφS  /)()(  . The second 

derivatives of the log-likelihood give the Hessian matrix φφφφ  /)()( 2H . The MLE 

φ̂  is obtained from the Newton-Raphson algorithm  

)()( )()(1)()1( kkkk H φSφφφ
  ,         ...,1,0k . 

Interval estimates for φ  follow from the asymptotic theory of MLEs. The information 

matrix is defined as )ˆ()ˆ( φφ Hi  . For the j-th component j̂  of φ̂ , the standard error (SE) 
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is jjj iSE })ˆ({)ˆ( 1
φ

 , where 1 ˆ{ ( ) } jji φ  is the j-th diagonal element of the inverse 

information matrix. The 95% CI is )ˆ(96.1ˆ
jj SE   . 

 

2.4.1 Spline and penalized likelihood 

We consider a proportional hazards model 0( | ) ( ; )exp( )i it t  Z h β Z , where the baseline 

hazard function is parametrically specified by a vector h . Letting ),( βhφ  , the log-

likelihood is written as  

0 0

1

( ) [ { log ( ; ) } ( ; )exp( ) ]
n

i i i i i

i

T T 


   φ h β Z h β Z . 

If the dimension of h  is high, the baseline hazard function is a complex function of  t  and 

difficult to interpret. In this case, one may wish to constrain the complexity of the hazard 

function. A popular way to quantify the complexity of a function f  is through the roughness 

defined as 2( )f t dt , where 22 /)()( dttfdtf  . We then maximize the likelihood while 

minimizing the roughness through a penalized likelihood  

2

0( ) ( ; )t dt  φ h . 

where 0   is a given value, called a smoothing parameter.  

A penalized likelihood is particularly useful for the spline-based method. The spline 

method allows for a flexible hazard function that is difficult to be achieved by parametric 

models such as the Weibull model. The spline method is also known for its computational 

effectiveness because the spline basis functions are easy to differentiate and integrate 

(Ramsay 1988). 

We specify the baseline hazard function as 0 1
( ; ) ( )

L
t h M t


h , where h ’s are 

positive parameters and )(tM  ’s are called the M-spline basis functions (Ramsay 1988). The 

number of bases L  also represents the number of free parameters. One has the baseline 

cumulative hazard function 0 1
( ; ) ( )

L
t h I t


 h  and the baseline survival function 

0 1
( ; ) exp ( )

L
S t h I t


  
 h , where )(tI ’s are integrations of )(tM  ’s, called the I-spline 

basis functions. 

To compute the spline basis functions, one needs to specify the knots and the range of t . 

One of the simplest ways is to set the range ],[ 31 t  for the equally-spaced knots 

321   , where 1 min( )jT  , 3 max( )jT  , and 2 1 3( ) / 2    . Figure 2.1 displays the 
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M- and I-spline basis functions with 5L   and the knots 11  , 22  , and 33  . The 

joint.Cox package (Emura 2019) provides functions M.spline( ) for )(tM   and I.spline( ) for 

)(tI  for 5L  . The expressions of )(tM   and )(tI  are given in Appendix A.  

 

 

Figure 2.1: M-spline basis functions (left-panel) and I-spline basis functions (right-panel) 

with knots 11  , 22  , and 33  . 

 

The joint.Cox R package (Emura 2019) provides a function splineCox.reg( ) to compute 

penalized MLEs. The function automatically selects the optimal value of   among the user-

specified grid points for  . Since the choice of the grid points is not obvious, some graphical 

diagnostic tools are necessary, which shall be detailed in Chapter 3. Finally, the penalized 

likelihood estimator is defined as 

 PL PL 2

0
ˆ ˆ ˆ( , ) arg max ( , ) ( ; )t dt   β h β h h , 

where ̂  is the optimal value. Usually, the value of PL
β̂  is close to the partial likelihood 

estimator β̂ . 

 

 

 



28 

 

 

2.5 Clustered survival data 

Shared frailty models are useful to incorporate unexplained heterogeneity in the risks of 

experiencing an event for patients. For instance, we shall consider a multicenter analysis, 

where patients are collected from different hospitals. Obviously, some hospitals perform 

well while others perform poorly in terms of prolonging survival of their patients. In shared 

frailty models, it is assumed that each hospital has its own unobserved factor (called the 

frailty term) influencing the risks of all patients in the hospital. Hence, the patients in the 

same hospital share the same frailty term. Consequently, the study population may be 

regarded as a mixture of frail patients (in a hospital with a high frailty term) and robust 

patients (in a hospital with a low frailty term). 

Individual patient data (IPD) meta-analysis is based on patients collected from different 

studies (Figure 2.2). By replacing the term “center” to “study”, IPD meta-analysis is 

essentially equivalent to multicenter analysis.  

Figure 2.2 shows meta-analytic data collected from four different studies. The data 

provide time-to-recurrence for 912 surgically treated patients with ovarian cancer. One can 

observe the heterogeneity of relapse (recurrence) rates among the four studies, with highest 

being Study 2 (83%) and the lowest being Study 4 (49%). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Meta-analytic data combining four different studies of ovarian cancer patients 

(Ganzfried et al. 2013; Emura et al. 2018). The data is available in the joint.Cox R package 

(Emura 2019). 

 

 

Study 1: 

84 patients 

59 relapses 

(70%) 

Study 2: 

58 patients 

48 relapses 

(83%) 
 

 

Study 4: 

510 patients 

252 relapses 
(49%) 

Study 3: 

260 patients 

185 relapses 

(71%) 
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In both the IPD meta-analysis and multicenter analysis, it is customary to account for 

heterogeneity by means of random effects, called frailty. The gamma frailty distribution has 

been routinely applied to account for the heterogeneity, where the variance of the gamma 

distribution measures the degree of heterogeneity (Duchateau et al. 2002; Rondeau et al. 2015; 

Emura et al. 2017; 2018). 

Instead of “study” or “center”, we shall use a more general term “cluster” to represent the 

study unit. This allows one to think more general and broad applications encountered in 

medical studies, where a cluster is a well-defined collection of patients. In some family-based 

studies, a cluster may be a married couple (Rondeau et al. 2017), or a family containing more 

than one member (Rodríguez-Girondo et al. 2018). 

 

2.5.1 Shared frailty model 

We consider a dataset consisting of G  independent clusters with the i -th cluster containing 

iN  patients. For Gi ...,,2,1  and iNj ...,,2,1 , let ijX  be event time and ijZ  be a vector of 

covariates. For instance, the meta-analytic data of ovarian cancer patients contain G 4 

clusters, and each cluster has 1N 84, 2N 58, 3N 260, and 4N 510 patients (total 912 

patients). 

In the shared frailty models, the heterogeneity of the evet rates is specified by multiplying 

a frailty term to the Cox model: 

 

Definition 6: The shared frailty model is defined on the hazard function for the j-th patient in 

the i-th cluster: 

0( | , ) ( )exp( )ij i ij i ijt u u t  Z β Z , 

where )...,,( 1
 pβ  are unknown coefficients, 0 ( )   is an unknown baseline hazard 

function, and 0iu  , Gi ...,,2,1 , are unobserved frailty terms. 

 

The most popular choice for the frailty distribution is the gamma density 

1/ 1

1/

1
( ) exp

(1/ )

u
f u u 

   

  
  
  

,      0  ,    0u  . 

The mean and variance are 1)( iuE  and  )( iuVar .  

A high risk cluster is expressed as 1iu , and a low risk cluster is expressed as 10  iu . 

Hence, the variance parameter   represents the amount of heterogeneity in the risk of the 
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event. The limit 0  corresponds to the absence of heterogeneity. Note that the value of iu  

is unobserved (i.e., iu  is a latent variable). 

In the shared frailty models, it is assumed that , 1, 2, ...,ij iX j N  are conditionally 

independent given iu . Hence, the joint survival function given iu  is 

1

0

1

Pr( , 1, 2, ..., | , , 1, 2, ..., ) Pr( | , )

                                                                               exp ( )exp( ) .

i

i

N

ij ij i i ij i ij ij i ij

j

N

i ij ij

j

X x j N u j N X x u

u x





    

 
   

 





Z Z

β Z

 

If we integrate out the unobserved iu , we have the joint survival function 

0

10

0

1

Pr( , 1, 2, ..., | , 1, 2, ..., ) = exp ( )exp( ) ( )

                                                                           = ( )exp( ) ,

i

i

N

ij ij i ij i ij ij

j

N

ij ij

j

X x j N j N u x f u du

x











 
     

 

 
 

 





Z β Z

β Z

 

where 
0

( )= exp( ) ( )s su f u du 


  is the Laplace transform of ( )f  . Similarly, the marginal 

survival function is 0Pr( | ) = [ ( )exp( )]ij ij ij ij ijX x x  Z βZ  for 1, 2, ..., ij N . Thus, the 

joint survival function is 

1

1

Pr( , 1, 2, ..., | , 1, 2, ..., ) { Pr( | ) } .
iN

ij ij i ij i ij ij ij

j

X x j N j N X x  



 
     

 
Z Z  

Examples of the Laplace transform and its inverse function are given in Table 2.1. 

 

 

Table 2.1 Examples of frailty distributions 

Distribution 
Heterogeneity 

Parameter 

Laplace: 

( )s  

Inverse Laplace: 

1( )y
  

Kendall’s tau:  

  

Gamma 0   1/(1 )s    ( 1) /y     / ( 2 )    

Positive stable 0   1/( 1)exp{ }s   1{ log( ) }y   / ( 1)    

Lognormal 0   Not available Not available Not available 
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For the gamma frailty model, one has 1/( )=(1 )s s 

    and 1( ) ( 1) /y y 

    . Thus, 

1

1

Pr( , 1, 2, ..., | , 1, 2, ..., ) Pr( | ) ( 1)
iN

ij ij i ij i ij ij ij i

j

X x j N j N X x N










 
       

 
Z Z , 

where the marginal distribution is 1/

0Pr( | ) = [1 ( )exp( )]ij ij ij ij ijX x x    Z β Z . To 

investigate the correlation between ijX  and ikX  for j k , we consider the bivariate survival 

function by letting 0ihx   for h j  and h k : 

1

Pr( , | , ) Pr( | ) Pr( | ) 1ij ij ik ik ij ik ij ij ij ik ik ikX x X x X x X x  


         Z Z Z Z . 

Kendall’s tau ( ) is a measure of correlation between two random variables ijX  and ikX . It 

can be shown in Section 2.6.1 that Kendall’s tau is simply written as / ( 2)jk    . Hence, 

a large value of   corresponds to a higher association, and 0   corresponds to 

independence.  

The gamma frailty is the conjugate distribution for the Weibull distribution (Molenbergh 

et al. 2015). The resultant model is written as 1/Pr( | ) = [1 exp( )]ij ij ij ij ijX x x   Z β Z  and 

called the Weibull-gamma distribution. The model is also known as the Burr-XII distribution 

(Burr 1942). The Weibull-gamma model permits the expression of mean and variance of ijX . 

 

 

2.5.2 Likelihood function 

We consider a dataset consisting of G  independent clusters with the i -th cluster containing 

iN  patients. For Gi ...,,2,1  and iNj ...,,2,1 , let 

 ijX : event time,  

 ijC : independent and non-informative censoring time. 

The dataset consists of ( , , )ij ij ijT  Z  for Gi ...,,2,1  and iNj ...,,2,1 , where 

 min( , )ij ij ijT X C : event time or censoring time whichever comes first, 

 )( ijijij XT  I : censoring status (censor=0; event=1),  

where )( I  is the indicator function, 

 ijZ : p -dimensional covariates. 
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Proposition 1: Under the shared frailty model, the log-likelihood is 

1 1 10

log log ( ) log exp ( ) ( )
i i

i

N NG
m

ij ij ij i i ij ij i i

i j j

L T u u T f u du 


  

    
        

     
   . 

where 0( ) ( )exp( )ij ijt t   β Z , 0( ) ( )exp( )ij ijt t    β Z , and  


iN

j ijim
1
 . In particular, 

under the gamma frailty model, the log-likelihood is 

1 1

1

1 1
log ( ) log log log

1
            log 1 ( ) .

i

i

NG

ij ij ij i i

i j

N

i ij ij

j

T m m

m T

  
 




 



    
          

   

  
      
   

 



 

 

Proof of Proposition 1: Define notations )...,,( 1 iiNii TTT  and )...,,( 1 iiNii δ . Since the 

G  clusters are independent, the likelihood takes the form 
1

G

ii
L L


 , where 

iL  is the 

contribution from the i-th cluster. To compute 
iL , we recall the assumptions: 

 All patients in the i-th cluster share the common frailty term iu , 

 All patients in the i-th cluster are independent given the frailty term iu , 

Under these assumptions, 
iL  is computed as in Equation (2.1) given iu . Accordingly, 

11 1

( , | ) { ( ) } exp{ ( ) } ( ) exp ( ) .
i i i

ij iji

N N N
m

i i i i i ij ij i ij ij i ij ij i ij ij

jj j

L u u T u T u T u T
 

 
 

    
        

    
 T δ  

Integrating out the unobserved frailty term, 

110 0

( , ) ( , | ) ( ) ( ) exp ( ) ( ) .
i i

ij i

N N
m

i i i i i i i i ij ij i i ij ij i i

jj

L L u f u du T u u T f u du


 
 



    
       

    
 T δ T δ  

Combining the likelihoods for the G  independent clusters, 

11 1 1 0

( , ) ( ) exp ( ) ( )
i i

ij i

N NG G
m

i i i ij ij i i ij ij i i

ji i j

L L T u u T f u du





  

     
        

     
   T δ . 

The log-likelihood is obtained by taking the logarithm of the above expression. The log-

likelihood under the gamma-frailty model is obtained from the integral 
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1/

1 10

( 1/ )
exp ( ) ( ) 1 ( )

(1/ )

i
ii i

i

m
mN N

m i
i i ij ij i i ij ij

j j

m
u u T f u du T





 




 


 

    
       

   
  . ■ 

 

Many computing techniques and statistical packages for maximizing the log-likelihood 

have been developed under a semi-parametric model, where the form of 0 ( )   is unspecified 

(Hirsch and Wienke 2012). Vu and Knuiman (2002), Duchateau et al. (2002), Klein and 

Moeschberger (2003), and Duchateau and Janssen (2007) developed EM algorithms. Ha et al. 

(2017) regard iu  as parameters, leading to an iterative algorithm under a hierarchical 

likelihood. The algorithms in the R packages survival and frailtypack do not use EM-

algorithms. Majority of software packages use either the log-normal or gamma frailty 

distribution (Hirsch and Wienke 2012). 

The Newton-Raphson algorithms are useful under parametric models, where the form of 

0 ( )   is parametrically specified. For instance, the R function, nlm( ) or optim( ), can 

maximize the log-likelihood by a Newton-Raphson type algorithm. Examples for parametric 

models include the Weibull, lognormal, Pareto and Gamma distributions. Among those, the 

Weibull model is the most common choice, which specifies the baseline hazard function as 

1

0( ; )t t  h , where ( , ) h , 0   is a scale parameter and 0   a shape parameter. 

However, the Weibull model has only two parameters and is unlikely to capture the local 

changes of the hazard over the follow-up period.  

 

2.5.3 Penalized likelihood and spline 

Rondeau et al. (2003) developed the spline method to obtain a smooth estimate of )(0   

for clustered survival data. They specify the baseline hazard function as 

0 1
( ; ) ( )

L
t h M t


h , where h ’s are positive parameters and )(tM  ’s are the M-spline 

basis functions. Rondeau et al. (2003) proposed estimates ˆˆ ˆ( , , )h β  that maximize a 

penalized likelihood  

2

0( , , ) ( ; )t dt   h β h , 

where ( , , )h β  is the log-likelihood in Proposition 1, 2 2

0 0( ; ) ( ; ) /t d t dt h h , and 0   

is a smoothing parameter.  The smoothing parameter controls the degrees of penalty on the 

roughness of the baseline hazard function. The estimates can be computed by applying the 

frailtypack R package (Rondeau and Gonzalez 2005). 
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2.6 Copulas for bivariate event times  

In medical studies, it is common to record two event times for each patient. For instance, a 

patient's medical records may have time to locoregional progression and time to distant 

metastasis. In analysis of such bivariate survival data, the key element is an appropriate 

account for dependence between event times. 

A copula can be used to link two event times by specifying their dependence structure
3
. 

Let X and Y  be two event times, and 1Z  and 2Z  be associated covariates, respectively. 

Also let 1 1( | ) Pr( | )XS x X x Ζ Ζ  and 2 2( | ) Pr( | )YS y Y y Ζ Ζ  be the marginal survival 

functions. Given 1 2( , )Z Z Z , we consider a bivariate survival function 

1 2Pr( , | ) { ( | ), ( | ) }X YX x Y y C S x S y  Z Z Z ,                           (2.2) 

where a function C  is called bivariate copula
4
  (Sklar 1959; Nelsen 2006) and a parameter 

  describes the degree of dependence between X  and Y . With this model, the dependence 

structure between X  and Y  is fully described by C . The examples of bivariate copulas are 

listed below: 

 

The independence copula: 

uvvuC ),( , 

The Clayton copula (Clayton 1978): 

0,)1(),( /1   

 vuvuC ,  

The Gumbel copula (Gumbel 1960), also known as the Hougaard copula: 

0,})log()log({exp),( 1

1

11 







  

 vuvuC , 

The Farlie-Gumbel-Morgenstern (FGM) copula (Morgenstern 1956): 

11      },)1)(1(1{),(   vuuvvuC .       

 

                                                 
3
 In general, a copula can be used to link more than two event times. We only consider a bivariate copula in 

this book. 

4
 One may say “bivariate survival copula” or simply “survival copula” since the copula is applied to 

survival function in Equation (2.2). See Nelsen (2006) for details. 
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Any bivariate copula is a bivariate distribution function whose marginal distributions are 

the uniform distribution on ]1,0[ . Hence, one can consider a pair of random variables 

( , )U V  such that Pr( , ) ( , )U u V v C u v   . If one defines a pair of random variables 

( , )X Y  by transformations 1

1( | )XX S U Z  and 1

2( | )YY S V Z , its distribution satisfies 

Equation (2.2). 

The Clayton and Gumbel copulas are derived from the gamma frailty and positive stable 

frailty models, respectively. However, the FGM copula cannot be derived as a frailty model.  

Figure 2.3 gives the scatter plots for pairs ( , )U V  under the Clayton copula. The plots 

exhibit positive dependence between U  and V , where the levels of dependence are different 

between 2  (Kendall’s tau = 0.5) and 8  (Kendall’s tau = 0.8). 

 
Figure 2.3 The scatter plot for 500 pairs of ( , )U V  under the Clayton copula. 

 

The density function for C  is  

),(),(
2

]1,1[ vuC
vu

vuC 



   for   10  u   and  10  v . 

Figure 2.4 gives the contour plots under the Clayton copula density. We see that the 

characteristic of the contour plots agrees with that for the scatter plots. 
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Figure 2.4 The contour for the density 
[1,1]( , )C u v  under the Clayton copula.  

 

   An Archimedean copula is defined as 

1( , ) { ( ) ( ) }C u v u v       , 

where the function :[0,1] [0, ]   is called a generator function of the copula, which is 

continuous and strictly decreasing from (0) 0   to (1) 0  . Table 2.2 summarizes 

examples for generator functions. Any bivariate shared frailty model can be expressed as an 

Archimedean copula model by setting 1( ) ( )t t    . Hence, the copula models provide a 

more general framework of constructing bivariate survival models. 

The Clayton copula has the generator ( ) ( 1) /t t 

    for 0 . The limit 

0lim ( ) log( )t t     is also a generator for the independence copula. The FGM copula does 

not have a generator as it is not an Archimedean copula. In the Clayton, Gumbel, and FGM 

copulas, the value 0   reduces to the independence copula, namely, uvvuC  ),(lim 0  . 
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Table 2.2 Examples of copulas 

Copula Parameter Generator: ( )t  Kendall’s tau:   ( ) ( ) / ( )r s s s s      

Independence none  log( )t  0 1 

Clayton 0   /)1( t  )2/(   1  

Gumbel 0  1})log({  t  )1/(   )log(/1 s  

FGM 11    none 9/2  none 

 

 

2.6.1 Measures of dependence 

Kendall’s tau ( ) is a measure to assess the dependence between X  and Y . It can be shown 

that Kendall’s tau is solely expressed as a function of C  through 

1 2 1 2 1 2 1 2

1 1

[1,1]

0 0

Pr{ ( )( ) 0 } Pr{ ( )( ) 0 }

   4 ( , ) ( , ) 1,

X X Y Y X X Y Y

C u v C u v dudv



 

        

  
                   (2.3) 

where 1 1( , )X Y  and 2 2( , )X Y  are independently drawn from the copula model (2.2). This 

expression implies that Kendall’s tau does not depend on how to specify the marginal survival 

functions 1 1( | ) Pr( | )XS x X x Ζ Ζ  and 2 2( | ) Pr( | )YS y Y y Ζ Ζ .  

