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Abstract: We investigate the dependent relationship between two failure time vari-

ables that truncate each other. Chaieb, Rivest, and Abdous (2006) proposed a semi-

parametric model under the so-called “semi-survival” Archimedean-copula assump-

tion and discussed estimation of the association parameter, the truncation prob-

ability, and the marginal functions. Here the same model assumption is adopted

but different inference approaches are proposed. For estimating the association pa-

rameter, we extend the conditional likelihood approach (Clayton (1978)) and the

two-by-two table approach (Wang (2003)) to dependent truncation data. We fur-

ther show that the three estimators, including that proposed by Chaieb, Rivest, and

Abdous (2006), differ in weights. The likelihood approach provides the formula for

a good weight. Large sample properties of the proposed methods are established by

applying the functional delta method, which can handle estimating functions that

are not in the form of U-statistics. Analytic formulae for the asymptotic variance

estimators are provided. Two competing methods are compared via simulations,

and applied to the transfusion-related AIDS data.
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1. Introduction

Consider a pair of failure times (X,Y ) that can be included in a sample only if
X ≤ Y . The variable X is said to be right-truncated by Y , or Y is left-truncated
by X. Most literature on truncated data considers marginal analysis by assuming
that X and Y are quasi-independent (Tsai (1990)). This assumption might not
hold in practice. For example, in the study of transfusion-related AIDS, the
incubation time X is right-truncated by the lapse time Y measured from the
time of infection to the end of the study (Lagakos, Barraj, and De Gruttola
(1988)). Applying Tsai’s test, the hypothesis of quasi-independence between X

and Y is rejected. This surprising association might be attributed to changes in
medical practice in different chronicled periods.

To assess the degree of association between truncated variables, Tsai (1990)
modified Kendall’s tau by conditioning on an event that guarantees that the
chosen pairs are “comparable” under truncation. Tsai’s idea was later extended
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to more complicated truncation structures by Martin and Betensky (2005). Re-
cently Chaieb, Rivest, and Abdous (2006) proposed a “semi-survival” Archimedean
copula (AC) model suitable for describing dependent truncation data. They also
adopted the idea of pairwise comparison to estimate the association parameter.
In addition estimators of the marginal functions and the truncation probability
were proposed.

We consider the same model framework as in Chaieb, Rivest, and Abdous
(2006), but propose different inference procedures. The paper is organized as
follows. In Section 2, we review the related research. The proposed methods for
estimating the association parameter and the marginal functions are presented
in Section 3. Section 4 contains large sample analysis; proofs are given in the on-
line supplement. In Section 5, the proposed procedure is modified to account for
external censoring. Adjustment for analyzing datasets with small sample sizes is
also discussed. Numerical results, including simulation studies and data analysis,
are presented in Section 6. Concluding remarks are given in Section 7.

2. Preliminary

To simplify the analysis, it is assumed that both X and Y are continuous
variables and hence the data contains no ties.

2.1. Association measures and models for typical failure time data

Robust measures are usually preferred in analysis of failure time data. For
measuring association, Kendall’s tau (τ) is commonly used because of its rank
invariance property. Formally, τ = Pr(∆ij = 1) − Pr(∆ij = 0) = E(2∆ij − 1),
where ∆ij = I{Xi − Xj)(Yi − Yj) > 0} is the concordance indicator for the two
pairs (Xi, Yi) and (Xj , Yj) that are independent replications of (X,Y ). Oakes
(1989) proposed the following odds ratio function to describe local association:

θ̃(x, y) =
∂2Pr(X > x, Y > y)/∂x∂y · Pr(X > x, Y > y)
∂Pr(X > x, Y > y)/∂x · ∂Pr(X > x, Y > y)/∂y

=
Pr(∆ij = 1 | X̃ij = x, Ỹij = y)
Pr(∆ij = 0 | X̃ij = x, Ỹij = y)

,

where X̃ij = Xi ∧ Xj and Ỹij = Yi ∧ Yj , and where a ∧ b = min(a, b). Note that
the sign of log{θ̃(x, y)} indicates the direction of association at time (x, y).

Copula models form a class of bivariate distributions whose marginals are
uniform on the unit interval (Genest and Mackay (1986)). In applications, the
copula structure is usually imposed on the joint survival function of (X,Y )
such that Pr(X > x, Y > y) = Cα{Pr(X > x), Pr(Y > y)}, where Cα(u, v) :
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[0, 1]2 → [0, 1] and the parameter α ∈ R is related to Kendall’s τ by τ(α) =
4

∫ 1
0

∫ 1
0 Cα(u, v)Cα(du, dv) − 1.

A useful sub-class of the copula family is the Archimedean copulas (AC)
model in which Cα(u, v) is simplified to Cα(u, v) = φ−1

α {φα(u) + φα(v)} for
u, v ∈ [0, 1], where φα(·) : [0, 1] → [0,∞] is a one-dimensional function satisfying
φα(1) = 0, φ′

α(t) = ∂φα(t)/∂t < 0 and φ′′
α(t) = ∂2φα(t)/∂t2 > 0. Oakes (1989)

showed that, for an AC model indexed by the generating function φα(·), the odds
ratio function can be written as θ̃(x, y) = θα{Pr(X > x, Y > y)}, where θα(·) is
a univariate function satisfying

θα(v) = −v · φ′′
α(v)

φ′
α(v)

. (2.1)

Note that when φα(t) = − log(t), X and Y are independent and θα(v) = 1.

2.2. Association measures and models for truncated data

When (X,Y ) are observable only if X ≤ Y , none of the aforementioned
descriptive measures is identifiable. Tsai (1990) proposed a modified version
of Kendall’s tau given by τa = E(2∆ij − 1 | Aij), where Aij = {X̆ij ≤ Ỹij},
X̆ij = Xi ∨ Xj ≡ max(Xi, Xj), and Ỹij = Yi ∧ Yj . Notice that the event Aij

requires (X̆ij , Ỹij) be located in the identifiable region RU = {(x, y) : 0 ≤ x ≤
y < ∞}, and hence makes (Xi, Yi) and (Xj , Yj) be “comparable” in presence of
truncation. Chaieb, Rivest, and Abdous (2006) applied a similar idea to modify
the odds ratio function as:

θ∗(x, y) =
Pr(∆ij = 0 | X̆ij = x, Ỹij = y)
Pr(∆ij = 1 | X̆ij = x, Ỹij = y)

(x ≤ y) (2.2.a)

=
∂2Pr(X ≤ x, Y > y)/∂x∂y · Pr(X ≤ x, Y > y)
∂Pr(X ≤ x, Y > y)/∂x · ∂Pr(X ≤ x, Y > y)/∂y

. (2.2.b)

The interpretation of θ∗(x, y) is similar to that of 1/θ̃(x, y), but only the former
is identifiable for truncated data. For example, θ∗(x, y) < 0 means positive
association.

In light of (2.2.b), Chaieb, Rivest, and Abdous (2006) suggested imposing
the copula structure on the “semi-survival” function Pr(X ≤ x, Y > y) for
(x, y) ∈ RU . They proposed the semi-survival AC model

π(x, y) = {φ−1
α [φα{FX(x)} + φα{SY (y)}]}/c (x ≤ y), (2.3)

where π(x, y) = Pr(X ≤ x, Y > y | X ≤ Y ), FX(·), and SY (·) are arbitrary
continuous and survival functions, respectively, and c is a normalizing constant.
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A semi-survival AC model indexed by φα(·) also has the property θ∗(x, y) =
θα{cπ(x, y)}, where θα(v) is defined in (2.1).

2.3. Previous inference results for dependent truncation data

By temporarily ignoring the censoring effect, truncation data can be written
as {(Xj , Yj)(j = 1, . . . , n)} subject to Xj ≤ Yj . Tsai (1990) proposed to estimate
τa by

τ̂a =

∑
i<j(2∆ij − 1)I{Aij}∑

i<j I{Aij}
. (2.4)

Let π̂(x, y) =
∑

j I(Xj ≤ x, Yj ≥ y)/n be the empirical estimator of π(x, y) for
x < y. Under (2.3), Chaieb, Rivest, and Abdous (2006) proposed the estimating
equation ∑

i<j

1{Aij}
[
∆ij −

1
1 + θα{cπ̂(X̆ij , Ỹij)}

]
= 0. (2.5)