An Archimedean copula has a “shortcut” formula to compute Kendall’s tau 

1

0

( )
1 4

( )

t
dt

t










   ,                                                  (2.4) 

where ( ) ( ) /t d t dt   . This formula gives / ( 2)     for the Clayton copula and 

/ ( 1)     for the Gumbel copula, both taking values from 0 0   to 1  . 

Since the FGM copula is not an Archimedean copula, the shortcut formula cannot apply. 

However, the FGM copula has a simple expression 9/2   for 11   , which can be 

derived from Equation (2.3). In the FGM copula, the range of Kendall’s tau is restricted from 

1 2 / 9    to 1 2 / 9  . 

It is convenient to define the partial derivatives of a copula: 

),(),(]0,1[ vuC
u

vuC 



 ,     ),(),(]1,0[ vuC

v
vuC 




 ,    ),(),(

2
]1,1[ vuC

vu
vuC 




 . 
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Definition 7: The cross-ratio function (Oakes 1989) is defined as 

),(),(

),(),(
),(

]1,0[]0,1[

]1,1[

vuCvuC

vuCvuC
vuR




  . 

The local dependence at a location ),( vu  is defined as 

 1),( vuR ; positive local dependence, 

 1),(0  vuR ; negative local dependence, 

 1),( vuR ; local independence. 

 

Under the independence copula, 1),( vuR  for 10  u  and 10  v . Remarkably, the 

Clayton copula has the constant cross-ratio  1),( vuR . 

A simplified formula of the cross-ratio function is available for an Archimedean copula. 

Using basic derivative rules, it can be shown that 

}),({),( vuCrvuR   , 

where ( ) ( ) / ( )r s s s s      and 
2 2( ) ( ) /t d t dt   . Table 2.2 shows the formulas for )(r  

under selected copulas.  

The cross-ratio function has a practical interpretation as the relative risk. Consider a 

medical follow-up in which the primary endpoint is OS, denoted as Y , and the secondary 

endpoint is TTP, denoted as X . We are interested in how tumour progression influences the 

risk of death. For this purpose, we consider the conditional hazard functions: 

 

 ( | , ) Pr( | , , ) /Y y X x y Y y dy Y y X x dy       Z Z : 

- the hazard function of death given that a patient has experienced tumour progression at 

time x  

 ( | , ) Pr( | , , ) /Y y X x y Y y dy Y y X x dy       Z Z :  

- the hazard function of death given that a patient has not yet experienced tumour 

progression at time x  

 

Under a model Pr( , | ) { ( | ), ( | ) }X YX x Y y C S x S y  Z Z Z , the relative risk is  

( | , )
{ ( | ), ( | ) }

( | , )

Y
X Y

Y

y X x
R S x S y

y X x











Z
Z Z

Z
. 
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If 1R , patients who have experienced tumour progression possess higher risk of death 

compared to those who have not yet. The Clayton copula yields the constant relative risk, and 

hence, is regarded as a type of proportional hazards models. In Chapter 5, we shall explore the 

role of the cross-ratio function on prognostic analysis under the joint frailty-copula model. 

   The cross-ratio function is also interpreted through the equation 

Pr( , | )Pr( , | )
{ ( | ), ( | ) }

Pr( , | )Pr( , | )
X Y

X x Y y X x Y y
R S x S y

X x Y y X x Y y


   


   

Z Z
Z Z

Z Z
. 

This is the odds ratio in the following 2 2  table (Table 2.3): 

 

 yY   yY    

xX   A B  

X x  C D  

    

Table 2.3: A 22  table with the odds ratio AD/(BC). 

 

Clayton (1978) proposed to estimate   by counting the number of events in each cell of the 

2 2  tables, which is possible even when data are subject to right-censoring. Emura et al. 

(2010) generalized his idea to estimate   under any member of Archimedean copulas by 

utilizing the formula }),({),( vuCrvuR   . See also Wang (2003), Emura and Wang (2010), 

and Emura et al. (2011) for the 2 2  table methods under Archimedean copula models. 

We have seen that the Clayton copula has nice properties for statistical modeling: (i) a 

simple copula function, (ii) simple expression of Kendall’s tau, (iii) constant cross-ratio 

function, and (iv) interpretability of the parameter 1   as the relative risk or odds ratio. 

These properties are useful for modeling bivariate survival data and interpreting the results of 

data analysis. 

 

2.6.2 Residual dependence 

We shall introduce the concept of residual dependence between two endpoints. This type of 

dependence arises when covariates influencing two endpoints are ignored or missing.  

Suppose that the primary endpoint is OS, denoted as Y , and the secondary endpoint is 

TTP, denoted as X . We impose the conditional independence between the two endpoints  

Pr( , | ) ( | ) ( | )X YX x Y y S x S y  Z Z Z ,                                   (2.5) 
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where ( | ) Pr( | )XS x X x Z Z  and Pr( | ) ( | )YY y S y Z Z  are the marginal survival 

functions. If Equation (2.5) holds, one can perform two separate Cox regression analyses for 

two endpoints. If Equation (2.5) does not holds, the separate analyses may lose some 

information on dependence between endpoints and even produce biased results due to 

dependent censoring (Emura and Chen 2016; 2018). 

To simplify our discussions, we consider a case, where only one covariate is measured. 

In this case, the conditional independence required for separate analyses is 

1 1 1Pr( , | ) ( | ) ( | )X YX x Y y Z S x Z S y Z   , 

where 1Z  is a covariate. However, the conditional independence typically does not hold for 

only one covariate 1Z . To see this, let 1 2( , )Z ZZ  be a two-dimensional vector of 

covariates that influence the two endpoints. Suppose that 2Z  is ignored as it is difficult to 

measure or is inconsistently measured (e.g. tumour volume). Figure 2.5 explains how the 

conditional independence fails to hold by omitting 2Z . Since 2Z  relates to the two endpoints, 

the variation in 2Z  induces unobserved frailty. For instance, a high (low) value of 2Z  is 

linked to short (long) values of X  and Y . Consequently, X  and Y  exhibit positive 

association. 

 

Figure 2.5 Residual dependence between death and tumour progression. 

 

The above discussions lead to a principle that the conditional independence is less likely 

to hold if many important covariates are omitted or ignored from the model. This mechanism 

of yielding dependence is termed residual dependence. Residual dependence arises in a 

meta-analysis where important covariates are missing in some studies (Chapter 3; Emura et 

al. 2017). In this case, the copula model (2.2) can help relax the conditional independence. 

 

 

Death 

Tumour Progression 

Z1: Observed covariate 

Z2: Omitted covariate       

Dependence 
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2.6.3 Likelihood function 

We consider bivariate survival data containing N  patients. For 1, 2, ...,j N , let 

 ( , )j jX Y : a pair of event times,  

 *( , )j jC C : a pair of censoring times for ( , )j jX Y , 

Bivariate survival data consist of * *{ ( , , , , ); 1, 2, ..., }j j j j jT T j N  Z , where 

min( , )j j jT X C , * *min( , )j j jT Y C , ( )j j jT X  I , * *( )j j jT Y  I , and 

1 2( , )j j jZ Z Z  is a vector of covariates. 

 

Proposition 2: Under the copula model 1 2Pr( , | ) { ( | ), ( | ) }X YX x Y y C S x S y  Z Z Z , 

the log-likelihood is 

* *

1 2

1

* *

1 2

*

1, 1 2

*

2,

log log ( | )+ log ( | )

                        log { ( | ), ( | ) }

                        log { ( | ), ( | ) }

                        log {

n

j X j j j Y j j

j

j j X j j Y j j

j X j j Y j j

j

L T T

R S T S T

S T S T







   

 

 

 



  







 Z Z

Z Z

Z Z

*

1 2

*

1 2

( | ), ( | ) }

                        log { ( | ), ( | ) } .

X j j Y j j

X j j Y j j

S T S T

C S T S T
 

Z Z

Z Z

 

where 1 1( | ) log ( | ) /X j X jt S t t   Z Z , 2 2( | ) log ( | ) /Y j Y jt S t t   Z Z , 

[1,0]

,1

( , )
( , )

( , )

C u v
u v u

C u v






   and 
[0,1]

2,

( , )
( , )

( , )

C u v
u v v

C u v






  .  

 

Proof of Proposition 2: Each patient experiences one of the four cases: (i) * 1j j   , (ii) 

1j   and 
* 0j  , (iii) 0j   and 

* 1j  , and (iv) 
* 0j j   . Each case has its own 

likelihood. Combining the four cases, the likelihood for the j-th patient is 

* *

* *

(1 )* *

(1 ) (1 )(1 )* *

* *

*

Pr( , | ) Pr( , | )

        Pr( , | ) Pr( , | )

Pr( , | ) Pr( , | )
    

Pr( , | ) Pr( ,

j j j j

j j j j

j j j j j j j j j j j

j j j j j j j j j j

j j j j j j j j j j

j j j j j j j j j

L X T Y T X T Y T

X T Y T X T Y T

X T Y T X T Y T

X T Y T X T Y T

   

   



  

    

    

   


   

Z Z

Z Z

Z Z

Z

*

*

*

* *

* *

*

| )

Pr( , | ) Pr( , | )
        

Pr( , | ) Pr( , | )

        Pr( , | ).

j j

j j

j

j j j j j j j j j j

j j j j j j j j j j

j j j j j

X T Y T X T Y T

X T Y T X T Y T

X T Y T

 

 

  
 
  

         
   

         

  

Z

Z Z

Z Z

Z
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Under the copula model,  

*
[1,0] *

1 2*

1 2 1 *

1 2

[0,1] *

1 2*

2* *

1 2

{ ( | ), ( | ) }
{ ( | ), ( | ) } ( | )

{ ( | ), ( | ) }

{ ( | ), ( | ) }
    ( | )

{ ( | ), ( | ) }

j

j j X j j Y j j

j X j j Y j j X j j

j X j j Y j j

X j j Y j j

Y j j

j X j j Y j j

C S T S T
L R S T S T S T

T C S T S T

C S T S T
S T

T C S T S T



  









 
  

  

 
 



Z Z
Z Z Z

Z Z

Z Z
Z

Z Z

*

* *

*

*

1 2

* *

1 2 1 2

* *

,1 1 2 ,2 1 2

*

1 2

{ ( | ), ( | ) }

( | ) ( | ) { ( | ), ( | ) }

    { ( | ), ( | ) } { ( | ), ( | ) }

     { ( | ), ( | ) }.

j

j j j j

j j

X j j Y j j

X j j Y j j X j j Y j j

X j j Y j j X j j Y j j

X j j Y j j

C S T S T

T T R S T S T

S T S T S T S T

C S T S T





   



 

 



 

 




 

       



Z Z

Z Z Z Z

Z Z Z Z

Z Z

 

The log-likelihood is obtained by taking the logarithm of the above expression. ■ 

 

The likelihood-based procedures developed in Section 2.4 are applicable to the likelihood 

function in Proposition 2. The following proposition follows since 

,1 ,1( , ) ( , ) ( , ) 1R u v u v u v       under ( , )C u v uv  . 

 

Proposition 3: Under the independence model 1 2Pr( , | ) ( | ) ( | )X YX x Y y S x S y   Z Z Z , 

the log-likelihood is X Y  , where 

1 1

1

[ log ( | ) ( | )]
n

X j X j j X j j

j

T T 


  Z Z , 

* * *

2 2

1

[ log ( | ) ( | )]
n

Y j Y j j Y j j

j

T T 


  Z Z , 

where 1 1( | ) log ( | )X j X jt S t  Z Z  and 2 2( | ) log ( | )Y j Y jt S t  Z Z . 

 

Proposition 3 implies that, under the independence model, one can obtains the MLE by 

maximizing X  based on data 1{ ( , , ); 1, 2, ..., }j j jT j N Z  and maximizing Y  based on 

data 
* *

2{ ( , , ); 1, 2, ..., }j j jT j N Z  as discussed in Section 2.4. However, the two separate 

analyses yield inefficient estimators due to the loss caused by ignoring dependence between 

two event times. 
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2.7 Exercises  

 

1. Is TTP an adequate endpoint in advanced colorectal cancer? After reading Chapter 2 and 

Piedbois and Croswell (2008), please write a one-page report to summarize your answers. 

 

2. Are the following statements correct? Please verify your answers. 

(1) PFSOS holds for all patients in a clinical trial. 

(2) TTPOS holds for all patients in a clinical trial. 

(3) PFSTTP holds for all patients in a clinical trial. 

(4) PFSOS holds for all patients in a clinical trial. 

 

3. Answer the following questions by performing Cox regression on the 63 training samples 

from the lung cancer data available in the compound.Cox R package (Emura et al. 2019). 

(1) Is ZNF264 univariately associated with survival (P-value<0.05)? 

(2) Is NF1 univariately associated with survival (P-value<0.05)? 

(3) Are ZNF264 and NF1 associated with survival (P-value<0.05)? 

(4) Discuss about the multicollinearity between ZNF264 and NF1. 

(5) How many genes are univariately associated with survival (P-value<0.05)? 

 

4. We analyze the data ( , , )i i iT Z , ni ...,,1 , under the model 

( | ) exp{ exp( ) }i iS t Z t Z   , where 0 ,   , and 0iZ   or 1. Let  


n

i im
1
 , 

1 1

n

ii
n Z


 , and 0 1n n n  . 

(1) Write down the log-likelihood function ( )φ , where ( , ) φ . 

(2) Obtain the MLE by solving the score equation ( ) S φ 0 . 

(3) Derive the Hessian matrix of φφφφ  /)()( 2H . 

(4) Derive the Newton-Raphson algorithm and apply it to the data of Section 2.3.1. 

(5) Compare the estimate ˆexp( )  with the one obtained from the partial likelihood. 

 

5. Derive the mean [ | ] E X Z  and variance ( | ) Var X Z  for the Weibull-gamma distribution 

1/Pr( | ) = [1 exp( )]X x x   Z β Z . 
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6.  Consider a Gamma( , )   distribution with the density 

1

,

1
( ) exp

( )

u
f u u

    

  
  
  

,      0  ,    0  ,    0u  . 

(1) Show ( log ) ( ) logE u     , where ( ) { log ( )}/d d      is the digamma function. 

(2) Under Gamma( 1/ , )     , derive the conditional distribution  

1

1

1 1
( | , ) ~ Gamma , ( )

iN

i i i i ij ij

j

u m T 
 





  
      
   

T δ . 

Hint: ( | , ) ( , | ) ( )i i i i i i i if u L u f uT δ T δ , where ( , | )i i i iL uT δ  is in the proof of Proposition 1. 

(3) Show  

1

1/
( | , )

1/ ( )
i

i
i i i N

ij ijj

m
E u

T









 
T δ ,     

1

1 1
(log | , ) log ( )

iN

i i i i ij ij

j

E u m T
  

  
      

   
T δ . 

 

7. Under the FGM copula, derive the expression of Kendall’s tau 9/2   for 11   . 

 

8. Under the Clayton copula and Gumbel copula, derive the expressions of Kendall’s tau 

/ ( 2)     and / ( 1)    , respectively. 

 

9. We consider the log-likelihood of Proposition 2 under the Clayton copula. 

(1) Derive the forms of ,1( , )u v , 2, ( , )u v , and ( , )R u v . 

(2) Write down the log-likelihood. 
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Chapter 3: The joint frailty-copula model for correlated endpoints 

 

Abstract: This chapter describes a meta-analysis (or multicenter analysis) of individual 

patient data with two correlated survival endpoints. The endpoints of interest are time-to-

tumour progression (TTP) and overall survival (OS). We first define a semi-competing risks 

setting for TTP and OS. We then introduce the joint frailty-copula model that formulates the 

shared frailty model for heterogeneity in a meta-analysis, and utilizes a copula for dependence 

between TTP and OS. To account for the effect that TTP is dependently censored by death, a 

likelihood function is derived under the semi-competing risks setting. We adopt spline-based 

models for baseline hazard functions with the aid of a penalized likelihood procedure. We 

analyze the data on ovarian cancer patients to illustrate statistical analyses using the joint.Cox 

R package. 

 

Keywords: Clayton’s copula, Cox regression, individual-level dependence, penalized 

likelihood, residual dependence, semi-competing risk, spline, surrogate endpoint 

 

3.1 Introduction 

We consider a meta-analysis to perform Cox regression for both time-to-tumour progression 

(TTP) and overall survival (OS). In this respect, Burzykowski et al. (2001) developed a 

bivariate Weibull model for jointly performing Cox regression for two endpoints with meta-

analytic data. See also Chapter 11 of Burzykowski et al. (2005). They proposed a two-step 

method; the first step applies a copula to account for the individual-level dependence between 

two endpoints, and the second stage applies random-effects to account for heterogeneity in a 

meta-analysis. The two-step method of Burzykowski et al. (2001; 2005) has been applied to a 

number of cancer studies for evaluating the correlations of two endpoints and is recently 

implemented in an R package (Rotolo et al. 2018). 

While the two-step method can account for dependence between two endpoints through a 

copula, the estimation method cannot account for the effect of dependent censoring. In other 

words, the two-step method is valid only when two endpoints are subject to independent 

censoring. There would be a concern for bias when we assess TTP through the two-step 

method since TTP is dependently censored by death. Since death may be highly associated 

with tumour progression, censoring due to death is less likely to be independent.  
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Statistical methods for semi-competing risks data properly deals with the case where death 

can dependently censor TTP (Fine et al. 2001). This setting regards death as a competing risk 

for TTP rather than treating death as an independent censoring for TTP (Haneuse and Lee 

2016). Under the semi-competing risks setup, Rondeau et al. (2015) developed a one-step 

estimation method based on a joint frailty model, where a frailty term account for 

heterogeneity in a meta-analysis. The joint frailty model can induce the intra-study 

dependence between TTP and OS through unobserved frailties. However, there exists some 

residual dependence (individual-level dependence) in meta-analyses (Burzykowski et al. 2001; 

2005). Emura et al. (2017) extended the joint frailty model of Rondeau et al. (2015) to 

account for the residual dependence via copulas, after having accounted for the intra-study 

dependency with frailties. While their copula model is similar to that of Burzykowski et al. 

(2001), the estimation procedure of Emura et al. (2017) incorporates the effect of dependent 

censoring (semi-competing risk) into the likelihood. In addition, their approach adopts cubic 

splines for the baseline hazard functions, providing more flexible models over the Weibull 

model of Burzykowski et al. (2001) and Rotolo et al. (2018). Under the copula models, Peng 

et al. (2018) developed an even more flexible model, where the forms of the baseline hazard 

functions are completely unspecified.  

In the sequel, we introduce the estimation procedure of Emura et al. (2017) and its 

implementation via the joint.Cox R package (Emura 2019).  

 

3.2 Semi-competing risks data 

Meta-analysis using patient-level information is called individual patient data (IPD) meta-

analysis. IPD meta-analysis is essentially different from meta-analysis on summary data or 

published data where patient-level information is lost. We only consider IPD meta-analyses 

since patient-level information is required to assess dependence between endpoints. 

We consider an IPD meta-analysis on data consisting of G  independent studies with the 

i -th study containing iN  patients. For Gi ...,,2,1  and iNj ...,,2,1 , let 

 ijX : time-to-tumour progression (TTP),  

 ijD : overall survival (OS), or equivalently time-to-death, 

 ijC : independent and non-informative censoring time. 

 

Figure 3.1 provides observation patterns of data where each patient exhibits one of the 

four mutually exclusive cases (Cases A-D). First, if a patient experiences tumour progression 
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and then dies before independent censoring time, both TTP and OS are available (Case A). 

Second, if a patient experiences tumour progression but does not die before independent 

censoring time, then TTP is available but OS is censored (Case B). Third, if a patient dies 

without tumour progression, then OS is available, but TTP is dependently censored by death 

(Case C). Fourth, if a patient experiences neither tumour progression nor death before 

independent censoring time, both TTP and OS are censored (Case D).  