Equation (2.5) is derived from the equivalent formula∑
i<j

(2∆ij − 1)I{Aij} =
∑
i<j

1 − θα{cπ̂(X̆ij , Ỹij)}
1 + θα{cπ̂(X̆ij , Ỹij)}

I{Aij},

where the two sides of the above equation are related to non- and semi-parametric
estimators of τα. Notice that estimation of α under truncation also requires
information on c. Only the Clayton model, with φα(t) = (t−(α−1)−1)/(α−1) (α >
0) and θα(v) = α, does (2.5) not depend on c. Under dependent truncation,
existing methods for estimating the truncation probability (He and Yang (1998))
are not applicable.

Based on the model at (2.3), Chaieb, Rivest, and Abdous (2006) proposed
their second estimating equation for the marginal functions and c:

φα{cπ̂(t, t−)} = φα

{
c
R(t, t)

n

}
= φα{FX(t)} + φα{SY (t−)}, (2.6.a)

where t is an observed failure point for X or Y , and R(x, y) =
∑

j I(Xj ≤
x, Yj ≥ y). To solve (2.6.a), they made the additional constraint that, for some
x0 > y0 > 0,

FX(x0) = 1, SY (x0) > 0, FX(y0) > 0, SY (y0) = 1. (2.6.b)

An idea of Rivest and Wells (2001) was then adopted to solve the equa-
tions. Specifically, the jumps φα{SY (Yi)} − φα{SY (Yi−)} and φα{FX(Xi)} −
φα{FX(Xi+)} are calculated first, then summed up to time t, which leads to
the estimators of φα{FX(t)} and φα{SY (t)}, respectively. By plugging these
marginal estimators back into (2.6.a), an estimating function for c can be ob-
tained.
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In light of condition (2.6.b), a convenient choice for (x0, y0) is x0 = t2n−1

and y0 = t1. Accordingly the estimating equation for c can be written as

Uc(α, c) =
∑

j:t1<xj

[
φα

{
c
R̃(xj)

n

}
− φα

{
c
R̃(xj) − 1

n

}]
+ φα

( c

n

)
, (2.7)

which is obtained by setting t = y0 = t1 in equation (5.1) of Chaieb, Rivest, and
Abdous (2006). The resulting marginal estimators are

φα{ŜY (t)} = −
∑

j:yj≤t

[
φα

{
c
R̃(yj)

n

}
− φα

{
c
R̃(yj) − 1

n

}]
,

φα{F̂X(t)} = −
∑

j:t≤xj

[
φα

{
c
R̃(xj)

n

}
− φα

{
c
R̃(xj) − 1

n

}]
,

where R̃(t) =
∑

j I(Xj ≤ t, Yj ≥ t).

3. The Proposed Method for Estimating the Association Parameter

3.1. Motivation

Before introducing the proposed methods, we briefly review the development
of semiparametric inference methods for copula models imposed on the survival
functions. Early work focused on the Clayton copula based on bivariate right-
censored data. In his landmark paper, Clayton (1978) obtained an estimator
for the association parameter by maximizing a conditional likelihood function.
This estimator was later re-expressed by Clayton and Cuzick (1985) as a weighted
version of Oakes’ concordance estimator (Oakes (1982)). The new representation
is related to a U-statistics and is useful for deriving asymptotic properties (Oakes
(1986)).

Inference of copula models has been extended to semi-competing risks data
in which one variable is a competing risk for the other, but not versa. Log-rank
type estimating functions have been proposed by Day, Bryant, and Lefkopolou
(1997) under the Clayton model, and by Wang (2003) for general AC models
respectively. Estimating functions using the concordance information of paired
observations have been proposed by Fine, Jiang, and Chappell (2001) and Lakhal,
Rivest, and Abdous (2008).