 

Case (A): Both TTP and OS are available 

--------------------------------------------------------------------------------------------------------------- 

 

Case (B): TTP is available, but OS is censored 

--------------------------------------------------------------------------------------------------------------- 

 

Case (C): OS is available, but TTP is dependently censored by death 

--------------------------------------------------------------------------------------------------------------- 

 

Case (D): Both TTP and OS are censored 

--------------------------------------------------------------------------------------------------------------- 

Figure 3.1 Observation patters of semi-competing risks data. Observed event times are 

denoted by solid lines and unobserved event times are denoted by dotted lines. 
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Consequently, what we can actually observe can be written as ),,,,,( ,2,1

**

ijijijijijij TT ZZ  

for Gi ...,,2,1  and iNj ...,,2,1 , where 

 ),,min( ijijijij CDXT  : first-occurring event time, 

 )( ijijij XT  I : status of tumour progression (no progression=0; progression=1),  

where )( I  is the indicator function, 

 ),min(*

ijijij CDT  : censored terminal event time, 

 )( **

ijijij DT  I : vital status (alive=0; dead=1), 

 ij,1Z : 1p -dimensional covariates associated with TTP,  

 ij,2Z : 2p -dimensional covariates associated with OS. 

 

The four cases (Cases A-D in Figure 3.1) can be identified by a pair *( , )ij ij  . For instance, 

Case A corresponds to the pair *( , ) (1,1)ij ij    whereby ij ijT X  and *

ij ijT D . Table 3.1 

summarized the four possible pairs, *( , ) (1,1)ij ij   , (1, 0) , (0,1) , and (0, 0) . 

 

Table 3.1 Observation patterns of semi-competing risks data. 

 First event Last event ijT  *

ijT  ij  *

ij  

Case (A) Tumour progression Death ijX  ijD  1 1 

Case (B) Tumour  progression Independent censoring ijX  ijC  1 0 

Case (C) Death Death ijD  ijD  0 1 

Case (D) Independent censoring Independent censoring ijC  ijC  0 0 

 

The aforementioned observation patterns follow the semi-competing risks setting (Fine et 

al. 2001) in which terminal event is a competing risk for non-terminal event. In our setting, 

death (terminal event) can dependently censor TTP (non-terminal event); see Case C in Figure 

3.1. On the other hand, tumour progression cannot censor OS; see Case A in Figure 3.1. 

Hence, death is a competing risk for tumour progression, but tumour progression is not a 

competing risk for death, suggesting the term “semi-competing risks”. The censoring of TTP 

by death is termed dependent censoring that is distinguished from the usual independent 

censoring. What we defined as TTP can actually be any non-terminal event such as “time-to-

recurrence”. 
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3.3 Joint frailty-copula model 

It is generally understood that meta-analyses should assess heterogeneity between studies. 

Hence, an appropriate model for meta-analysis may include a study specific (random) effect 

to account for heterogeneity. To capture the heterogeneity of baseline risks, Rondeau et al. 

(2015) considered unobserved frailty terms )...,,2,1( Giui  , which act on the hazard 

functions for TTP and OS. The frailty terms are assumed to follow a gamma distribution with 

a density  

0,0         ,exp
)/1(

1
)(

1
1

/1





















 u
u

uuf . 

The distribution has mean 1 and variance   that represents the degree of the between-study 

heterogeneity. Conditional on iu , ij,1Z  and ij,2Z , we define the hazard functions 

1,

2,

( | ) Pr( | , , ) / ,

( | ) Pr( | , , ) / ,

ij i ij ij i ij

ij i ij ij i ij

r t u t X t dt X t u dt

t u t D t dt D t u dt

    


    

Z

Z
 

where ij,1Z  and ij,2Z  are suppressed on the left-hand sides. Rondeau et al. (2015) proposed a 

joint frailty model for meta-analysis: 

 

Definition 1: The joint frailty model is defined as 

0 1 1,

0 2 2,

( | ) ( )exp( ),

( | ) ( )exp( ).

ij i i ij

ij i i ij

r t u u r t

t u u t 






β Z

β Z
                                         (3.1) 

In this model, ijX  and ijD  are assumed to be conditionally independent given iu , ij,1Z , and 

ij,2Z . 

 

The parameters 1β  (or 2β ) are the effects of ij,1Z (or ij,2Z ), which are the target population 

parameters. The forms of the baseline hazard functions )(0 r  and )(0   are flexibly modeled. 

Since the frailty term iu  is shared by the two hazard functions, it induces the intra-study 

dependence between ijX  and ijD . The parameter   can differentiate the effect of 

heterogeneity between the two endpoints.  

Residual dependence arises if a patient-level characteristics affecting both ijX  and ijD  is 

ignored in the model (Section 2.6.2). In meta-analysis, residual dependence is a legitimate 

concern since researchers often have a limited access to covariates. Emura et al. (2017) 
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proposed a joint frailty-copula model that extends the joint frailty model by introducing the 

intra-subject dependence using a copula (Nelsen 2006): 

 

Definition 2: The joint frailty-copula model is defined as 

0 1 1,

0 2 2,

( | ) ( )exp( )

( | ) ( )exp( )

Pr( , | ) [ ( | ), ( | ) ]

ij i i ij

ij i i ij

ij ij i Xij i Dij i

r t u u r t

t u u t

X x D y u C S x u S y u





 

 



   

β Z

β Z                       (3.2) 

where C  is a copula with an unknown parameter  . 

 

In Definition 2, the survival functions and hazard functions are related through 

0 1 1, 0 0
0

0 2 2, 0 0
0

( | ) exp{ ( )exp( ) },          ( ) ( ) ,

( | ) exp{ ( )exp( ) },          ( ) ( ) .

x

Xij i i ij

y

Dij i i ij

S x u u R x R x r t dt

S y u u y y t dt 

   


     






β Z

β Z

 

The copula describes the intra-subject (individual-level) dependence between ijX  and 

ijD . We mainly focus on modeling positive dependence between ijX  and ijD  using the 

Clayton or Gumbel copula
5
: 

The Clayton copula: 

1/( , ) ( 1) , 0C v w v w  

       ,  

The Gumbel copula: 

1

1 1 1( , ) exp { ( log ) ( log ) } , 0C v w v w  
   

 
      

 
. 

 

   Copulas provide a simple way to compute measures of correlation between ijX  and ijD . 

The most popular measure is Kendall’s tau, though copulas can also provide other measures 

such as Spearman’s rho. 

Under the Clayton copula, Kendall’s tau is )2/(   .  

Under the Gumbel copula, Kendall’s tau is / ( 1)    .  

More details about copulas and Kendall’s tau are referred to Section 2.6. 

                                                 
5
 The Clayton copula can be extended to allow for negative dependence by setting 0  . However, we do 

not consider such an extension since it produces a singular distribution (Nelsen 2006). The Gumbel copula 

cannot be defined for 0  .  
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As in Burzykowski et al. (2001), one can use Kendall’s tau as a measure of the 

individual-level dependence between two endpoints in meta-analysis. 

Under the independence copula vwwvC ),( , Definition 2 reduces to the joint frailty 

model (Definition 1). Note that the Clayton and Gumbel copulas reduce to the independence 

copula by setting 0  .  

   One might also consider some copulas that allow negative dependence, such as the FGM 

copula:  

The Farlie-Gumbel-Morgenstern (FGM) copula: 

( , ) {1 (1 )(1 ) },       1 1C v w vw v w         .       

 

Under the FGM copula, Kendall’s tau is 9/2  . However, the range of Kendall’s tau 

is restricted from 1 2 / 9    to 1 2 / 9  . 

 

3.4 Penalized likelihood with splines 

A likelihood function can be constructed given observed data ),,,,,( ,2,1

**

ijijijijijij TT ZZ  for 

Gi ...,,2,1  and iNj ...,,2,1 . Define notations 

)exp()()( ,110 ijij tRtR Zβ ,      )exp()(/)()( ,110 ijijij trdttdRtr Zβ , 

)exp()()( ,220 ijij tt Zβ ,      )exp()(/)()( ,220 ijijij tdttdt Zβ  . 

 

Proposition 1: Under the joint frailty-copula model, the log-likelihood is 
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stsDtsD  /],[],[]0,1[

 , ttsDtsD  /],[],[]1,0[

 , and tstsDD  /],[2]1,1[

 . 
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Integrating out the unobserved frailty, the likelihood for the i -th study is 
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Equation (3.3) follows by taking logarithm and summing up for Gi ...,,2,1 . ■ 

 

The log-likelihood function in Equation (3.3) has a simple form under the Clayton copula, 

one can easily obtain 


/1),(],[  tsAtsD , ),(/)exp(],[ tsAsts    , 

),(/)exp(],[* tsAtts    , and   1],[ ts , where 1)exp()exp(),(  tstsA  . 

By substituting these forms into Equation (3.3), the log-likelihood is readily computable.  

Following Rondeau et al. (2015), the forms of )(0 r  and )(0   are modeled via the cubic 

M-spline (Ramsay 1988). The spline method aims to obtain smooth estimate for )(0 r  or )(0   

as a weighted sum of cubic polynomial functions, called basis functions. To define basis 
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functions, one needs to determine knots that divide the range of observed event times (see 

Figure 3.2 for example). 

 

Figure 3.2 A baseline hazard function expressed by the cubic M-spline. The knots are set by 

the smallest event time )(min1 ijij T , the largest follow-up time )(min *

3 ijij T , and their 

intermediate value 2/)( 312   . 

 

 For instance, we define 0 ( )r t  and 0 ( )t  on ],[ 31 t , where 321    are the knots. 

One may set the smallest event time )(min1 ijij T , the largest follow-up time )(min *

3 ijij T , 

and 2/)( 312   . We then obtain the five basis functions such that  

)()()(
5

10 ttMgtr Mg   ,     )()()(
5

10 ttMht Mh   ,  

where ))(,),(()( 51
 tMtMt M  are the M-spline basis functions and are cubic polynomial 

functions of t. The concrete formulas of the basis functions are given in Appendix A. Here, 

),,( 51 gg g  and ),,( 51 hh h  are unknown positive parameters. The five-parameter 

model gives a good flexibility for real applications (Ramsay 1988) and is one of reasonable 

choices (Commenges and Jacqmin-Gadda 2015). Since the spline bases are easy to integrate, 

the baseline cumulative hazard functions are computed as  

 


5

10 )()(
  tIgtR ,        


5

10 )()(
  tIht , 

where )(tI  is the integration of )(tM  , called the I-spline basis (Ramsay 1988).  

The M-spline and I-spline bases are displayed in Figure 2.1 of Chapter 2, and their 

expressions are given in Appendix A. The joint.Cox package offers functions M.spline( ) for 

computing )(tM   and I.spline( ) for )(tI . 

With the spline-based model, we consider a penalized log-likelihood  
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  dttdttr 2

02

2

0121 )()(),,,,,,(   hgββ ,                           (3.4) 

where 22 /)()( dttfdtf  , and ),( 21   are given nonnegative values. The parameters 

),( 21   are called smoothing parameters, which control the degrees of penalties on the 

roughness of the two baseline hazard functions. Under the five-parameter splines, it can be 

shown (Appendix A) that  

gg  dttr 2

0 )( ,          2

0 ( )t dt   h h ,         

192   -132     24       12      0

-132    96    -24      -12     12

  24    -24      24     -24     24

   12    -12     -24     96    -132

     0      12      24    -132    192

 
 
 
  
 
 
  

. 

Hence, the penalized log-likelihood is written as 

hhgghgββhgββ  212121 ),,,,,,(),,,,,,(  PL           (3.5) 

for a given pair of ),( 21  . We suggest choosing 1  and 2  by maximizing )( 11 LCV  and 

)( 22 LCV  that shall be defined in Section 3.7. 

   If ( , )C v w vw   is fitted (or if 0   is assumed in the Clayton copula), then the penalized 

log-likelihood in Equation (3.5) is equivalent to that for the joint frailty model of Rondeau et 

al. (2015). See Exercise 6 for more details. 

The standard error (SE) and confidence interval (CI) are calculated from the converged 

Hessian matrix defined as )ˆ(ˆ φPLPL HH  , where 22 /)()( φφφ  PLPLH  and 

)(maxarg)ˆ,ˆ,ˆ,ˆ,ˆ,ˆ(ˆ
21 φhgββφ φ PL  . For instance, the 95% CI for 1  is 

1
)ˆ(96.1ˆ)ˆ(SE96.1ˆ 1

111   PLH . 

Similarly, the 95% CI for the baseline hazard function )(0 xr  is  

1

0 0
ˆˆˆ ˆ( ) 1.96 SE{ ( ) } ( ) 1.96 ( )( ) ( )PLr t r t t t H t       gM g M M . 

One can use the joint.Cox R package (Emura 2019) for computing 1 , 2 , φ̂ , the SEs and 

95%CIs. 

 

3.5 Case study: ovarian cancer data 

To demonstrate statistical methods introduced in this chapter, we analyze the subset of the 

ovarian cancer data of Ganzfried et al. (2013). Ganzfried et al. (2013) performed the IPD 

meta-analysis on their data to conclude that the gene expression of CXCL12 is significantly 
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associated with OS. In our analysis, we examine the effect of the CXCL12 gene expression on 

time-to-relapse and OS using the joint frailty-copula model.  

To this end, we chose the subset consisting of four studies that recorded the two endpoints 

as previously considered by Emura et al. (2017). Table 3.2 shows the subset containing 1,003 

ovarian cancer patients from the four studies ( 1101 N , 582 N , 2783 N , and 5574 N ), 

which is available in the joint.Cox package. All patients are surgically treated and then 

followed up for cancer relapse until death or censoring. We regard TTP as time-to-relapse that 

is measured from the time of surgery. We consider the CXCL12 gene expression as a 

covariate for TTP and OS. 

 

Table 3.2 Data on ovarian cancer patients (Ganzfried et al. 2013; Emura et al. 2017). 

Dataset
a
  Sample size 

The number of observed events (event rates %) 

Relapse 

 ( 1ij ) 

Death  

( 1* ij ) 

Censoring 

 ( 0* ij ) 

GSE17260 1N 110 76 (69%) 46 (42%) 64 (58%) 

GSE30161 2N 58 48 (83%) 36 (62%) 22 (38%) 

GSE9891 3N 278 185 (67%) 113 (41%) 165 (59%) 

TCGA 4N 557 266 (48%) 290 (52%) 267 (48%) 

Total  

4

1i iN 1003 575 (57%) 485 (48%)  518 (52%) 

Notes: 
a
Dataset is signified as GEO (Gene Expression Omnibus) accession number. Event rates (%) are the 

percentage of experiencing a particular event (Relapse, Death or Censoring) within a study. 

 

 

   We fitted the joint frailty-copula model to the data by using R codes given in B1 of 

Appendix B. After running the codes, we obtained the plots for searching the optimal values 

of the smoothing parameters 1  and 2  (Figure 3.3). One can see that 16

1 1076.2   and 

16

2 1045.3   are chosen as the maximizers for )( 11 LCV  and )( 22 LCV , respectively. 
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(1) The optimal value 16

1 1076.2   is shown in the rightmost panel. 

 

(2) The optimal value 16

2 1045.3   is shown in the rightmost panel. 

Figure 3.3: Plots for choosing the optimal values for 1  and 2 . They are chosen by 

maximizing LCV=logL-DF, where logL is the log-likelihood and DF is the degrees of 

freedom. 
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The outputs for the R codes are shown below: 

> res 
$count 
No.of samples   No.of events   No.of deaths   No.of censors 
4                 110                     76                      46                       64 
8                   58                     48                       36                       22 
11               278                   185                    113                     165 
14               557                   266                    290                     267 
 
$beta1 

   estimate                     SE            Lower             Upper  
0.19946579   0.03819308   0.12460735   0.27432422  
 
$beta2 
     estimate                     SE             Lower            Upper  
0.16550013   0.04371864   0.07981159   0.25118867  
 
$eta 
       estimate                       SE               Lower               Upper  
0.033423894   0.029324063   0.005987583   0.186578891  
 
$theta 

 estimate                  SE          Lower           Upper  
2.3468206   0.2500292   1.9045466   2.8917996  
 
$tau 

   estimate            tau_se              Lower            Upper  
0.53989360   0.02646533   0.48777664   0.59115251  
 
$LCV1 
                      K1                    LCV1  
 2.758621e+16   -4.591564e+03  
 
$LCV2 
                      K2                    LCV2  
 3.448276e+16   -4.159635e+03  
 
$g 
[1] 9.065934e-01   1.711413e+00   6.733528e-06   3.947032e-02   2.790394e-07 
 
$h 
[1] 2.108053e-01   1.083808e+00   1.001098e+00   1.796956e-01   6.951190e-07 
 
$g_var 
                           [,1]                       [,2]                       [,3]                       [,4]                       [,5] 
[1,]  4.576008e-03   -3.369090e-03    1.552692e-07   -3.758267e-04    7.350478e-06 
[2,] -3.369090e-03    2.656668e-02    2.655560e-08    6.202427e-04    1.600087e-05 
[3,]  1.552692e-07    2.655560e-08   -2.475294e-07   -9.974754e-06   -1.157045e-08 
[4,] -3.758267e-04    6.202427e-04   -9.974754e-06    5.863771e-02    8.841581e-06 
[5,]  7.350478e-06    1.600087e-05   -1.157045e-08    8.841581e-06   -1.720272e-06 
 
$h_var 
                           [,1]                      [,2]                       [,3]                       [,4]                       [,5] 
[1,]  9.424816e-04   -1.368119e-03   -1.412362e-05   -7.147868e-04    4.058112e-10 
[2,] -1.368119e-03    9.976173e-03   -1.180192e-02   -6.841087e-04   -4.529052e-10 
[3,] -1.412362e-05   -1.180192e-02    5.718015e-02    2.243583e-03   -4.938438e-09 
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[4,] -7.147868e-04   -6.841087e-04    2.243583e-03    1.078262e-03   -2.439095e-10 
[5,]  4.058112e-10   -4.529052e-10   -4.938438e-09   -2.439095e-10    7.476648e-15 
 
$convergence 
              MPL               DF                   LCV          code    No.of.iterations    No.of.randomizations  
-8604.09320   11.69913   -8610.04633    1.00000                98.00000                          10.00000 
 
$convergence.parameters 
NULL 

 

Now we interpret the above outputs. 

In “$count” we see the sample size (“No. of samples”= iN ) and the number of events 

(“No. of events”= im , “No. of deaths”= *

im , “No. of censors”= *

i iN m ) in each study. The 

numbers in “$count” are the same as those available in Table 3.2. The numbers “4, 8, 11, 14” 

in the first column represent the study IDs, which do not have particular meaning
6
. 

From “$beta1” to “$tau”, we see the estimate, the SE, and the 95%CI (lower and upper 

limits). The correspondences are “$beta1” 1β̂ , “$beta2” 2β̂ , “$eta” ̂ , “$theta” ̂ , and 

“$tau” )2ˆ/(ˆˆ   . For instance, we had 1β̂ 0.199 (95%CI: 0.125-0.274). These values 

are converted to RR= )ˆexp( 1β 1.22 (95%CI: 1.13-1.32). We set 0   in this analysis. 

 “$LCV1” and “$LCV2” show the results for the grid searches for maximizing )( 11 LCV  

and )( 22 LCV , respectively. We see the maximizers 16

1 1076.2   and 16

2 1045.3   

along with their maximized LCV values (see also Figure 3.3). 

“$g” and “$h” show the coefficients used in the splines, ĝ  and ĥ , respectively. The 

resultant baseline hazard functions are,  

0 1 2 3 4 5
ˆ ( ) 0.907 ( ) 1.711 ( ) 0.000 ( ) 0.040 ( ) 0.000 ( )r t M t M t M t M t M t          , 

0 1 2 3 4 5
ˆ ( ) 0.211 ( ) 1.084 ( ) 1.001 ( ) 0.180 ( ) 0.000 ( )t M t M t M t M t M t           . 

“$g_var” and “$h_var” are the covariance matrices of ĝ  and ĥ , which are equivalent to 

g)ˆ( 1 PLH  and  h)ˆ( 1 PLH . They are used to compute the SEs and CIs of 0̂ ( )r t  and 0
ˆ ( )t . 

 “$convergence” shows several different aspects on likelihood maximization. “MPL” 

gives the maximized penalized log-likelihood in Equation (3.5). “DF” gives the degrees of 

freedom that shall be defined in Section 3.7. The result “DF=11.69913” implies that there are 

about 12 free parameters in the model. This number is smaller than the total number of 

                                                 
6
 These IDs are remnants of the study IDs previously used in an old version of the curatedOvarianData 

package. Since the IDs may be changed in the new versions, the ID numbers lost the meaning. 
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parameters, 14=1+1+1+1+5+5 (for $beta1, $beta2, $eta, $theta, $g and $h), owing to 

constrained (penalized) likelihood optimization. The value of “$LCV” represents the likelihood 

cross-validation (LCV) criterion, which is interpreted as the negative of AIC. A larger LCV 

value corresponds to a better model. Since the LCV value accounts for the number of 

parameters in the model, it can be used for variable selection. “Randomize_num=10” implies 

that the default initial value did not converge, and so the package tried 10 different initial 

values by adding random noises to the default initial values. The algorithm converged to the 

proper solution as indicated by “code=1”. This implies that the gradients of Equation (3.5) are 

zero at the solution (See the help of the nlm( ) function in R). 

Table 3.3 summarizes the outputs. The relative risk (RR) of CXCL12 on OS is 

significantly greater than the null value (RR=1.18, 95%CI: 1.08-1.29). The RR of CXCL12 on 

time-to-relapse is even higher (RR=1.22, 95%CI: 1.13-1.32) than that on OS. These RRs are 

relative to one standard deviation increase in the expression of CXCL12. Our result suggests 

that the expression of CXCL12 is a potential biomarker predictive of cancer relapse in 

surgically treated ovarian cancer patients. The estimate of the copula parameter ( 35.2ˆ  , 

95%CI: 1.90-2.90) shows moderate amount of dependence between relapse and death 

( 54.0ˆ  , 95%CI: 0.38-0.70). This suggests that the cancer relapse may predict death in 

ovarian cancer patients. 

 

Table 3.3 The joint analysis of time-to-relapse and OS using the meta-analytic data (four 

studies, 1003 patients) for ovarian cancer patients. 

 The Clayton copula The independence copula 

 Estimate (95% CI) Estimate (95% CI) 

RR
a
 for time-to-relapse : )exp( 1  1.22 (1.13-1.32) 1.24 (1.14-1.35) 

RR
a
 for OS : )exp( 2  1.18 (1.08-1.29) 1.17 (1.07-1.29) 

Heterogeneity:   0.033 (0.006-0.187) 0.028 (0.004-0.180) 

Copula parameter:    2.35 (1.90-2.90) 0.00 (fixed) 

RR for death after relapse: 1  3.35 (2.90-3.90) 1.00 (fixed) 

Kendall’s tau: )2/(    0.54 (0.49-0.59) - 

Maximum penalized log-likelihood -8604.09 -8744.02 

Degrees of freedom 11.70 9.23 

LCV
b
 -8610.05 -8745.93 
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Notes: 
a
The RR (Relative Risk) of the CXCL12 expression is examined (RR>1 indicates that 

patients with high CXCL12 expression have poor survival outcomes). 
b
The LCV (likelihood 

cross-validation) assesses model adequacy (larger LCV corresponds to better model) 

 

Table 3.3 also includes the results under the independence copula (i.e. with a fixed copula 

parameter, 0  ). Due to the failure to account for residual dependence between time-to-

relapse and OS, the LCV value under the independence model is smaller than that under the 

Clayton copula. Nevertheless, the estimates of RR are fairly comparable to those under the 

Clayton copula. This implies the robustness for marginal inference under copula 

misspecification. The simulation studies of Emura et al. (2017) also demonstrated some 

robustness for marginal inference against copula misspecification. 

Once the fitted parameter values are obtained, one can display the estimated baseline 

hazard functions using the R codes given in B1 of Appendix B. Figure 3.4 plots the estimated 

baseline hazard functions )(0̂ tr  and )(ˆ
0 t  and their 95% CIs. The baseline hazard rate for 

relapse ( )(0̂ tr ) is high on early stage and gradually decreases as time passes. On the other 

hand, the hazard rate for death ( )(ˆ
0 t ) is initially low and reaches a peak at around 2000 days. 

Hereafter, the hazard rate of death is consistently higher than that of relapse. From these plots, 

one may suggest physicians monitoring patients carefully for cancer relapse before 2000 days, 

and after 2000 days, shifting more attention to other life-threatening symptoms. The 

possibility of the joint assessments of the two hazard functions is one of the crucial 

advantages of adopting splines for estimating baseline hazard functions. 
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Figure 3.4 Estimated baseline hazard functions for time-to-relapse (TTP) and overall survival 

(OS) in ovarian cancer patients. 

 

3.6 Technical note 1: Numerical maximization 

This section explains how the penalized log-likelihood in Equation (3.5) is maximized in the 

joint.Cox R package. 

To avoid constraints on parameters (e.g., 0 ), we consider log-transformed parameters 

)log(~   , )log(
~

  , )log(~ gg   and )log(
~

hh  . Given a value of  , one can write 

)
~

,~,,,
~

,~(
~

 ))
~

exp(),~exp(,,),
~

exp(),~exp((),,,,,( 212121 hgββhgββhgββ  PLPLPL   . 

A minimization function nlm( ) is applied to PL
~

  with the initial values 

0hgββ )
~

,~,,,
~

,~( 21 . The initial values are equivalent to 1 , 0ββ  21 , and 

)1,1,1,1,1(  hg . The converged Hessian matrix is defined as )ˆ(ˆ φPLPL HH  , where 

22 /)()( φφφ  PLPLH  and )(maxarg)ˆ,ˆ,ˆ,ˆ,ˆ,ˆ(ˆ
21 φhgββφ φ PL  . We obtain PLĤ  by 

multiplying an appropriate transformation factor to the output of nlm( ,hessian=TRUE). Note 

that PLĤ  is useful for calculating the SEs and LCV. If either nlm( ) does not converge or PLĤ  

is not negative definite, the package tries different initial values by adding uniform random 

noises between -1 and 1 to 0hgββ )
~

,~,,,
~

,~( 21 , and then re-apply nlm( ). This idea of 
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random initial values has been adopted in many different contexts (e.g., Hu and Emura 2015; 

Emura and Pan 2017). To calculate the integrals in Equation (3.3), a numerical integration 

function integrate( ) is applied to the range 100  u . To determine the value of  , one may 

use a profile likelihood, or try a few plausible values of   (e.g., 0  or 1 ).  

 

3.7 Technical note 2: LCV and choice of 1  and 2  

We define a likelihood cross-validation (LCV) criterion  

}ˆˆtr{ˆ 1HHLCV PL

  , 

where ̂  is the log-likelihood value in Equation (3.3) evaluated at φ̂ , PLĤ  is the converged 

Hessian matrix of the penalized log-likelihood, and Ĥ  is the converged Hessian matrix of the 

un-penalized log-likelihood. Specifically, )ˆ(ˆ φ  , )ˆ(ˆ φPLPL HH  , and )ˆ(ˆ φHH  , where 

22 /)()( φφφ  H . The term }ˆˆtr{ 1HHPL

  is the degrees of freedom, a decreasing function 

with increasing 1  and 2 . The LCV is a criterion capable of choosing the best values of 1  

and 2 , as well as selecting the best subset of covariates. The LCV plays a similar role as the 

AIC for model selection. However, the calculation of the LCV requires high computational 

cost. 

To alleviate the computational cost, we consider an approximation to the LCV in the 

following way. Under the working assumptions for the absence of heterogeneity and for the 

independence copula, the log-likelihood in Equation (3.3) is  

),(),(),,,( 221121 hβgβhgββ   , 

where 


 
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G
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ijijijijij
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TRTr
1 1

11 })()(log{),( gβ ,    
 


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ijijijijij

i

TT
1 1

***

22 })()(log{),( hβ . 

This suggests choosing 1  and 2  based on two separate Cox models. As detailed in Section 

2.4.1, one can obtain penalized likelihood estimates PL

1
ˆ ˆ( , )β g  and PL

2
ˆ ˆ( , )β h  given 1  and 2  

by using splineCox.reg( ). Then, we define two LCVs 

}ˆˆ{trˆ
1

1

111 HHLCV PL

  ,       }ˆˆ{trˆ
2

1

222 HHLCV PL

  , 

where 1̂  and 2̂  are the log-likelihood values evaluated at their penalized likelihood 

estimates, and 1
ˆ

PLH  and 2
ˆ

PLH  are the converged Hessian matrices for the penalized 
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likelihood estimations, 1Ĥ  and 2Ĥ  are the converged Hessian matrices for the log-

likelihoods such that 

















1

111

5

5

111 2ˆˆ

p

ppp

PL O

OO
HH  ,        
















2

222

5

5

222 2ˆˆ

p

ppp

PL O

OO
HH  ,   

where O  is a zero matrix. We then expect that the following approximation holds: 

21 LCVLCVLCV  . 

Consequently, maximizing LCV  is roughly equal to maximizing 1LCV  for 1  and 2LCV  for 

2 , separately. 

The joint.Cox package provides the plots of 1LCV  and 2LCV  on a given grid along with 

the optimized values for 1  and 2 . When looking at the outputs, following properties must 

be checked: (i) 1̂  and 2̂  are smoothly decreasing in 1  and 2 , respectively, (ii) the degrees 

of freedom }ˆˆ{tr 1

1

1HHPL

  decreases from 51 p  to 21 p ; the degrees of freedom 

}ˆˆ{tr 2

1

2HHPL

  decreases from 52 p  to 22 p . If these two properties are not met, the grid is 

inappropriate. The degrees of freedoms can occasionally be quite big if the Hessian matrix is 

singular. The values of 1  and 2  producing such results are ignored. 

Given the chosen values for 1  or 2 , we fit the joint frailty-copula model and calculate 

}ˆˆtr{ˆ 1HHLCV PL

  . The LCV represents the trade-off between goodness-of-fit ( ̂ ) and the 

degrees of freedom ( }ˆˆtr{ 1HHPL

 ). Hence, the LCV is similar to the AIC. Consequently, the 

LCV can be used for covariate selection. That is, the best subset of covariates is the one that 

maximize the LCV. While one has 21 LCVLCVLCV  , the values of 1LCV  and 2LCV  are 

used in order only to choose 1  and 2 .   

 

3.8 Exercises 

1. Consider the joint frailty model with 1 , that is, 

]})()({exp[)|,Pr( yxRuuyDxX ijijiiijij  . 

Show  /1]})()({1[),Pr(  yxRyDxX ijijijij  under the gamma frailty model. 

 

2. Consider the joint frailty-copula model in Equation (3.2) with 1  and the Gumbel copula, 

1 1 1/(1 )Pr( , | ) exp[ { ( ) ( ) } ]ij ij i i ij ijX x D y u u R x y         . 
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Derive the expression of ),Pr( yDxX ijij  . 

 

3. Consider the joint frailty-copula model in Equation (3.2) with 1  and the Clayton copula, 

 /1]1})(exp{})(exp{[)|,Pr(  yuxRuuyDxX ijiijiiijij . 

(1) Under 1 , derive the expression of ),Pr( yDxX ijij   by using 

1

1/

0

( , ) ( 1 )a bH a b t t dt  



     . 

(2) Derive the expression of ),Pr( yDxX ijij   by using some function ),(, baH  . 

 

4. Consider the joint frailty-copula model in Equation (3.2) with 1  and the Pareto baseline 

hazard functions,  

xxr /)( 10  ,  01  ,  01 x ,     yy /)( 20   ,  02  ,  02 y . 

Derive the expression of )|,Pr( iijij uyDxX   under the Clayton and Gumbel copulas. 

 

5. Show the relationship between ],[ ts  and ],[ vuR  that is defined in Section 2.6. 

 

6. Under the independence copula vwwvC ),( , show that Equation (3.3) reduces to the 

log-likelihood of Rondeau et al. (2015) as follows: 

.)()()(explog                                           
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Simplify the above expression when 0  and 1 , respectively. 

 

7.  Derive ],[ tsD , ],[ ts , ],[* ts , and ],[ ts  under the Gumbel copula. 

 

8. Do the above exercise under the Farlie-Gumbel-Morgenstern (FGM) copula.  

 

9.  When performing numerical integrations in Equation (3.3), we used the truncated range 

100  u  rather than  u0 . This avoids some instability occurring for 10u . 
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1) Draw a figure to show the gamma density for 100  u  under several parameter values. 

Compare your figure with the figure given by Aalen (1994). 

2) Conduct a numerical experiment to demonstrate if the range 100  u  is enough to 

evaluate the integrations in the log-likelihood. 

 

10. Let )(  be a function of  , and )~(
~
  be defined as )()~(

~ ~ e  . Also, let 

 ~/)~(
~

)~(
~

 S  and 22 ~/)~(
~

)~(
~

  H . Write   /)()( S  and 

22 /)()(   H  in terms of )(
~
S  and )(

~
H . Write down “a transformation factor” 

mentioned in Section 3.6. 
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Chapter 4: High-dimensional covariates in the joint frailty-copula model 

 

Abstract: The concerns for over-fitting, high computational cost, and large estimation error 

arise when the number of covariates is large in a model. We introduce a simple and effective 

strategy to handle high-dimensional covariates based on Tukey’s compound covariate method. 

We then demonstrate how the compound covariate method is applied to the joint frailty-

copula model, and how patient-level survival is predicted. Using simulations, we compare the 

compound covariate method with ridge- and Lasso-based methods in a prediction setting. We 

analyze the ovarian cancer data for illustration. 

 

Keywords: Compound covariate, Cox regression, feature selection, gene expression, 

univariate selection, Lasso, meta-analysis, ridge regression, survival prediction 

 

 

4.1 Introduction 

In the presence of high-dimensional covariates, the traditional Cox regression analysis (Cox 

1972) fails to provide a satisfactory result. Many techniques to overcome the problem for the 

traditional Cox model are now available (Witten and Tibshirani 2010). In particular, 

shrinkage techniques, such as ridge regression and Lasso, are commonly used to incorporate 

high-dimensional covariates into the Cox model (Bøvelstad et al. 2007). 

These techniques developed for the Cox model employ the partial likelihood function, 

and hence, they are not directly applicable to the joint frailty-copula model for correlated 

endpoints (Emura et al. 2017; Chapter 3). What we present in this chapter is the idea of 

compound covariate as advocated by Tukey (1993), a simple and effective strategy to handle 

high-dimensional covariates using the univariate Cox model.  

Unlike shrinkage methods, the compound covariate method applies a univariate feature 

selection method using multiple tests. This method involves computation of the significance 

levels of features (in terms of P-value) and is suitable toward the objective of achieving 

biological insights, where screening of prognostic features exhaustively may be a relevant 

task, even if some selected features are highly correlated. In some shrinkage-based methods, 

such as Lasso, a feature subset may be identified, taking account of the correlations among 

features. One has to recognize that such a subset is one, haphazardly selected (due to random 



69 

 

errors) from many “solutions” of predictor with comparable predictive capability in high-

dimensional situations (Schumacher et al. 2012). 

This chapter is organized as follows. Sections 4.2 and 4.3 review Tukey’s compound 

covariate method. Section 4.4 introduces the data structure. Section 4.5 demonstrates how the 

compound covariate method is applied to the joint frailty-copula model. Section 4.6 

introduces the ridge regression and Lasso methods. Section 4.7 constructs the patient-level 

survival function for prediction. Section 4.8 conducts simulation studies and Section 4.9 

analyzes real data. Section 4.10 concludes with discussions. 

 

4.2 Tukey’s compound covariate 

The term compound covariate is first employed by John Wilder Tukey (Tukey 1993) who is 

also known as the founder of the jackknife method and exploratory data analysis. According 

to Tukey, compound covariate refers to a composite score calculated as a weighted sum of 

individual covariates, where the weight assigned for each covariate is determined by its 

univariate association with the outcome of interest. The compound covariate method is a 

general method applicable to many different settings, including linear regression, binary 

classification, logistic regression, and Cox regression. 

We introduce Tukey’s compound covariate as a tool for predicting survival. Consider a 

future patient with a covariate vector 1( , , )qZ Z . To predict clinical outcomes of the patient, 

one can consider a compound covariate, defined as 1 1 q qw Z w Z  , where 1( , ..., )qw w  is a 

vector of weights. In the compound covariate, the weight jw  is computed by fitting survival 

data to univariate models, e.g., the partial likelihood estimate ˆ
j jw   under the univariate 

Cox model 0( | ) ( )exp( )j j j j jt Z t Z    for pj ...,,1 . Some researchers apply 

ˆ ˆ/ ( )j j jw SE   (Wang et al. 2005) or the Z-value of the score tests for jw  (Matsui 2006; 

Emura et al. 2019). In all cases, the compound covariate predictor is an ensemble of 

univariate analyses, which does not employ a multivariate analysis. 

If ˆ
j jw   is employed, high (low) value of the compound covariate is associated with 

poor (good) prognosis for survival. This prediction method is called compound covariate 

prediction. For instance, Chen et al. (2007) employed the weights ˆ
j jw   attached to the 

16q   gene expressions to construct a compound covariate  
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CC = (-1.09ANXA5) + (1.32DLG2) + (0.55ZNF264) + (0.75DUSP6) 

+ (0.59CPEB4) + (-0.84LCK) + (-0.58STAT1) + (0.65RNF4) + (0.52 IRF4)  

+ (0.58STAT2) + (0.51HGF) + (0.55ERBB3) + (0.47NF1) + (-0.77FRAP1)  

+ (0.92MMD)+ (0.52HMMR), 

 

where the covariates are expressed in the gene symbols. This compound covariate predicts 

survival prognosis for lung cancer patients.  

Compound covariate prediction has been shown to be useful in medical studies with gene 

expressions as a simple and powerful tool for survival prediction (Beer et al. 2002; Wang et al. 

2005; Matsui 2006; Chen et al. 2007; Matsui et al. 2012; Emura et al. 2012, 2018, 2019;  

Zhao et al. 2014). The compound covariate method has the competitive performance over 

more sophisticated multivariate techniques, such as ridge and Lasso methods; see numerical 

studies of Emura et al. (2012; 2018; 2019) and Zhao et al. (2014). 

 

4.3 Univariate feature selection 

Since the compound covariate method utilizes univariate regression, it is closely related to 

univariate feature selection (Witten and Tibshirani 2010; Emura et al. 2019).  

Suppose we wish to select a small fraction of genes from a large number of genes. Let p  

be the number of all available genes, where p  can be large, such as p 5,000. Univariate 

feature selection proceeds as follows: For each pj ...,,1 , the null hypothesis 0:0 jH   is 

examined by the Wald test (or score test) under the univariate Cox model treating the j -th 

gene as a covariate. The parameter j  represents the univariate association between survival 

and the gene, where all other genes are ignored. Then, one picks out a subset of genes that 

have low P-values from the tests. The top )( pq   genes with lowest P-values are then 

selected.  

Simon (2003) recommended the P-value threshold of 0.001 in microarrays analyses. This 

is more stringent than the traditional 0.01 or 0.05 criterion, but less stringent than the genome-

wide significance 8105  . The P-value<0.001 condition is designed to allow some, but not 

too many false positives. For p 5,000, one would have 5001.05000   falsely identified 

genes. See also Matsui et al. (2012) and Emura et al. (2018) who used the P-value threshold 
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of 0.001 in analysis of survival data. For simplicity, we shall adopt the P-value threshold of 

0.001
7
. 

After selecting the q  genes having P-values lower than the threshold, they are used to 

compute a compound covariate predictor ˆ
j jj
Z . 

Remarkably, the prediction performance of the compound covariate predictor is robust 

against a small change in the P-value threshold. Firstly, a small change of the P-value may not 

change the selected genes at all. This reason shall be illustrated by a simulation. Secondly, 

even if the selected genes are changed, majority of the genes with lower P-values are still kept 

in the predictor. This property is due to the additive property of the compound covariate 

predictor, without incorporating the correlations among genes. Many shrinkage methods, in 

particular the Lasso, do not possess this property since a small change in the shrinkage 

parameter can alter the whole structure of the predictor. The gain in predictive accuracy by 

ignoring correlations among high-dimensional gene expressions has been known in linear 

discriminant analysis (Dudoit et al. 2002; Bickel and Levina 2004). 