3.2. Estimation based on conditional likelihood

Here we generalize the idea of Clayton (1978) to truncation data. Define the
set of grid points as follows:

ϕ =
{

(x, y) | x < y,

n∑
j=1

I(Xj ≤ x, Yj = y) = 1,

n∑
j=1

I(Xj = x, Yj ≥ y) = 1
}

.
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For a point (x, y) in ϕ, write ∆(x, y) =
∑

j I(Xj = x, Yj = y) for the binary
variable indicating whether failure occurs at (x, y). Given R(x, y) = r for (x, y) ∈
ϕ, and under model (2.3), ∆(x, y) is Bernoulli with

Pr{∆(x, y) = 1 | R(x, y) = r, (x, y) ∈ ϕ} =
θα{cπ(x, y)}

r − 1 + θα{cπ(x, y)}
.

Since Pr{R(x, y) = r | (x, y) ∈ ϕ} may contain little information about α, we
suggest using the conditional probability to construct the likelihood function:

L(α, c, π) =
∏

(x,y)∈ϕ

[ θα{cπ(x, y)}
R(x, y) − 1 + θα{cπ(x, y)}

]∆(x,y)

×
[ R(x, y) − 1
R(x, y) − 1 + θα{cπ(x, y)}

]1−∆(x,y)
.

Differentiating log{L(α, c, π̂)} with respect to α, we obtain the estimating func-
tion

UL(α, c) =
∫∫

(x,y)∈ϕ

θ̇α{cπ̂(x, y)}
θα{cπ̂(x, y)}

[
∆(x, y) − θα{cπ̂(x, y)}

R(x, y) − 1 + θα{cπ(x, y)}

]
= 0,

where θ̇α = ∂θα(v)/∂α. For Clayton’s model, UL(α, c) reduces to

UL(α) =
∫∫

(x,y)∈ϕ

1
α

[
∆(x, y) − α

R(x, y) − 1 + α

]
,

which depends only on α. However for other members in the AC family, esti-
mation of α requires the information of c as well. Specifically ∂ log L(α, c, π)/∂c

yields the same estimating function as UL(α, c), since θα(cv) depends on (α, c)
only through a single parameter. For example the Frank copula (Genest (1987)),
defined as φα(v) = log{(1−α−1)/(1−α−v)}, has the form θα(cv) = cv log(α)/(1−
e−cv log(α)), and it is a function of the single parameter γ = c log(α). This implies
that the likelihood function cannot identify α and c simultaneously.

3.3. Estimation based on two-by-two tables

Motivated by ideas of Day, Bryant, and Lefkopolou (1997) and Wang (2003),
we can construct a series of 2 × 2 tables at observed failure points (x, y) with
x ≤ y:

Y = y Y > y

X = x N11(dx, dy) N1•(dx, y)
X < x

N•1(x, dy) R(x, y)
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Here cell counts are N11(dx, dy) =
∑

j I(Xj = x, Yj = y), N•1(x, dy) =
∑

j I(Xj ≤
x, Yj = y), and N1•(x, dy) =

∑
j I(Xj = x, Yj ≥ y). The odds ratio of the above

table is related to θ∗(x, y) defined in (2.2). In absence of ties, all tables of inter-
est have N1• = N•1 = 1 and N11 is Bernoulli. Given the marginal counts, the
conditional mean of N11(dx, dy) under model (2.3) is

E{N11(dx, dy) | N1•, N•1, R)

= Pr(N11(dx, dy) = 1 | N1• = N•1 = 1, R)N•1(x, dy)N1•(dx, y)

=
θα{cπ(x, y)}

R(x, y) − 1 + θα{cπ(x, y)}
N•1(x, dy)N1•(dx, y).

The resulting log-rank type estimating function can be written as

Uw(α, c) =
∫∫

x≤y
wα,c(x, y)

[
N11(dx, dy) − N1•(dx, y)N•1(x, dy)θα{cπ̂(x, y)}

R(x, y) − 1 + θα{cπ̂(x, y)}

]
,

(3.1.a)
where wα,c(x, y) is a weight function. Note that we have N1•(dx, y)N•1(x, dy) = 1
if and only if (x, y) ∈ ϕ and ∆(x, y) = N11(dx, dy). Accordingly, Uw(α, c) can be
written as

Uw(α, c) =
∫∫

(x,y)∈ϕ
wα,c(x, y)

[
∆(x, y) − θα{cπ̂(x, y)}

R(x, y) − 1 + θα{cπ̂(x, y)}

]
. (3.1.b)