An important caution is that one should not re-fit the multivariate Cox model after 

univariate selection (e.g., Lossos et al. 2004). If one re-fits the multivariate Cox model, some 

regression coefficients of the selected genes become non-significant, especially those among 

correlated genes. While many biomedical researchers prefer a multivariate prognostic model 

to avoid correlated genes in the model, the re-fitted model may lose predictive power 

(Bøvelstad et al. 2007; van Wieringen et al. 2009) and the additive property of the compound 

covariate predictor. Compound covariate prediction should be made by an aggregation of the 

univariate models without going through any multivariate model. 

 

4.4 Meta-analytic data with high-dimensional covariates 

The compound covariate method adapts to different types of analyses. Here, we consider an 

individual-patient data (IPD) meta-analysis of semi-competing risks data (Chapter 3). The 

semi-competing risks mean that a terminal event (death) censors a non-terminal event (tumour 

progression), but not vise-versa. We also consider high-dimensional covariates that may be 

associated with both the terminal and non-terminal events. 

                                                 
7
 Obviously, the adequacy of 0.001 depends on many factors, such as the total number of genes and sample 

sizes. If one uses the compound.Cox R package, one can obtain a data-driven P-value threshold through a cross-

validation (Emura et al. 2019). 
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Meta-analytic data consist of G  independent studies with the i -th study containing iN  

patients. For Gi ...,,2,1  and iNj ...,,2,1 , let 

 ijX : time-to-tumour progression (TTP),  

 ijD : overall survival (OS), or equivalently, time-to-death, 

 ijC : independent and non-informative censoring time. 

As explained in Chapter 3, what we actually observe are the semi-competing risks data 

),,,,,,( ,2,1

**

ijijijijijijij TT UZZ  for Gi ...,,2,1  and iNj ...,,2,1 , where 

 ),,min( ijijijij CDXT  : first-occurring event time, 

 )( ijijij XT  I : status of tumour progression (no progression=0; progression=1), 

where )( I  is the indicator function, 

 ),min(*

ijijij CDT  : censored terminal event time, 

 )( **

ijijij DT  I : status for death (alive=0; dead=1), 

 ij,1Z : 1p -dimensional clinical covariates associated with TTP,  

 ij,2Z : 2p -dimensional clinical covariates associated with OS, 

 ),,( ,1, pijijij UU U : p -dimensional gene expressions that are standardized to have 

mean=0 and SD=1 across the entire patients (or across patients within each study). 

 

We assume that the numbers 1p  and 2p  are small and the number p  is large. 

Table 4.1 shows an example of the data used in Emura et al. (2018) consisting of 912 

ovarian cancer patients from four independent studies. There are 11,756 gene expressions that 

are commonly available across the four studies. It is of our interest to examine how the gene 

expressions can be incorporated into a joint model for the terminal event (death) and non-

terminal event (relapse).  

 

 

[Table 4.1 here] 
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Table 4.1 Meta-analytic data from four independent studies of ovarian cancer patients. 

Dataset
a
 

Median 

follow-up 

(days) 

Sample size 

The number of observed events (event rates) 

The number  

of genes 
Relapse 

( 1ij ) 

Death 

( 1* ij ) 

Censoring 

( 0* ij ) 

GSE17260 1,410 1N 84 59 (70%) 38 (45%) 46 (55%) 18,548 

GSE30161 2,513 2N 58 48 (83%) 36 (62%) 22 (38%) 18,524 

GSE9891 1,140 3N 260 185 (71%) 113 (43%) 147 (57%) 18,524 

TCGA 1,721 4N 510 252 (49%) 278 (55%) 232 (45%) 12,211 

Total   

4

1i iN 912 544 (60%) 465 (51%) 447 (49%) Common=11,756 

Notes: The data are extracted from the curatedOvarianData package of Ganzfried et al. (2013). 
a
Dataset is signified as the GEO accession number which can be used to search the public genomics 

data in the GEO (Gene Expression Omnibus) repository. Extracted studies are the subset having 

documented values of “days-to-tumour-recurrence”, “days-to-death”, “recurrence status”, and “vital 

status” for all patients. The median follow-up time is calculated from the Kaplan-Meier survival curve 

for time-to-censoring for each study. The event rates are calculated separately for each study. However, 

our data extraction yielded a slightly reduced list of patients compared to Table 3.2. The reason may 

be due to the update of “patientselection.config” file (from older version 1.0.3 to the version 1.8.0) in 

the package to remove some duplicate samples (Waldron et al. 2014). 

 

4.5 The joint model with compound covariates  

This section considers a method for fitting the data to the joint frailty-copula model for TTP 

and OS by screening the high-dimensional gene expressions ),,( ,1, pijijij UU U . 

In the initial step, we select )(1 pq   genes univariately associated with TTP based on the 

P-value<0.001 criterion. More precisely, the data }...,,1,...,,1);,,({ , ikijijij NjGiUT   are 

fitted to the univariate Cox model for TTP, say )exp()()( ,,0, kijkkkij Ubtrtr  , and the P-value 

of testing the null hypothesis 0:0 kbH  is evaluated on the k-th gene ( pk ,,1 ). Similarly, 

we select )(2 pq   genes univariately associated with OS based on the data 

}...,,1,...,,1);,,({ ,

**

ikijijij NjGiUT  . Thus, we obtain ijij UV   and ijij UW   such that 

 ),,(
1,1, qijijij VV V : 1q -dimensional genes associated with TTP (P-value<0.001), 

 ),,(
2,1, qijijij WW W : 2q -dimensional genes associated with OS (P-value<0.001), 

where ijV  and ijW  may have common elements since some genes influence both TTP and OS. 

If the P-value<0.001 cut-off is not suitable to data, one can try to find a data-driven cut-off 

value that optimizes a predictive measure proposed by Matsui (2006). The methodologies and 
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computer programs for obtaining the optimal cut-off in univariate feature selection are 

available in Emura et al. (2019). 

In the initial process of screening genes, we focus on the univariate effect of each gene, 

ignoring all other effects of genes and covariates. Neither the effect of dependent censoring 

nor frailty is accounted at this stage. 

Then, we construct compound covariates (CCs) 

1 1

2 2

1, 1 ,1 ,

2, 1 ,1 ,

ˆ ˆCC            ( associated with TTP )

ˆ ˆCC          ( associated with OS )

ij ij q ij q

ij ij q ij q

bV b V

cW c W

  

  
 

where the weights kb̂  and kĉ  are estimates under the univariate Cox models on the k-th gene, 

namely, ˆ arg max ( )k k kb b , where  

, ,

1 1

( ) log exp( )
i

ij

NG

k k ij k ij k k k

i j R

b b U b U
  

  
   

    
  ,        { ; }ij ijR T T  , 

and *ˆ arg max ( )k k kc c , where  

*

* *

, ,

1 1

( ) log exp( )
i

ij

NG

k k ij k ij k k k

i j R

c c U c U
  

  
    

    
  ,        * * *{ ; }ij ijR T T  . 

Let 1̂  (or 2̂ ) be the sample mean of ij,1CC  (or ij,2CC ). Also, let 1̂  (or 2̂ ) be the 

sample SD of ij,1CC  (or ij,2CC ). The standardized values of the compound covariates are 

fitted to the joint frailty-copula model (Emura et al. 2017; Chapter 3): 

 

 

0 1 1, 1 1, 1 1

0 2 2, 2 2, 2 2

ˆ ˆ( | ) ( )exp { CC }/

ˆ ˆ( | ) ( )exp { CC }/

Pr( , | ) [ ( | ), ( | ) ]

ij i i ij ij

ij i i ij ij

ij ij i Xij i Dij i

r t u u r t

t u u t

X x D y u C S x u S y u





  

    

   



  


  

β Z

β Z                       (4.1) 

where iu  is a frailty term for the i-th study, C  is a copula with a parameter  , )()(0 ttr Mg  

and )()(0 tt Mh  are baseline hazard functions approximated by splines, and 

))(,),(()( 51
 tMtMt M  are the M-spline bases (Appendix A). In Equation (4.1), the 

survival functions and hazard functions are related through 

 

 

0 1 1, 1 1, 1 1

0 2 2, 2 2, 2 2

ˆ ˆ( | ) exp ( )exp { CC }/ ,

ˆ ˆ( | ) exp ( )exp { CC }/ ,

Xij i i ij ij

Dij i i ij ij

S x u u R x

S y u u y

  

  

     
  


       

β Z

β Z
            (4.2) 
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where 
0 0

0
( ) ( )

x

R x r t dt   and 
0 0

0
( ) ( )

y

y t dt   . The parameter estimates 

)ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ( 2121 hgββ   are computed through jointCox.reg( ) in the joint.Cox R package 

(Emura 2019), where ̂  is an estimate of the heterogeneity parameter ( )iVar u  . 

 

Remarks: We apply the standardized version of a compound covariate since the range of 

ij,1CC  (or ij,2CC ) can be very large if the number 1q  (or 2q ) is large. In general, fitting a large 

covariate value may yield computational difficulties in the joint frailty-copula model. 

 

4.6 The joint model with ridge or Lasso predictor  

In addition to the compound covariate method, a variety of approaches are available to deal 

with high-dimensional covariates (Bøvelstad et al. 2007). The ridge approach does not 

involve the preliminary selection of genes, unlike the compound covariate predictor that 

screens out genes with a P-value threshold. Instead, the ridge approach requires selecting a 

shrinkage parameter that plays a similar role as the P-value threshold. We should notice that 

using the whole genes for prediction appears to be uncommon in medical practices, and hence, 

this approach should be considered with their practical feasibility for clinicians. Nevertheless, 

as the ridge regression is an accurate and sophisticated statistical prediction tool in gene 

expression data (Bøvelstad et al. 2007; van Wieringen et al. 2009), it is worth considering this 

approach.  

The ridge approach uses the genes ),,( ,1, pijijij UU U  to construct predictors 

1, 1 ,1 , ij

2, 1 ,1 , ij

ˆˆ ˆRidge            ( associated with TTP )

ˆ ˆ ˆRidge            ( associated with OS )

ij ij p ij p

ij ij p ij p

U U

U U

 

 

   

   

ξ U

ς U
 

where the weights ξ̂  and ς̂  are the ridge estimates (Bøvelstad et al. 2007). Specifically, with 

the model )exp()()( 0 ijij trtr Uξ  and the data }...,,1,...,,1);,,({ iijijij NjGiT U , one 

can calculate ξ̂  by applying optL2( ,fold=5) in the penalized R package (Goeman et al. 2016). 

Here, the shrinkage parameter is optimized by using the 5-fold cross-validation as indicated in 

the option “fold=5”. Similarly, one can calculate ς̂  by the data 

}...,,1,...,,1);,,({ **

iijijij NjGiT U . Finally, the joint frailty-copula model is fitted as 
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0 1 1, 1 1,

0 2 2, 2 2,

( | ) ( )exp( Ridge )

( | ) ( )exp( Ridge )

Pr( , | ) [ ( | ), ( | ) ]

ij i i ij ij

ij i i ij ij

ij ij i Xij i Dij i

r t u u r t

t u u t

X x D y u C S x u S y u







  

  


 
   

β Z

β Z  

   The Lasso-based predictors are computed by the command optL1( ,fold=5), which are 

denoted as 

1, 1 ,1 , ij

2, 1 ,1 , ij

ˆˆ ˆLasso            ( associated with TTP )

ˆ ˆ ˆLasso            ( associated with OS )

ij ij p ij p

ij ij p ij p

U U

U U

 

 

   

   

ξ U

ς U
 

Note that some estimated regression coefficients are exactly zero in the Lasso method. Thus, 

only those genes having nonzero estimates ( 0ˆ k  or 0ˆ k ) contribute to the predictors. 

   Both the ridge and Lasso predictors have strong shrinkage effects on their regression 

coefficients for a large number p . Consequently, the ranges of the predictors are reduced by 

the shrinkage effect, which make it possible to fit them without standardization. 

 

4.7 Prediction of patient-level survival function  

The patient-level survival function can be obtained for a new patient not in the samples. We 

follow the general idea of Matsui et al. (2012) who developed a patient level survival function 

using compound covariates. 

Let D  be OS of the new patient. We wish to predict the survival function of D  according 

to the clinical covariates 2Z  and gene expressions ),,( ,1, pijijij UU U . We define a 

compound covariate  

22
ˆˆCC 112 qq WcWc   , 

using the subset ),,(),,( 11 2 pq UUWW  W  obtained from the new patient and the 

estimate kĉ  under the univariate Cox models on the k-th gene. 

We assume that the new patient follows the same probability mechanism as the patients in 

the samples. That is, the new patient has survival experience following the model (4.2). Since 

the frailty term is usually unknown for the new patient, we integrate out Equation (4.2) to 

estimate the patient-level survival function 

2 2
ˆ2 2 0 2 2 2

0
2

ˆCCˆ ˆˆ ˆ( | , CC ) exp ( )exp ( ) .
ˆ

S w u w f u du








    
     

   
Z β Z  

   The confidence interval (CI) for 2 2
ˆ( | , CC )S w Z  is computed by simulating parameters 

)ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ( )*()*()*(

2

)*(

1

)*(

2

)*(

1

)*()*( mmmmmmmm
hgββ  ,       500...,,2,1m , 
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from a multivariate normal distribution 

 ,Covariance),)ˆlog(),ˆlog(,ˆ,ˆ,ˆ,ˆ),ˆlog(),ˆlog((Mean~

))ˆlog(),ˆlog(,ˆ,ˆ,ˆ,ˆ),ˆlog(),ˆlog((

2121

***

2

*

1

*

2

*

1

**

 hgββ

hgββ





N
 

where   is the log-scaled covariance matrix of the parameter estimates, which is obtained 

from the outputs of jointCox.reg( ,convergence.par=TRUE). Accordingly, we have simulated 

patient-level survival functions 

)CC,|(ˆ
22

)*(
ZwS m ,       500...,,2,1m . 

Their 2.5% and 97.5% points give the pointwise 95% CI for the patient-level survival 

function. Note that the delta method is difficult to use for computing the SE and 95% CI due 

to a large number of parameters. 

 

4.8 Simulations  

We conduct a simulation to compare the compound covariate predictor with three other 

predictors: (i) the ridge-based predictor, (ii) Lasso-based predictor, and (iii) null predictor. 

The evaluation criterion is the prediction error (also known as the Brier score), defined as 

]})),(|(ˆ)({[)( 2
UI ZfwSwDEwErr  ,           0w  , 

where Z  is a clinical covariate, ),,( 1 pUU U  are gene expressions, and )( f  can be 

)CC,(),( 2ZZf U , )Ridge,(),( 2ZZf U , )Lasso,(),( 2ZZf U , or )0,0(),( UZf . The 

expectation ][ E  is taken for the distribution of ),,( UZD  given )|(ˆ wS  (Gerds and 

Schumacher 2006). We calculate )(wErr  according to the following simulation designs. 

 

4.8.1 Simulation designs 

Let 5G  and iN 200 for 5...,,2,1i . A frailty value iu  follows a gamma distribution 

with 5.0 , and a covariate ijZ  follows )1,0(N  truncated between -3 and 3. Gene 

expressions ),,( ,1, pijijij UU U  with 400p  follow a uniform distribution with mean 0  

and SD 1  whose correlation structure is 5.0),( ,, ijkij UUCorr  for 251  lk  or 

5026  lk ; 0),( ,, ijkij UUCorr  otherwise. The corresponding coefficients are 

)0...,,0,1.0,...,1.0,1.0...,,1.0(

3502525




ξ . 

We generated such gene expressions by the command: X.pathway(n=1,p=400,q1=25,q2=25) 

using the compound.Cox R package (Emura et al. 2019).  
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Given iu , ijZ , and ijU , the pair of ijX  and ijD  were generated from the model  

0

0

1/

( | ) ( )exp(1.5 )            (  for     )

( | ) ( )exp(1.5 )        (  for      )

Pr( , | ) [ ( | ) ( | ) 1 ]

ij i i ij ij ij

ij i i ij ij ij

ij ij i Xij i Dij i

r t u u r t Z X

t u u t Z D

X x D y u S x u S y u  

 
  

   


  
     

ξ U

ξ U  

where 1)()( 00  trt  and 6  (Kendall’s tau = 0.75). Censoring variables ijC  were 

generated from a uniform distribution on )5,0(  that yielded about 30% censored subjects. 

The training data consist of * *{ ( , , , , , ); 1, ..., 5, 1, ..., 200}ij ij ij ij ij ijT T Z i j   U . 

After fitting the data to the joint frailty-copula model, we calculated the patient-level 

survival function )|(ˆ wS . To calculate the prediction error, we independently generated the 

test data }200...,,1,5...,,1);,,,({  jiZDX Test

ij

Test

ij

Test

ij

Test

ij U  using the same algorithms as the 

training data (with different random seeds). The prediction error was then estimated as 


 


5

1

200

1

2}),(|(ˆ)({
1000

1
)(

i j

Test

ij

Test

ij

Test

ij ZfwSwDwErr UI . 

For the null predictor, we used the Kaplan-Meier estimator )|(ˆ wS  computed by the data 

}200...,,1,5...,,1);,,({ ,

**  jiUT kijijij  . We report the average of the prediction errors for 50 

repetitions. 

 

4.8.2 Simulation results 

Figure 4.1 compares the prediction error curve )(wErr , 30  w , for the four different 

predictors (null, compound covariate, ridge, and Lasso). The smallest prediction error was 

achieved by the compound covariate predictor. The Lasso and ridge predictors exhibited very 

similar prediction errors. The three predictors (compound covariate, ridge, and Lasso) 

expressed remarkably smaller prediction errors compared to the null predictor. 
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Figure 4.1 The plots of prediction error with four different prediction methods (averaged for 50 runs). 

 

 

We explore the reason why the compound covariate is successful. On average, the 

predictor 
22

ˆˆCC 112 qq WcWc    contains 2q 50.34 genes. Hence, the average number of 

2q  is close to the number of nonzero coefficients in the population coefficients ξ . Figure 4.2 

displays P-values for the 400 genes from a single simulation run. We see that 50 P-values are 

below 0.001, and they exactly correspond to the 50 informative genes. Hence, all the 50 

informative genes are selected into 5050112
ˆˆCC WcWc    . 
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Figure 4.2. P-values for the 400 genes from a single simulation run. 

 

 

 On average, the Lasso-based predictor had  }0ˆ:{ jj  62.98 genes of nonzero 

coefficients. This implies that the Lasso predictor contains at least 12 non-informative genes 

(noise genes). In the ridge-based predictor, the coefficients of the 50 informative genes are  

046.0|ˆ| j  while those of the 350 non-informative genes are 001.0|ˆ| j . Although there are 

strong shrinkage effects for non-informative genes, they still yield some noises to the ridge-

based predictor. 

Figure 4.2 also explains the robustness of the compound covariate predictors against the 

change of the P-value cut-off. The 50 smallest P-values are so small that the selection results 

are unchanged by decreasing the cut-off P-value of 0.001. If one increases the cut-off P-value 

from 0.001 to 0.005, two non-informative genes are included into the compound covariate. 

Since all the 50 informative genes are still kept in the compound covariate, the prediction 

performance is almost unchanged by the two noise genes. 
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4.9 Case study: ovarian cancer data  

We performed an IPD meta-analysis on the subset of the ovarian cancer data of Ganzfried et 

al. (2013) to demonstrate how gene expressions are incorporated into the joint frailty-copula 

model. Our subset consists of 912 ovarian cancer patients from G 4 different studies (Table 

4.1). The detailed process of data extraction is referred to the bottom of Table 4.1. Across the 

four studies, 11,756 gene expressions are available. All the expression values are standardized 

to have mean of 0 and SD of 1 in the patients. Among 11,756 genes, we initially chose a 

subset consisting of 6,056 genes whose coefficient of variation in expression values is greater 

than 3%.  

 

4.9.1 Compound covariate 

We performed univariate feature selection on the 6,056 genes. Figure 4.3 shows the P-values 

for testing the univariate association between the 6,056 genes and OS. Apparently, majority of 

genes are non-informative to predict OS as their log(P-values) are around zero. We chose 128 

genes whose P-values are below 0.001. In a similar fashion, we chose 158 genes univariately 

associated with time-to-relapse. 

 

Figure 4.3. P-values for the univariate association between the 6,056 genes and OS from the 

ovarian cancer data. Among them, 128 genes satisfy the P-value < 0.001 criterion. 
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   Based on the selected genes, we obtained two compound covariates: 

ij,1CC (0.249CXCL12ij) + (0.235TIMP2ij) + (0.222PDPNij) +…+ (-0.152MMP12ij) 

involving 158 genes (P-value < 0.001 for time-to-relapse), and 

ij,2CC (0.237NCOA3ij) + (0.223TEAD1ij) + (0.263YWHABij) +…+ (-0.157KCNH4ij), 

involving 128 genes (P-value < 0.001 for time-to-death). 