3.4. Concordance-type expression

For right-censored data, Clayton’s likelihood estimator can be expressed in
terms of concordance indicators (Clayton and Cuzick (1985)). We now establish
a similar relationship for truncation data. By some algebraic calculations,

Uw(α, c) =
∫∫

(x,y)∈ϕ
wα,c(x, y)

[
∆(x, y)− θα{cπ̂(x, y)}

R(x, y)−1+θα{cπ̂(x, y)}

]
=−

∑
i<j

1{Aij}
wa,c(X̆ij , Ỹij)[1+θα{cπ̂(X̆ij , Ỹij)}]
R(X̆ij , Ỹij)−1+θα{cπ̂(X̆ij , Ỹij)}

[
∆ij−

1
1+θα{cπ̂(X̆ij , Ỹij)}

]
. (3.2.a)

The proof is given in Appendix B of the on-line supplement in which right-
censoring is also considered. From (3.2.a), the estimating function proposed by
Chaieb, Rivest, and Abdous (2006) can be generalized to

Ũw(α, c) =
∑
i<j

1{Aij}w̃α,c(X̆ij , Ỹij)[∆ij −
1

1 + θα{cπ̂(X̆ij , Ỹij)}

]
. (3.2.b)
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3.5. Interpretation of the suggested weight in UL(α, c)

We have demonstrated that the two estimating functions Uw(α, c) and Ũw(α, c)
with flexible weight functions are equivalent. Generally speaking, the first-
moment condition alone does not provide enough information if efficiency is also
of concern. What matters is the choice of weights. Our proposal UL(α, c), which
is derived from the conditional likelihood, corresponds to the specific weights

wα,c(x, y) =
θ̇α{cπ̂(x, y)}
θα{cπ̂(x, y)}

,

w̃α,c(x, y) = − θ̇α{cπ̂(x, y)}
θα{cπ̂(x, y)}

1 + θα{cπ̂(x, y)}
R(x, y) − 1 + θα{cπ̂(x, y)}

,

for (3.1.b) and (3.2.b), respectively.
Alternatively we may adopt the generalized estimating equations (GEE) for

choosing the weights. Conditional on the marginal counts, the mean and variance
of N11(dx, dy) are

µ(α,c)(x, y) =
θα{cπ̂(x, y)}

R(x, y) − 1 + θα{cπ̂(x, y)}
,

V(α,c)(x, y) =
θα{cπ̂(x, y)}{R(x, y) − 1}

[R(x, y) − 1 + θα{cπ̂(x, y)}]2
.

It can be shown that the recommended weights can be written as

θ̇α{cπ(x, y)}
θα{cπ(x, y)}

=
{ ∂

∂α
µ(α,c)(x, y)

}
V(α,c)(x, y)−1,

where the right side is the suggestion by GEE under the independence working
assumption (Liang and Zeger (1986)).

We examine two AC models for the sake of illustration. For the Clayton
model, the measure of association 1/θα(v) = 1/α does not depend on v. It
follows that θ̇α(v)/θα(v) = 1/α, which implies that equal weights are assigned
to all observed points. For the Frank model, it follows that 1/θα(v) = (1 −
α−v)/{v log(α)} and θ̇α(v)/θα(v) = 1/{α log(α)} − vα−v−1/(1 − α−v), both of
which depend on v. Figure 1 depicts the two functions under the Frank model
with three patterns of association (positive, no, and negative). We see that
the suggested weight θ̇α(v)/θα(v) gets large as the level of association 1/θα(v)
increases. Under the degenerate case of independence, the suggested weight for
the Clayton copula is the un-weighted version of Uw(α, c), while that for the
Frank copula becomes

lim
α→1

θ̇α{cπ̂(x, y)}
θα{cπ̂(x, y)}

=
cπ̂(x, y)

2
∝ R(x, y),
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Figure 1. The odds ratio function 1/θα(v) = (1 − α−v)/{v log(α)} and the
suggested weight function θ̇α(v)/θα(v) = 1/(α log(α)) − vα−v−1/(1 − α−v)
under the Frank model. Three parameter values log(α) = 1, log(α) = 0, and
log(α) = −1 correspond to negative association, no association, and positive
association on (X,Y ), respectively.

which is “the number at risk” for truncated data. This difference between the two
weights is somewhat analogous to that between the log-rank and Gehan statistics
in the classical problem of two-sample comparison.