 

In the above CCs, the gene symbols were ordered by their significance. For instance, 

CXCL12 was the most strongly associated gene for time-to-relapse. The supplementary 

material of Emura et al. (2018) describes how the genes TIMP2, PDPN, NCOA3, TEAD1, and 

YWHAB are biologically associated with relapse and death. The means and SDs of the 

compound covariates are 
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 7.894. 

 

4.9.2 Fitting the joint frailty-copula model 

In addition to the gene expressions, we have a clinical covariate ( ijZ ,2 =0 vs. =1) on the 

residual tumour size at surgery ( 1cm vs. >1cm). The joint.Cox R package was applied to fit 

the data to the joint frailty-copula model as 

ˆ ˆ ˆ1/

ˆ
ˆ ˆ ˆ ˆPr( , | ) [ ( | ), ( | ) ] [ ( | ) ( | ) 1]X D X DX x D y u C S x u S y u S x u S y u  



        , 

where ̂ 1.9 (95%CI: 1.5-2.5), giving Kendall’s tau ̂ 0.49 (95%CI: 0.43-0.55), and 

1 1
0 1

1
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XS x u uR t




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   

   
, 

2 2
0 2 2 2
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ˆCCˆ ˆˆ ˆ( | ) exp ( )exp
ˆ

DS y u t Z


 


   
    

   
. 

Here, the frailty term u  appears only for the survival function of time-to-relapse as we set 

0  as the best value. All the regression coefficients in the model were significant (P-

value<0.05). Their relative risks were )ˆexp( 1 =1.48 (95%CI: 1.37-1.59), )ˆexp( 2 =1.18 
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(95%CI: 1.03-1.35), and )ˆexp( 2 =1.56 (95%CI: 1.43-1.70). The heterogeneity parameter 

was ̂ 0.04 (95%CI: 0.01-0.22). The baseline hazard functions are estimated as 

)(0)(07.0)(0)(14.2)(85.0/)(ˆ)(ˆ
5432100 tMtMtMtMtMdttRdtr  , 

)(0)(27.0)(24.1)(05.1)(17.0/)(ˆ)(ˆ
5432100 tMtMtMtMtMdttdt  , 

for ]6420,0[t , where 6420 (days) is the maximum follow-up time. 

Appendix B (B2) provides our R codes to reproduce the fitted values of the above analysis. 

 

 

4.9.3 Patient-level survival function 

To see how the patient-level survival function is predicted, we consider four hypothetical 

patients (named Patients 1-4) with the following characteristics:  

 

 Patient 1: risk genes ( 16CC2  ); the residual tumour>1cm ( 12 Z ), 

 Patient 2: protective genes ( 16CC2  ); the residual tumour 1cm ( 02 Z ), 

 Patient 3: average genes ( 0CC2  ); 12 Z , 

 Patient 4: average genes ( 0CC2  ); 02 Z . 

 

Here, the values of 16CC2   are chosen based on a two SD change from the mean such 

that 16ˆ2ˆ
22    and 16ˆ2ˆ

22   . 

Figure 4.4 displays the patient-level survival function for Patients 1-4. Patient 1 has the 

shortest survival, e.g., the predicted survival probability at 1500 days (about 4 years) is only 

15%. In contrast, Patient 2 achieves the longest survival with the predicted survival 

probability 76% at 1500 days. The tight confidence intervals for their predicted survival 

probabilities confirm that the difference between Patient 1 and Patient 2 is not by chance. 

However, the difference of survival probabilities between Patient 3 and Patient 4 is less clear. 
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Figure 4.4 The patient-level survival functions and their 95% CIs (dotted lines). 

 

4.10 Concluding remarks 

To handle high-dimensional covariates, we adopted a simple approach based on Tukey’s 

compound covariate followed by univariate feature selection. We applied the compound 

covariate predictor to the joint frailty-copula model, and developed a patient-level prediction 

scheme for survival. In our simulations, the compound covariate method showed better 

predictive ability than the ridge-based or Lasso-based approach. In analysis of ovarian cancer 

patients, we showed that the developed patient-level survival can classify patients into low, 

medium, and high risk groups. However, we recognize the need of validating our prediction 

formula with an independent validation set of patients before it is widely applied by clinicians. 

Our patient-level prediction of OS is based on covariates collected at the study entry time. 

In the example of the ovarian cancer data, the study entry time refers to the time at surgery 

where a tumour is surgically removed and its gene expressions and residual tumour size are 

measured. If necessary, the prediction of OS is updated at each scheduled monitoring date 

after surgery. Such a dynamic prediction scheme needs a more elaborate formulation than the 

patient-level survival function considered in this chapter. We shall discuss this topic in details 

in Chapter 5. 
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A successful predictor based on gene expressions should not omit informative genes. It is 

known that omitting informative gene from a predictor has a greater deleterious effect than 

including non-informative genes (Simon 2005). Thus, it may be difficult to develop a 

successful predictor based on a small number of genes. For instance, a large number of 

informative genes are encountered in the lymphoma data reported in Matsui (2006), where the 

optimized number of genes is 75 or 85. In our illustrative example of ovarian cancer patients, 

univariate selection yielded 128 genes associated with time-to-death and 158 genes associated 

with time-to-relapse (P-value<0.001). 
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Chapter 5: Personalized dynamic prediction of survival 

 

Abstract In the development of patient-tailored therapy, there is a great interest in dynamic 

prediction of survival at a certain moment in time (e.g., at a follow-up visit after surgery). 

This chapter considers dynamic prediction formulas of predicting survival for a cancer patient. 

The prediction formulas incorporate the genetic and clinical covariates collected on the 

patient entry as well as the tumour progression history evolving after the entry. We first 

review the framework of dynamic prediction by introducing prediction formulas, such as the 

conditional failure function and conditional hazard function. We then demonstrate how the 

parameters in the prediction formulas are estimated by fitting meta-analytic data to the joint 

frailty-copula model. For illustration, we apply the dynamic prediction formulas to predict 

survival for ovarian cancer patients. 

 

Keywords: Conditional failure function, conditional hazard function, gene expression, meta-

analysis, ovarian cancer, personalized medicine, risk prediction, semi-competing risks, 

tumour progression 

 

 

5.1 Accurate prediction of survival 

An important question in survival analysis is whether one can accurately predict survival for a 

cancer patient according to the patient’s information. A number of data-driven methods have 

been developed for predicting survival, e.g. for patients with breast cancer (Gómez et al. 

2016; Shukla et al. 2018), ovarian cancer (Yoshihara et al. 2010; Enshaei et al. 2015; Emura 

et al. 2018), and prostate cancer (Guinney et al. 2017). An accurate survival prediction 

method allows patients to consider their future and physicians to choose an optimal therapy, 

constituting a core element of personalized medicine. According to its definition, personalized 

medicine seeks to improve health care by advancing the development of patient-tailored 

therapy based on genetic information (Schleidgen et al. 2013; Hayes et al. 2014). 

Waldron et al. (2014) performed a large-scale meta-analysis on late-stage ovarian cancer 

patients to examine the prediction performances of 14 published methods based on gene 

expressions. They concluded that 12 methods demonstrate their statistical significance for 

predicting overall survival (i.e., time-to-death) for independent validation data (P-value<0.05). 
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However, they also noted the modest gain in prediction accuracy (c-index of 0.56 to 0.60), 

suggesting the need of further improvement to be of clinical value. 

   Several ideas for improving the accuracy of prediction are listed below: 

 

Combine clinical and genetic information:  

A number of prognostic models have been developed by applying both clinical and genetic 

information (Matsui 2006; Binder and Schumacher 2008; Bøvelstad et al. 2009; van 

Houwelingen and Putter 2011; Matsui et al. 2012; Sun et al. 2018). These studies concluded 

that the model incorporating both clinical and genetic information leads to better predictive 

ability than the model including one of them alone. They also concluded that the clinical and 

genetic covariates are independent predictors for survival. For ovarian cancer patients treated 

by surgery, the residual tumour size and gene expressions are independent clinical and genetic 

predictors for overall survival (Yoshihara et al. 2010, 2012; Emura et al. 2018). 

 

Use intermediate events:  

At study entry, available covariates for a patient would be age, stage, grade, residual tumour 

size, etc. In addition to these covariates, some intermediate events (e.g., tumour progression) 

may influence survival during the follow-up. The framework of dynamic prediction (van 

Houwelingen and Putter 2011) offers prediction formulas that utilize the record of 

intermediate events occurring after study entry. Throughout this chapter, we shall discuss the 

theory and application of dynamic prediction. 

 

Use larger training samples to build a prediction formula:  

This idea is critical when a prediction algorithm involves gene selection (feature selection). 

The results of selection are unstable for small training samples and high-dimensional features, 

which could be alleviated by increasing the sample size (Michiels et al. 2005). Meta-analysis 

of individual patient data (IPD) is one promising way to stabilize the results. However, there 

are a few technical issues for performing IPD meta-analyses. The first issue is the 

heterogeneity between studies, which typically demands random-effects models or frailty 

models (Burzykowski et al. 2001; Rondeau et al. 2015). The second one is the inconsistent 

definitions of clinical covariates or inconsistently collected measurements between studies, 

resulting in the scarcity of reliable covariates in prediction models. This facilitates the need to 

account for residual dependence (Chapter 3). The joint frailty-copula model is a tailored 

model to resolve these difficulties in IPD meta-analyses (Emura et al. 2017). 
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Apply robust statistical methods for selecting genes and calculating a predictor:  

Even when the sample size is large, the prediction results still depend on the choices of 

statistical methods and some tuning parameters. Almost all statistical methods for selecting 

genes and calculating a predictor are “tuned” versions of Cox’s partial likelihood method 

(Bøvelstad et al. 2007; van Wieringen et al. 2009; Witten and Tibshirani 2010; Emura et al. 

2019). Users need to specify a tuning parameter to avoid over-fitting of high-dimensional 

genetic covariates. The tuning parameter can be the P-value threshold in univariate feature 

selection or the shrinkage parameter in the penalized partial likelihood method (Bøvelstad et 

al. 2007). In analysis of a single endpoint, a tuning parameter is usually optimized for the 

cross-validated partial likelihood (Matsui 2006; Bøvelstad et al. 2007). However, the partial 

likelihood is no longer applicable to joint models that demand the full likelihood for 

estimation. In the sequel, we shall apply the compound covariate method (Chapter 4) to attain 

a good degree of robustness against the choice of tuning parameters. 

 

5.2 Framework of dynamic prediction 

Dynamic prediction is a methodology that can utilize the record of intermediate events 

accumulated before making prediction at time t  (van Houwelingen and Putter 2011). For 

example, tumour progression of a patient may be strongly predictive of the patient’s overall 

survival. However, the intermediate events are not available at the study entry (at time 0t ) 

as they evolve with time. The study entry time ( 0t ) can be defined in a variety of ways, 

such as the date of surgery, the date of randomization, and the starting date of chemotherapy. 

The prediction time 0t   can be one of scheduled follow-up visits, where a clinician may 

carry out some examinations for a patient. 

Let D  be time-to-death and X  be time-to-tumour progression (TTP) measured from the 

study entry. Let Z  be a vector of covariates including both clinical and genetic covariates 

recorded at the entry. In cancer research, D  is more often called overall survival (OS). See 

Chapter 2 for detailed discussions about OS and TTP. It is assumed that Z  is recorded at time 

0t  and does not change over time (time-dependent covariates are not considered). Such 

covariates are often called baseline covariates. 

In the traditional survival analysis, prediction of OS is based on the survival function 

)|Pr()|( ZZ wDwS   where 0w  is a fixed time period (e.g. 5 years). The survival 

function aims to predict the vital status (alive or dead) after time w . This prediction scheme 
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shall be called baseline prediction since the prediction formula )|( ZwS  is constructed with 

the covariates recorded at time 0t . Since X  is not available at time 0t , it is not included 

in the prediction formula. 

The simplest form of dynamic prediction utilizes the conditional survival function, 

defined as   

( | )
( , | ) Pr( | , )

( | )

S t w
S t t w D t w D t

S t


     

Z
Z Z

Z
. 

If a patient is surviving at time t , the prediction based on the above conditional survival 

function is more informative than the baseline prediction. 

In dynamic prediction, it is customary to use the conditional failure function  

( , | ) Pr( | , )

                     1 Pr( | , )

( | )
                     1

( | )

F t t w D t w D t

D t w D t

S t w

S t

    

    


 

Z Z

Z

Z

Z

, 

rather than the conditional survival function. The conditioning event }{ tD   means that 

prediction of survival is meaningful only when a patient is still alive at time 0t . In this 

sense, the conditional failure function is similar to the hazard function that quantifies the 

instantaneous risks of death for those who are alive at time 0t . Indeed, the hazard function 

is related to the conditional failure function through  

0

( , | ) ( , | )
( | )

w

F t t dw dF t t w
t

dw dw




 
 

Z Z
Z . 

In dynamic prediction, a prediction formula is constructed at 0t  so that progression 

information about X  may be available in addition to }{ tD   and Z . We shall call t  as 

prediction time, the time at which a clinician makes a prediction for a patient. 

 

5.2.1 Conditional failure function 

First, suppose that a patient does not experience tumour progression at time t  (i.e., tX  ). 

Given that the patient is alive at time t , the conditional probability of death between t  and 

wt   is 

),,|Pr(),|,( ZZ tXtDwtDtXwttF  . 

Second, suppose that a patient experiences tumour progression before time t  and that the 

time of the tumour progression (i.e., xX  ) is available at time t . Given that the patient is 

still alive at time t , the conditional probability of death between t  and wt   is 
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),,|Pr(),|,( ZZ xXtDwtDxXwttF  ,      tx  . 

Tumour progression occurring to a patient may increase his/her probability of death. Thus, 

one may expect the inequality ),|,(),|,( ZZ tXwttFxXwttF   to hold for 0w   

(Figure 5.1). This inequality is usually implied by positive dependence between X  and D . 

Clearly, the equality ),|,(),|,( ZZ tXwttFxXwttF   is implied by the conditional 

independence between X  and D  given Z . 

 

 

Figure 5.1. Tumour progression occurring to a patient may increase his/her probability of 

death. Thus, the inequality ),|,(),|,( ZZ tXwttFxXwttF   holds for 0w  . 

 

The prediction time t  should be chosen prospectively. For instance, t  can be chosen 

according to calendar schedule (e.g. every 6 weeks after treatment) prescribed in a clinical 

trial. This schedule should not be influenced by the health status of a patient or any other 

reasons that might be informative for survival.  

Figure 5.2 demonstrates dynamic prediction for four hypothetical patients (named Patients 

1-4). Patients 1 and 2 have died before time t , so they are excluded from the target for 

prediction. Patients 3 and 4 are alive at time t , so they are the target for prediction. Patient 3 

experiences tumour progression before time t , so the prediction formula incorporates TTP. 

Patient 4 does not experience tumour progression before time t , so the prediction formula 

incorporates the information that TTP is greater than time t . 
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--------------------------------------------------------------------------------------------------------------- 

----------------------------------------------------------------------------------------------------------------- 

 

--------------------------------------------------------------------------------------------------------------- 

 

Figure 5.2: Dynamic prediction of death according to tumour progression. Prediction is not 

performed for Patients 1 and 2 who have died before time t . Prediction is performed for 

Patients 3 and 4 according to their tumour progression status observed before time t . 

 

In dynamic prediction, the conditional failure function provides graphical tools to 

demonstrate the time-varying risks of death. To facilitate the interpretation, one may fix either 

t  or w .  

Given w , the conditional failure function is interpreted analogously with the conditional 

hazard function. It represents how the amount of risk changes over time t . The increasing 

(decreasing) hazard function typically corresponds to the increasing conditional failure 

function (decreasing). van Houwelingen and Putter (2011) provide several examples to 

demonstrate this way of interpreting the conditional failure function. 

Patient 3 

Death with probability 

),|,( ZxXwttF   

Patient 4 
No progression 

before time t  

t  wt   0t  

Patient 2 

Patient 1 

Death  

Progression 

Progression  

at time x 

Death with probability 
),|,( ZtXwttF   

Death without progression 
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Given t , the conditional failure function is interpreted analogously with the usual 

distribution function; it is an increasing function from zero (at 0w ) to one (at w ). The 

plot of the conditional failure function against w  depicts how the risk of death evolves over 

time (Mauguen et al. 2013; Emura et al. 2018). See Figure 5.1. 

 

5.2.2 Conditional hazard function 

We define the conditional hazard function by letting w  to be a small number dw  in the 

conditional failure function. Specifically, we define two conditional hazard functions as 

dwxXdwttFxXt /),|,(),|( ZZ  , 

dwxXdwttFxXt /),|,(),|( ZZ  . 

Dependence between X  and D  is assessed by the cross-ratio function (Oakes 1989) 

)|,Pr()|,Pr(

)|,Pr()|,Pr(

),|(

),|(

ZZ

ZZ

Z

Z

tDxXtDxX

tDxXtDxX

xXt

xXt













,      0t ,    0x . 

The ratio greater than 1 corresponds to positive dependence while the ratio less than 1 

corresponds to negative dependence. See Chapter 2 for more details about the cross-ratio 

function. 

The cross-ratio function was originally employed by Clayton (1978) in order to introduce 

a bivariate survival model that satisfies  

),|()1(),|( ZZ xXtxXt   ,      0t ,    0x .                    (5.1) 

for some constant 0 . This is a proportional hazards model for the effect of }{ xX   

relative to the effect of }{ xX  , where the parameter )1(   represents the relative risk. 

Clayton (1978) introduced a model 


1

]1)|()|([)|,Pr(


  ZZZ tSxStDxX DX ,     0t ,    0x , 

where )|( ZxSX  and )|( ZtSD  are arbitrary continuous survival functions. Equation (5.1) 

holds true under Clayton’s model, irrespective of the forms of ( | )XS    and ( | )DS   . Clearly, 

Clayton’s model has a copula 
1/( , ) ( 1)C v w v w  



       that is the Clayton copula. 

The cross-ratio function was also employed by Day et al. (1997) in the landmark analysis 

of dynamic prediction. In the context of dynamic prediction, the interest lies in the case of 

xt   since one is concerned with the instantaneous risk of death at time t  according to the 

previous tumour progression status at time x . Especially by letting xt  , one can consider 

the effect of the current tumour progression status on the instantaneous risk of death at time t . 

The corresponding relative risk is 
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),|(

),|(

Z

Z

tXt

tXt








,          0t . 

This function represents the current effect of tumour progression on survival at time t . By 

Equation (5.1), this function is constant under the Clayton model.  

   The actual formulas for the conditional failure function and conditional hazard function 

depend on the types of models. van Houwelingen and Putter (2011) adopted the landmark 

approach based on the conditional Cox model at each prediction time. In recent years there 

has been a noticeable trend using joint models that account for the dependence between 

survival and other responses via frailty. Different frailty models have been developed to join 

different response types (Rizopoulos 2011; Mauguen et al. 2013; 2015; Proust-Lima et al. 

2014; Rondeau et al. 2017; Król et al. 2016; Sène et al. 2016). However, these existing frailty 

models for dynamic prediction have not been adapted to meta-analyses that combine 

heterogeneous studies. In the sequel, we introduce the joint frailty-copula model (Chapter 3) 

to construct the prediction formula based on IPD meta-analyses. 

 

 

5.3 Prediction formulas under the joint frailty-copula model 

We need an appropriate statistical model to derive prediction formulas, such as the 

conditional failure/hazard function. Since we aim to use meta-analytic data collected from 

heterogeneous studies, we consider a frailty model. Specifically, let 

),|Pr()|( ZuxXuxSX   and ),|Pr()|( ZuyDuySD   be survival functions given an 

unobserved frailty term u . Here, we use u  to represent the unobserved heterogeneity of 

patients, which is not explained by observed covariates Z . To simplify the presentation, we 

have suppressed Z  in the notations of )|( uxSX  and )|( uySD . We impose the assumption 

that u  follows a gamma distribution with a density  

0,0         ,exp
)/1(

1
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The distribution has mean 1 and variance   that represents the degree of heterogeneity. As in 

Chapter 3, we consider the joint frailty-copula model 

])|(),|([),|,Pr( uySuxSCuyDxX DX Z , 

where ),( wvC  is a copula, and the parameter   represents the degree of association 

between TTP and OS.  
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Following Emura et al. (2018), we divide a prediction formula into two different cases 

according to the tumour progression status:  

 

Case I: If the patient does not experience tumour progression before time t  (i.e., tX  ), the 

conditional failure function  is 

 
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0

( , | , ) Pr( | , , )

[ ( | ), ( | ) ] [ ( | ), ( | ) ] ( )
       ,

[ ( | ), ( | ) ] ( )

X D X D

X D

F t t w X t D t w D t X t

C S t u S t u C S t u S t w u f u du

C S t u S t u f u du

  

 





      

 





Z Z

 

and the conditional hazard function is 
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where tutSut DD  /)|(log)|( , and wwvCwvC  /),(),(]1,0[

 . 

 

Case II: If the patient experiences tumour progression before time t  (i.e., txxX  , ), the 

conditional failure function is 
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where ( | ) log ( | ) /X Xx u S x u x    . The conditional hazard function is 
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where vwvCwvC  /),(),(]0,1[

  and wvwvCwvC  /),(),( 2]1,1[

 . 

 

 

The derivations of these formulas are given in Appendix C. Appendix C also gives the 

simplified expressions under the independence copula vwwvC ),(  that corresponds to the 

joint frailty model of Rondeau et al. (2015).  

   We have defined the conditional hazard functions given the frailty u  rather than integrating 

it out. The reason is to utilize a mathematical relationship  

])|(),|([
),,|(

),,|(
utSutSR

utXt

utXt
DX










Z
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where 

),(),(

),(),(
),(

]1,0[]0,1[

]1,1[

wvCwvC

wvCwvC
wvR




   

is the cross-ratio function for the copula (Chapter 2). Under the Clayton copula 

1/( , ) ( 1)C v w v w  



     , the cross-ratio function becomes  1),( wvR  that is 

interpreted as the relative risk of }{ tX   vs. }{ tX  . Some other copulas also induce 

simple mathematical forms of ),( wvR  (Chapter 2). 

   To perform dynamic prediction on the basis of the conditional hazard functions, clinicians 

need to specify the unobserved frailty u . They may choose 1u  which corresponds to 

prediction for the average patient. Some sensitivity analysis on the range of 

 2121  u  might also be helpful. 

 

5.4 Estimating prediction formulas 

Before performing dynamic prediction for a new patient, all the unknown parameters in the 

prediction formulas must be estimated by a training dataset. The new patient refers to a 

hypothetical patient who is not included in the training dataset. We assume that survival 

outcome has not been observed for the new patient, but the baseline covariates 

)CC,CC,,( 2121 ZZZ   have been recorded: 

 1Z : 1p  clinical covariates associated with TTP,  

 2Z : 2p  clinical covariates associated with OS, 

 1 1 1 1 1CC q qwV w V   : compound covariate predictor for TTP, 

 2 1 1 2 2CC q qW W    : compound covariate predictor for OS, 

where 1 1( , , )qV V  are 1q  gene expressions associated with TTP, 1 2( , , )qW W  are 2q  gene 

expressions associated with OS, where the weights kw  and k  are determined by the training 

dataset. Assume that the gene expressions are standardized to have mean=0 and SD=1. A 

method of selecting 1q  (or 2q ) genes and computing kw  ( k ) is detailed in Chapter 4. 

By fitting a training dataset to the joint frailty-copula model, one can estimate survival 

functions for TTP and OS, respectively, as 
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where 
t

dxxrtR
0

00 )(ˆ)(ˆ  and 
t

dxxt
0

00 )(ˆ)(ˆ   are estimated baseline hazard functions, and 

1 2 1 2 0 0
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( , , , , , , , )r    β β  are parameter estimates, 1̂  (or 2̂ ) is the mean of 1CC  (or 2CC ), 

and 1̂  (or 2̂ ) is the SD of 1CC  (or 2CC ); the details are referred to Chapter 4. The baseline 

hazard functions are estimated by 0
ˆˆ ( ) ( )r t t g M  and 0

ˆ ˆ( ) ( )t t  h M , where 

))(,),(()( 51
 tMtMt M  are the cubic M-spline basis functions (Chapter 3; Appendix A). 

These estimates can be applied to compute the conditional failure/hazard functions. For 

instance, we compute the conditional failure functions 
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The confidence interval (CI) is computed by a simulation method of Section 4.7 in Chapter 4. 

Estimates for the conditional hazard ( | )t   are obtained in a similar way. 

  

Remarks: The spline basis functions ( )tM  are defined on ],[ 31 t , where 1  is the smallest 

value of TTP and 3  is the largest value of OS in the training dataset. This implies that the 

values of ˆ ( | )XS t u  and ˆ ( | )DS t u  are defined if ],[ 31 t . Accordingly, the values of 

ˆ ( , | )F t t w   is defined if both ],[ 31 t  and 1 3[ , ]t w     hold. If 1t   or 3t w   , the 

values of ˆ ( , | )F t t w   are undefined. 
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5.5 Case study: ovarian cancer data 

We use the data of Ganzfried et al. (2013) to demonstrate the dynamic prediction formulas 

under the joint frailty-copula model. The data consist of 912 ovarian cancer patients 

(American, Australian, and Japanese patients) from G 4 studies. The endpoints of interest 

are time-to-relapse and time-to-death, referred as TTP and OS, respectively. A large number 

of gene expressions are available as prognostic factors for TTP and OS. The data is 

summarized in Table 4.1 of Chapter 4. 

As in Chapter 4, we construct compound covariates: 

 

1CC  (0.249CXCL12) + (0.235TIMP2) + (0.222PDPN) +…+ (-0.152MMP12), 

involving 158 genes (P-value < 0.001 for TTP), and 

2CC  (0.237NCOA3) + (0.223TEAD1) + (0.263YWHAB) +…+ (-0.157KCNH4), 

involving 128 genes (P-value < 0.001 for OS).  

 

Here, gene expressions (e.g. CXCL12) are standardized to have mean=0 and SD=1 in the 912 

patients. The fitted joint frailty-copula model is  

ˆ ˆ ˆ1/

ˆ
ˆ ˆ ˆ ˆPr( , | ) [ ( | ), ( | ) ] [ ( | ) ( | ) 1]X D X DX x D y u C S x u S y u S x u S y u  



        , 

where  ̂ 1.9 (Kendall’s tau ̂ 0.49),  
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    

   
, 

where 2Z  is a clinical covariate (0 or 1) on the residual tumour size at surgery (  1cm 

or >1cm). The estimates are 1̂ =0.39, 2̂ =0.16, 2̂ =0.44, 1̂  0.338, 1̂ 10.468, 2̂ 0.222, 

2̂  7.894,  

)(0)(07.0)(0)(14.2)(85.0/)(ˆ)(ˆ
5432100 tMtMtMtMtMdttRdtr  , 

)(0)(27.0)(24.1)(05.1)(17.0/)(ˆ)(ˆ
5432100 tMtMtMtMtMdttdt  , 

for ]6420,0[t , where 6420 (days) is the maximum follow-up time. The heterogeneity 

parameter is ̂)( iuVar 0.04. Although models including more covariates could be 
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considered, they do not improve the above model in terms of its predictive ability. The R 

codes given in B2 of Appendix B produce the fitted values. 

We use the joint.Cox R package (Emura 2019) to perform dynamic prediction on two 

hypothetical patients with the following baseline covariates: 

 

 Patient 1: risk genes ( 10CC1  , 10CC2  )
8
; residual tumour>1cm ( 12 Z ). 

 Patient 2: protective genes ( 10CC1  , 10CC2  ); residual tumour 1cm ( 02 Z ). 

 

For instance, one can compute the conditional failure function ),|,(ˆ ZxXwttF   for 

Patient 2 with t 1000, 6420t w  , and x 600 using the following codes: 

 

library(joint.Cox) 
gamma1=0.39 # coefficient for CC1 
beta2=0.16 # coefficient for residual tumour 
gamma2=0.44 # coefficient for CC2 
theta=1.9 # copula parameter 
eta=0.04 # frailty parameter 
g=c(0.85, 2.14, 0, 0.07, 0) # hazard for TTP 
h=c(0.17, 1.05, 1.24, 0.27, 0) # hazard for OS 
lower=0 ### lower limit of t ### 
upper=6420 #### upper limit of t+w ### 
mu1=0.338 # mean of CC1 
SD1=10.468 # SD of CC1 
mu2=0.222 # mean of CC2 
SD2=7.894 # SD of CC2 
 
time=1000  
w_num=20 
widths=seq(0,upper-time,length=w_num) 
 
#### Patient 2 #### 
CC1=-10;CC2=-10;Z2=0   
X=600 ### relapse at 600 days ###  
 
F.prediction(time=time,width=widths, 
                        Z1=(CC1-mu1)/SD1, Z2=c((CC2-mu2)/SD2,Z2), X=X, 
                        beta1=gamma1, beta2=c(beta2,gamma2), eta=eta, theta=theta, alpha=0, 
                        g=g, h=h, lower, upper, Fplot=TRUE) 

 

                                                 
8
 To compute 1CC  for a real patient, one needs to know his/her 158 gene expressions. We have omitted this 

process to simplify the presentation.  1CC 10  is about a one SD change from the mean of 1CC . The same 

remarks apply to 2CC . 

Parameters in the model 

Prediction time 

Patient information 
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Below are the outputs: 

 
> F.prediction(time=time, width=widths, 
+               Z1=(CC1-mu1)/SD1, Z2=c((CC2-mu2)/SD2,Z2), X=X, 
+               beta1=gamma1, beta2=c(beta2, gamma2), eta=eta, theta=theta, alpha=0, 
+               g=g, h=h, lower, upper, Fplot=TRUE) 
                t                   w        X                   F 
 [1,]  1000         0.0000    600   0.0000000 
 [2,]  1000     285.2632   600   0.1949799 
 [3,]  1000     570.5263   600   0.3774276 
 [4,]  1000     855.7895   600   0.5359442 
 [5,]  1000   1141.0526   600   0.6646969 
 [6,]  1000   1426.3158   600   0.7633172 
 [7,]  1000   1711.5789   600   0.8353011 
 [8,]  1000   1996.8421   600   0.8859373 
 [9,]  1000   2282.1053   600   0.9206477 
[10,] 1000   2567.3684   600   0.9440686 
[11,] 1000   2852.6316   600   0.9597602 
[12,] 1000   3137.8947   600   0.9702692 
[13,] 1000   3423.1579   600   0.9773336 
[14,] 1000   3708.4211   600   0.9821059 
[15,] 1000   3993.6842   600   0.9853377 
[16,] 1000   4278.9474   600   0.9875151 
[17,] 1000   4564.2105   600   0.9889508 
[18,] 1000   4849.4737   600   0.9898454 
[19,] 1000   5134.7368   600   0.9903263 
[20,] 1000   5420.0000   600   0.9904741 
 

Figure 5.3 displays the conditional failure functions for Patient 1 and Patient 2. At the 

prediction time t 500 (days), Patient 1 has higher predicted probabilities of death due to the 

unfavourable baseline covariates, compared to Patient 2. Here, we have assumed that, at the 

prediction time t 500 (days), both Patient 1 and Patient 2 are relapse-free. To see how these 

predictions change as time passes, we assume that Patient 2 experiences relapse at x 600 

(days), but Patient 1 is still relapse-free at time t 1000 (days). Then, the predicted 

probability of death for Patient 2 gets higher than that for Patient 1. This risk inversion 

explains that the occurrence of relapse is a stronger risk factor than the unfavourable influence 

of baseline covariates. 
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Figure 5.3. The conditional failure functions computed for two patients. 

 

 

Figure 5.4 displays the conditional hazard function with relapse ( ),,|(ˆ utXt Z ) and 

that without relapse ( ),,|(ˆ utXt Z ) at 1u . Since we apply the Clayton copula, the fitted 

model meets the following proportional hazards relationship 

).,,|(ˆ9.2),,|(ˆ)ˆ1(),,|(ˆ utXtutXtutXt ZZZ    

Hence, the occurrence of relapse increases the risk of death by almost 3 times. Figure 5.4 

graphically exhibits this relationship. Patient 1 has higher hazard rates of death than Patient 2 

due to the unfavourable baseline covariates. The hazard rate for Patient 2 is quite stable and 

slowly decreasing, irrespective of the relapse status. Patient 2 has fairly good prognosis if 

relapse does not occur or tumour progression is suppressed during the follow-up (blue line in 

Figure 5.4). 
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Figure 5.4. The conditional hazard functions computed for two patients. 

 

5.6 Discussions 

This chapter has introduced the ideas of dynamic prediction and their implementation under 

the joint frailty-copula model. We have used the publicly available data on 912 ovarian cancer 

patients to establish the prediction formulas for overall survival. In addition to the clinical and 

genetic covariates, the prediction formulas can utilize the record of tumour progression events 

occurring before the time of prediction, where a copula is used to link the association between 

OS and TTP. The use of tumour progression information has not been considered in most of 

the available prediction formulas for ovarian cancer patients, which applied the traditional 

Cox regression models with clinical covariates and genetic covariates (Tothill et al. 2008; 

Yoshihara et al. 2010; 2012; Waldron et al. 2014).  

   Clinicians may use the R codes in Section 5.5 to perform prognostic analysis of a surgically 

treated ovarian cancer patient. Clinicians first enter the following items: 

 Prediction time (e.g., time=1000 days after surgery), 

 Time of tumour progression (e.g., X=600 days), 

 Residual tumour size (e.g., Z2=0 for residual tumour  1cm), 

 CCs (e.g., CC1=-10 and CC2=-10). They are set as CC1=0 and CC2=0 if no information is 

available for gene expressions. 
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Then, the codes automatically produce the predicted probability of death in the next w years.  

Emura et al. (2018) performed a leave-one-out cross-validation on the 912 patients to 

estimate the prediction error of the dynamic prediction formulas. This validation step follows 

the guideline given by Simon (2005), where both the selection of genes and the estimation of 

dynamic prediction formulas should be performed without the single left-out sample. Their 

cross-validation has demonstrated the benefit of using the dynamic prediction formula. 

However, before the dynamic prediction formulas are applied in clinical practice, an 

independent validation set may be employed to further assess the prediction ability. 
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Chapter 6: Future developments 

 

This chapter collects additional remarks on the previous chapters and several open problems 

for future research. This might help find research topics for students and researchers. 

 

Keywords: Compound covariate, dependent truncation, interaction, Kendall’s tau, left-

truncation, meta-analysis, recurrent event, surrogate endpoint 

 

6.1 Recurrent events data 

The joint frailty-copula model of Chapter 3 can be applicable to analyze recurrent events data 

if event times are measured in the gap time scale (Emura et al. 2017; Li et al. 2019). Under 

the recurrent event setting, the interpretation of the joint frailty-copula model is substantially 

different from the meta-analytic setting of Chapter 3. First, the frailty term represents the 

effect of unmeasured covariates at patient-level. Thus, this frailty introduces patient-level 

dependence among recurrences as well as patient-level dependence between recurrences and 

death. Second, copulas describe the residual dependence due to unmeasured recurrence-

specific covariates. That is, even after covariates and a frailty term are given, a pair of gap 

time and death time is still dependent. This dependence would be weakened if one could 

obtain sufficient amount of recurrence-specific covariates in each recurrence step j  (Li et al. 

2019). 

     For instance, Emura et al. (2017) analyzed G =403 patients with colorectal cancer who had 

operations in a hospital in Spain. The data was originally studied by González et al (2005) and 

made available in R frailtypack package (Rondeau and Gonzalez 2005). The patients are 

followed-up from the date of surgery to either the study end or the time of death whichever 

comes first. During the follow-up, patients may have several readmissions (recurrences) 

related to colorectal cancer. The number of recurrences varies from zero to twenty-two. The 

results of fitting the joint frailty-copula model under the Clayton copula show that there exists 

weak residual dependence between readmission and death (Kendall’s  =0.22, 95%CI: 0.14-

0.31). The reason for residual dependence may be the use of the same set of covariates for all 

the recurrence steps. This residual dependence could be removed, for instance, by 

incorporating time-dependent covariates which are updated at the last discharge date. In the 

absence of such covariates, the joint frailty-copula model can capture the residual dependence. 
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As pointed out by Li et al. (2019), the method of Emura et al. (2017) imposes some 

memoryless or Markov assumption in order to transform the likelihood function from the 

meta-analytic data to the recurrent event data. This makes it difficult to justify the validity of 

the likelihood function used in Emura et al. (2017) for recurrent event data. The likelihood 

derived Li et at. (2019) may resolve these issues. Beside the proposal of Li et al. (2019), there 

seems to be a few alternative ways to model dependence among recurrent gap times and times 

to death. For instance, one can consider a copula-based Markov chain for serial dependence 

between recurrent gap times and another copula for dependence between the first recurrent 

gap time and time-to-death. 

 

6.2 Kendall’s tau in meta-analysis 

Kendall’s tau is a widely used measure of dependence between two endpoints. For instance, 

medical researchers have used Kendall’s tau between time-to-tumour progression (TTP) and 

overall survival (OS) to assess the quality TTP as a surrogate endpoint for OS at individual-

level (Burzykowski et al. 2001; Rotolo et al. 2018). See also real data examples in Chapters 3-

5 that use Kendall’s tau between TTP and OS.  

   Let us reconsider the definition of Kendall’s tau in a meta-analysis that combines several 

different studies. In Chapters 3-5 and in Burzykowski et al. (2001), Kendall’s tau is actually 

be regarded as an “individual-level Kendall’s tau” as it is defined given a frailty value. 

In the following, two versions of Kendall’s tau shall be defined with and without a given 

frailty value. Let X  be TTP, D  be OS, and  U  be frailty. Suppose that ),,( UDX  has the 

joint density )()|,(),,( ufuyxfuyxf  . 

 

The individual-level Kendall tau is defined as 

2 1 2 1 2 1 2 1( ) Pr{ ( )( ) 0 | } Pr{ ( )( ) 0 | }Ind u X X D D u X X D D u         , 

where )|,(~),( uyxfDX ii , i 1 and 2, are independent pairs.  

 

The population-level Kendall tau is defined as 

2 1 2 1 2 1 2 1Pr{ ( )( ) 0} Pr{ ( )( ) 0}Pop X X D D X X D D         , 

where ),,(~),,( uyxfUDX iii , i 1 and 2, are independent pairs.  
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The population-level Kendall tau involves a double-integration on two frailty variables such 

that 

1 2

1 2

1 2

2 1 2 1 1 2 2 1 2 1 1 2

2 1 2 1 1 2

2 1 2 1 1 2 2 1 2 1 1 2

[ Pr{ ( )( ) 0 | , } Pr{ ( )( ) 0 | , } ]

              2 [ Pr{ ( )( ) 0 | , }] 1

              2 [ Pr{ , | , } Pr{ , | , }] 1

              2

Pop

U U

U U

U U

E X X D D U U X X D D U U

E X X D D U U

E X X D D U U X X D D U U

        

    

      


1 2 1 2 2 1( , | ) ( , | ) ( , | ) ( , | ) 1.U UE S x y U f x y U dxdy S x y U f x y U dxdy  

  

 

Rondeau et al. (2015) showed that the above expression depends only on the frailty 

distribution under their joint frailty model. Under the joint frailty-copula models, the 

expression may also depend on the copula. It is important to note that  

[ ( )] ( ) ( )Pop Ind IndE U u f u du     . 

Thus, even if the individual-level Kendall tau is zero for every u , the population-level 

Kendall tau may be nonzero. Usually, the population-level Kendall tau has a higher 

magnitude than the individual-level Kendall tau. However, theoretical analyses on the 

population-level Kendall tau and its relationship with the individual-level Kendall tau are less 

developed in the literature. A good starting point is to explore the expressions of the 

population-level Kendall tau under the joint frailty-copula model. 

 

6.3 Validation of surrogate endpoints 

Although the validation criteria for surrogate endpoints are still a subject of intense research, 

the current consensus is to base the validation on an approach of “correlation” based on a two-

step method (Burzykowski et al. 2005; Rotolo et al. 2018). In the first step model and in order 

to assess the quality of the surrogate at the individual-level, they proposed to use a measure of 

association between the surrogate and the true endpoint using a copula model. In the second 

stage, a surrogate is termed as “valid” at trial-level if it is able to predict the effect of 

treatment on the true endpoint based on the observed effect of treatment on the surrogate 

endpoint. In order to make a formal validation process for survival endpoints, Burzykowski et 

al. (2001) proposed to use random effects models, where the quality of surrogate at the trial-

level was assessed with a coefficient of determination ( 2R ). They proposed an adjusted trial-

level surrogacy measure, which takes estimation error of the treatment effects at the first step 

into account at the second stage. However, in each of their case studies, some convergence 

issues arise unless common baseline hazards across trials are assumed. Numerous articles 

have been published on the validation of surrogates, but the methods proposed are not suitable 

enough particularly in terms of identifiability or optimization (Burzykowski et al. 2005; Li et 



108 

 

al. 2011). Renfro et al. (2012) described that convergence problems were frequently 

encountered in the first step (at individual-level). But even when the first step provides 

estimators, the second stage (at trial-level) does not always provide an estimate of the adjusted 

coefficients of determination ( 2R ). These numerical problems are frequently encountered and 

are influenced by the number and size of the trials as well as assumptions made on the 

baseline hazards among trials. 

The FDA (the US Food and Drug Administration) adopts surrogate endpoints if they 

predict clinical outcome for the true endpoint. In many cancer studies, disease-free survival or 

progression-free survival is the surrogate endpoint for the true endpoint, namely OS. Rupp 

and Zuckerman (2017) reported that 18 anti-cancer drugs approved by the FDA on the basis 

of surrogate endpoints actually did not improve OS for patients. The reason behind this 

erroneous decision is difficult to identify. However, we should explore whether the problem 

comes from statistical tools. 

In this context it seems necessary to improve the existing methods to evaluate surrogate 

endpoints. It would be interesting to explore whether surrogate endpoints can be better 

validated by new statistical methods such as Rotolo et al. (2017). Also, the joint frailty-copula 

model (Chapter 3) is a tailored model to analyze the individual-level dependence via copulas 

in meta-analytic settings. However, developing a formal validation process of surrogacy 

requires further extensions of the joint frailty-copula model to incorporate the trial-level 

dependence. We are currently working on this topic. 

 

6.4 Left-truncation 

Left-truncation often occurs if the time scale of endpoints is measured in terms of age. If the 

endpoint of interest is age at death, left-truncation time corresponds to age at entry (entry age 

is not treated as a covariate). In other words, the endpoint is time-to-death measured from 

birth.  

All the examples discussed in this book were concerned about the endpoints measured 

from the study entry time, so the problem of left-truncation did not occur. Left-truncation is 

particularly relevant for survival data arising from epidemiological and observational studies, 

where researchers cannot specify the valid study entry time. From a methodological point of 

view, there is a growing interest in the issue of left-truncation arising from clustered survival 

data (Rondeau et al. 2017; Rodríguez-Girondo et al. 2018). 

Left-truncation yields a biased sampling since the patients are available only when the age 

at event exceeds the age at entry. All patients who have experienced the event before the entry 
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are not sampled. In survival analysis of a single endpoint, the bias due to left-truncation can 

be adjusted by multiplying an inverse sampling probability to the likelihood function (Klein 

and Moeschberger 2003). In analysis of two endpoints or clustered survival times, however, 

this adjustment is not always trivial. So far, there are three different approaches, called 

“naive”, “updated”, and “weighted approach” (Rodríguez-Girondo et al. 2018). Some method 

for handling left-truncation was already suggested for the joint frailty-copula model (Rondeau 

et al. 2015; Emura et al. 2017) without numerical studies. More thorough analyses, like 

Rodríguez-Girondo et al. (2018), would be needed. 

An interesting but challenging issue is to account for dependent left-truncation. 

Traditional analyses for left-truncated survival data rely on independent truncation 

assumption (p.126 of Klein and Moeschberger 2003). For instance, in survival analysis of 

elderly residents, the age at entry to a retirement centre is assumed to be independent of age at 

death (Hyde 1980). Several different tests for checking the assumption of independent 

truncation were developed (Emura and Wang 2010; Chiou et al. 2018). The effect of 

dependent truncation in competing risks analysis was studied by Bakoyannis and Touloumi 

(2017). To fit survival data with dependent left-truncation, a copula model between event time 

and left-truncation time has been considered (Chaieb et al. 2006; Emura and Wang 2012; 

Emura and Murotani 2015; Emura and Pan 2017). However, these methods cannot be directly 

applied to the case where two event times are subject to dependent truncation. In this case, 

one may consider two copulas, one for modeling dependent truncation and the other for 

modeling dependence between two event times. 

 

6.5 Interactions 

The models discussed in this book do not consider interactions between covariates. However, 

there are a few different cases, where interactions are of interest. 

 

(gene   gene) interaction 

The (gene   gene) interaction may exist between those genes working in the same pathway. 

A two-stage analysis may be a simple way to discover such interactions, where the first stage 

considers main effects and the second stage considers their interactions. In the first stage, a 

univariate feature selection method is performed to select genes associated with survival 

(Chapter 4). In the second stage, for all pair of selected genes, one can perform an additional 

feature selection method as an attempt to discover interactions between the genes A variety of 

different methods could be considered in the second stage.  
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However, in our experience of adding interaction terms into a compound covariate 

predictor, there is only a modest improvement in prediction power. This might be because the 

main effects carry majority of predictive information of survival, or the compound covariate 

implicitly incorporates some amount of interaction. There is an opportunity to apply a more 

sophisticated method that systematically incorporates the pathway or network information, 

such as those proposed by Kim et al. (2018), Wang and Chen (2018), and Choi et al. (2018). 

Exploration of the (gene   gene) interactions may not only improve prediction performance, 

but also lead to interesting insight about the biological mechanisms on the genes such as 

pathway structures. 

 

(gene   time) interaction 

Time-varying effects of genetic covariates are another interesting issue to be investigated. If 

clinical follow-up of patients is long, the prognostic effect of genes may vary over time.  

One may introduce time-varying effects of genes in the model by adding (gene   time) 

interaction terms. Specifically, the interaction term can be defined as )(CC tf , where CC  is 

a compound covariate (a linear combination of gene expressions) and )(tf  is a time function 

flexibly chosen by users. For instance, one can use )1log()(  ttf  (van Houwelingen and 

Putter 2011). In this way, the compound covariate accounts for “common” time-varying 

effects of genes. This approach would be effective if the majority of genes in the compound 

covariate share a similar time-varying effect on survival.  

If the time-varying effects of individual genes are heterogeneous, one may categorize 

genes into subgroups. For instance, one can consider two subgroups, where genes of short-

term effects and genes of long-term effects are separated. In this way, time-varying effects 

can be more homogeneous within the group. However, this strategy requires a way of 

grouping genes in order to reduce the heterogeneity of time-varying effects within a group. 

Although one can straightforwardly define the joint frailty-copula model with time-

varying effects, one cannot exploit the computational advantage of the spline models for the 

baseline hazard functions (i.e., the spline-based hazard functions have explicit integral 

formulas). As a result, likelihood-based inference becomes computationally demanding since 

the likelihood may involve some numerical integrations. One possible alternative is to impose 

piecewise exponential models for the baseline hazard functions. Some recent work on 

piecewise exponential models with copulas is referred to Emura and Michimae (2017). 
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6.6 Parametric failure time models 

Throughout this book, we focus on the spline-based model to fit the distributions of two 

endpoints. In this section, we shall briefly discuss the possibility of applying parametric 

models for analyzing correlated endpoints. Parametric models are usually simpler to use, 

interpret, and fit than semi-parametric models. However, as argued in Chapter 2, semi-

parametric models are more frequently used in cancer research. One reason is that the hazard 

function for cancer patients rarely shows any simple pattern (e.g., monotonically increasing or 

decreasing), due to the complex processes of treatment regimens and their effects on patients. 

On the other hand, the hazard function of machines or items may exhibit simpler patterns as 

long as they are used in normal conditions. That’s why parametric models are widely used in 

reliability analysis of manufactured items. 

   The Weibull distribution is one of the most frequently used parametric models in copula-

based analysis for two endpoints. Escarela and Carrière (2003) proposed to fit a copula-based 

parametric model to competing risks data, where they used a copula for dependence between 

competing event times that follows the Weibull model. Burzykowski et al. (2001, 2005) 

proposed a bivariate Weibull model for jointly performing Cox regression for two endpoints 

with meta-analytic data; their method is implemented in an R package (Rotolo et al. 2018). 

It is possible to apply the Weibull model to the joint frailty-copula model (Chapter 3; 

Emura et al. 2017) and to the dynamic prediction formulas (Chapter 5; Emura et al. 2018). 

Some advantages of the Weibull model is that one can compute the mean survival time, 

correlation coefficient between endpoints, mean residual lifetime, and other quantities. Notice 

that all these moment-based quantities are difficult to be computed in the spline-based model 

that leads to improper distributions for the endpoints. To simplify the computation of 

moments, it is interesting to apply a conjugate distribution (gamma distribution) for the 

Weibull distribution (Molenbergh et al. 2015). We also notice that the accuracy of the feature 

selection and compound covariate methods of Chapter 4 may be improved by employing 

parametric models.  

 

6.7 Compound covariate 

Tukey’s compound covariate method, as detailed in Chapter 4, is a simple method to predict 

survival based on high-dimensional covariates. The compound covariate predictor is an 

ensemble of univariate models of individual covariates, and hence, it is simpler than most of 

other prediction methods that use the penalized multivariate Cox model, such as the ridge and 
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Lasso methods. Nevertheless, the compound covariate predictor may exhibit a competitive 

performance with these multivariate methods (Emura et al. 2012; 2018; 2019; Zhao et al. 

2014; Chapter 4). While there are a number of real data analyses and simulation analyses on 

the compound covariate method, the theoretical studies are very scarce in the literature. 

The unique property of Tukey’s compound covariate is that it ignores the correlations 

between genes. Suppose that two genes are strongly correlated and both of them are 

univariately associated with survival (P-value<0.001). Hence, the two genes are included in a 

compound covariate predictor. If the two genes were re-fitted into a multivariate Cox model, a 

usual strategy is to remove one of them to avoid the multicollinearity issue. The same logic 

may apply to a large number of genes univariately associated with survival. The compound 

covariate predictor includes all them by ignoring their correlations (i.e. without going through 

a multivariate Cox model). 

In linear discriminant analysis, it has been well recognized that a predictor that ignores the 

correlations between individual covariates often performs better than a predictor that tries to 

account for dependence. In particular, Dudoit et al. (2002) reported a remarkable gain in 

predictive/classification accuracy by ignoring correlations among high-dimensional gene 

expressions. Some theoretical accounts for this phenomenon are available (Bickel and Levina 

2004). However, the theory behind compound covariate in survival models has not been 

explored in the literature. 

   Another unique property of compound covariate is its additive property. Compound 

covariate aggregates univariate predictors to construct a multigene predictor. This resembles 

the idea of naïve Bayes (Bickel and Levina 2004), jackknife model-averaging (Hansen and 

Racine 2012) or boosting (Hastie et al. 2009). Consequently, removing one univariate 

predictor from the multigene predictor does not change much the whole model. This property 

produces the robustness of the compound covariate predictor against the cut-off value for 

feature selection as discussed in Chapter 4. It is worth exploring the robustness and accuracy 

of the compound covariate method through the aforementioned machine learning approaches. 
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Appendix A: Spline basis functions 

This appendix defines the spline basis functions used in 
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where the range of integral is ],( 31  . Then, the penalization term is explicitly computed as  
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All the expressions mentioned above were derived in the supplementary material of 

Emura et al. (2017). The computational programs of the M- and I-spline basis functions are 

available in the joint.Cox R package (Emura 2019). These basis functions were derived from 

the general definition of M-spline basis functions given by Ramsay (1988). The derivations of 

these basis functions are detailed in Appendix A of Emura and Chen (2018).  
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Appendix B: R codes for the ovarian cancer data analysis 

B1. Using the CXCL12 gene as a covariate 

library(joint.Cox) 
data(dataOvarian) 
t.event=dataOvarian$t.event   ## time-to-relapse (TTP) ## 
event=dataOvarian$event   ## indicator for relapse ## 
t.death=dataOvarian$t.death   ## time-to-death (OS) ## 
death=dataOvarian$death   ## indicator for death ## 
Z1=dataOvarian$CXCL12  ## gene expression of CXCL12 ## 
group=dataOvarian$group   ## study indicator (4 studies) ## 
alpha_given=0 
grid=seq(10, 1e+17, length=30)  ## grid for searching the best smoothing parameter ## 
set.seed(1) 
res=jointCox.reg(t.event=t.event, event=event, t.death=t.death, death=death, 
                                Z1=Z1, Z2=Z1, group=group, alpha=alpha_given, 
                                kappa1=grid, kappa2=grid, LCV.plot=TRUE, Adj=500) 
res 
 
#### Plot the baseline hazard function for TTP #### 
par( mfrow=c(1, 1) ) 
t_min=min(t.event)  ## lower bound for the baseline hazard function 
t_max=max(t.death) ## upper bound for the baseline hazard function 
 
r1_func=function(t){ as.numeric( M.spline (t, t_min, t_max)%*%(res$g) ) } 
 
r1_Low_func=function(t){ ## lower confidence limit 
  M_vec=M.spline (t, t_min, t_max) 
  r1_V=M_vec%*%(res$g_var)%*%t(M_vec) 
  as.numeric( M_vec%*%(res$g)-1.96*sqrt(diag(r1_V)) ) 
} 
 
r1_Up_func=function(t){ ## upper confidence limit 

  M_vec=M.spline (t, t_min, t_max) 
      r1_V=M_vec%*%(res$g_var)%*%t(M_vec) 
      as.numeric( M_vec%*%(res$g)+1.96*sqrt(diag(r1_V)) ) 
} 
 
curve( r1_func, t_min, t_max, lwd=3, xlab="Days", 

      ylab="Baseline hazard", ylim=c(0.00003, 0.0012), xlim=c(0, 5500) ) 
curve(r1_Low_func, t_min, t_max, lty="dotted", add=TRUE, col="blue") 
curve(r1_Up_func, t_min, t_max, lty="dotted", add=TRUE, col="blue") 
 
AA=c("Hazard function for TTP","95% CI") 
BB=c("solid", "dotted") 
CC=c("black", "blue") 
legend(1800, 0.0011, AA, lwd=c(3, 1), merge = TRUE, lty=BB, col=CC) 
 
#### Plot the baseline hazard function for OS #### 
r2_func=function(t){as.numeric( M.spline (t, t_min, t_max)%*%(res$h) )} 
 
r2_Low_func=function(t){ ## lower confidence limit 
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  r2_V=M.spline (t, t_min, t_max)%*%(res$h_var)%*%t(M.spline (t, t_min, t_max)) 
  as.numeric( M.spline (t,t_min, t_max)%*%(res$h)-1.96*sqrt(diag(r2_V)) ) 
} 
 
r2_Up_func=function(t) { ## upper confidence limit 
  r2_V=M.spline (t, t_min, t_max)%*%(res$h_var)%*%t(M.spline (t, t_min, t_max)) 
  as.numeric( M.spline (t, t_min, t_max)%*%(res$h)+1.96*sqrt(diag(r2_V)) ) 
} 
 
curve(r2_func, t_min, t_max,lwd=3, lty="dotdash",xlab="Days",add=TRUE) 
curve(r2_Low_func, t_min, t_max, lty="dotted",lwd=1,add=TRUE,col="red") 
curve(r2_Up_func, t_min, t_max, lty="dotted",lwd=1,add=TRUE,col="red") 
 
AA=c("Hazard function for OS", "95% CI") 
BB=c("dotdash", "dotted") 
CC=c("black", "red") 
legend(3800, 0.0008, AA, lwd=c(3,1), merge = TRUE, lty=BB, col=CC) 
 
########## Relative risk (RR) ############## 
RR_TTP=c(RR=exp(res$beta1[1]), Low=exp(res$beta1[1]-1.96*res$beta1[2]), 
                   Up=exp(res$beta1[1]+1.96*res$beta1[2])) 
RR_OS=c(RR=exp(res$beta2[1]), Low=exp(res$beta2[1]-1.96*res$beta2[2]), 
                  Up=exp(res$beta2[1]+1.96*res$beta2[2])) 
 
list(alpha=alpha_given, 
      RR1=round(RR_TTP,2), RR2=round(RR_OS,2), eta=round(res$eta,4), 
      theta=round(res$theta,4), tau=round(res$tau,4) 
) 
 

 

B2. Using the compound covariates (CCs) and residual tumour as covariates 

library(joint.Cox) 
library(compound.Cox) 
 
data(dataOvarian1) 
data(dataOvarian2) 
t.event=dataOvarian1$t.event   ## time-to-relapse (TTP) ## 
event=dataOvarian1$event   ## indicator for relapse ## 
t.death=dataOvarian2$t.death   ## time-to-death (OS) ## 
death=dataOvarian2$death   ## indicator for death ##  
residual=dataOvarian1[,4]   ## residual tumour size (>=1cm vs. <1cm) 
group=dataOvarian1[,3]   ## study indicator (4 studies) ## 
X.mat1=dataOvarian1[,-c(1,2,3,4)]   ## genes associated with TTP 
X.mat2=dataOvarian2[,-c(1,2,3,4)]   ## genes associated with OS 
Symbol1=colnames(dataOvarian1)[-c(1,2,3,4)]   ## gene symbols for TTP 
Symbol2=colnames(dataOvarian2)[-c(1,2,3,4)]   ## gene symbols for OS 
X.mat1=as.matrix(X.mat1) 
X.mat2=as.matrix(X.mat2) 
q1=ncol(X.mat1) ## the number of genes associated with TTP ## 
q2=ncol(X.mat2) ## the number of genes associated with OS ## 
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##### Compound covariate for TTP #### 
res=uni.Wald(t.event,event,X.mat1) 
coef1=res$beta 
data.frame( gene=names(res$beta)[order(res$P)], P=res$P[order(res$P)], 
            coef=round(coef1[order(res$P)],3) ) 
CC1_train=X.mat1%*%coef1 ### Compound covariate for TTP ### 
mu1=mean(CC1_train) 
sigma1=sd(CC1_train) 
round(c(mu1=mu1,sigma1=sigma1),3) 
 
##### Compound covariate for OS #### 
res=uni.Wald(t.death,death,X.mat2) 
coef2=res$beta 
data.frame( gene=names(res$beta)[order(res$P)], P=res$P[order(res$P)], 
            coef=round(coef2[order(res$P)],3) ) 
CC2_train=X.mat2%*%coef2 ### Compound covariate for OS ### 
mu2=mean(CC2_train) 
sigma2=sd(CC2_train) 
round(c(mu2=mu2,sigma2=sigma2),3) 
 
mu2+2*sigma2  ## high-risk 
mu2-2*sigma2  ## low-risk 
 
############## Fit the joint frailty-copula model ################ 
grid=c(seq(10,1e+17,length=100)) 
set.seed(1) 
res=jointCox.reg(t.event=t.event, event=event, t.death=t.death, death=death, 
                 Z1=(CC1_train-mu1)/sigma1, Z2=cbind( residual,(CC2_train-mu2)/sigma2 ), 
                 group=group, alpha=0, convergence.par = TRUE, 
                 kappa1=grid, kappa2=grid, LCV.plot=TRUE, Randomize_num=1) 
 
########## Relative risk ######### 
RR_gamma1=exp(res$beta1[c(1,3,4)]) 
RR_beta2=exp(res$beta2[c(1,5,7)]) 
RR_gamma2=exp(res$beta2[c(2,6,8)]) 
 
########## Summarize estimates ############## 
list(RR_gamma1=round(RR_gamma1,2),RR_beta2=round(RR_beta2,2), 
     RR_gamma2=round(RR_gamma2,2),eta=round(res$eta,2), 
     theta=round(res$theta,1),tau=round(res$tau,2)) 
 
list(gamma1=round(res$beta1,3),beta2=round(res$beta2[c(1,3,5,7)],3), 
     gamma2=round(res$beta2[c(2,4,6,8)],3),eta=round(res$eta,3), 
     theta=round(res$theta,2),tau=round(res$tau,2), 
     g=round(res$g,2),h=round(res$h,2) 
) 

 

The codes do not include the calculations for the patient-level survival curves and their CIs. 
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Appendix C: Derivation of prediction formulas  

Case I: Given that the patient does not experience tumour progression before time t  (i.e., 

tX  ), the conditional failure function is 
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Case II: Given that the patient experiences tumour progression at time tx  , the conditional 

failure function is 
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If one applies the independence copula vwwvC ),(  to the previous formulas,   
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