4. Asymptotic Analysis

4.1. Asymptotic theory

Large sample analysis of Ũw(α, c) can be conducted based on properties of
U-statistics if w̃α,c(x, y) is deterministic (Chaieb, Rivest, and Abdous (2006)),
but this approach is not applicable here since the weight function involves the
plugged-in estimator π̂(x, y). We apply the functional delta method (Van Der
Vaart (1998, Thm. 20.8)) and properties of empirical processes for large-sample
analysis. Under the regularity conditions stated in the on-line supplement, we
obtain the asymptotic linear representation

√
n

[
α̂ − α0

ĉ − c0

]
=

1
n1/2

n∑
i=1

A−1Uα0,c0(Xi, Yi) + op(1), (4.1)
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where A and Uα0,c0(·, ·) are defined in the on-line supplement. Equation (4.1)
also provides the basis for variance estimation, which is discussed in Section 4.2.

The first two theorems state that the proposed estimators (α̂, ĉ), which
jointly solve Ũw(α, c) = 0 in (3.2.b) and Uc(α, c) = 0 in (2.7), are consistent
and asymptotically normal. Theorem 3 establishes weak convergence of the pro-
posed marginal estimators. The proofs are given in the on-line supplement. Let
(α0, c0) be the true values of (α, c).

Theorem 1. α̂ → α0 and ĉ → c0 in probability.

Theorem 2. n1/2(α̂ − α0, ĉ → c0)T converges in distribution to a mean-zero
bivairate normal with covariance matirix A−1B(A−1)T , where A is defined in
(4.1) and B = E[Uα0,c0(Xi, Yi)Uα0,c0(Xi, Yi)T ].

Theorem 3. The stochastic process n1/2(ŜY (t)−SY (t), F̂X(t)−FX(t))T conver-
gences weakly to the mean-zero Gaussian random field G(t) = (GX(t), GY (t))T in
the space {D[0,∞)}2, with the covariance function given at (A.4) of the on-line
supplement.

4.2. Asymptotic variance estimator

From Theorem 2, the asymptotic variance of n1/2(α̂− α0, ĉ → c0)T is A−1B

(A−1)T , and can be estimated by plugging in Âα̂,ĉ and B̂α̂,ĉ defined in Appendix
A3 of the on-line supplement. Here we derive Âα̂,ĉ and B̂α̂,ĉ under the Clayton
model with φα(t) = (t−(α−1) − 1)/(α − 1) (α > 1).

(1) For w̃α,c(x, y) = 1 (the estimator of Chaieb, Rivest, and Abdous (2006)):

Âα =
1

(1 + α)2n2

∑
k,l

I{Akl},

B̂α =
1
n

∑
i

(
2
n

∑
l

I{Ail}[∆il −
1

1 + α
] − 2

n2

∑
k,l

I{Akl}[∆kl −
1

1 + α
]
)2

.

(2) For w̃α,c(x, y) = −(1 + α)/{R(x, y) − 1 + α} (the proposed estimator):

Âα = − 1
α2n2

∑
k,l

I{Akl}
∆kl − 1/(1 + α)

π̂(X̆kl, Ỹkl)
+

1
α(1 + α)n2

∑
k,l

I{Akl}
π̂(X̆kl, Ỹkl)

,

B̂α =
1
n

∑
i

(
− 1 + α

αn2

∑
k,l

I{Akl}
[∆kl − 1/(1 + α)]

π̂(X̆kl, Ỹkl)2

×{I(Xi ≤ X̆kl, Yi ≥ Ỹkl) − π̂(X̆kl, Ỹkl)}
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+
2(1 + α)

αn

∑
l

I{Ail}
[∆il − 1/(1 + α)]

π̂(X̆il, Ỹil)

−2(1 + α)
αn2

∑
k,l

I{Akl}
[∆kl − 1/(1 + α)]

π̂(X̆kl, Ỹkl)

)2

.

The variance for the two estimators of α under the Clayton model is

Var (n1/2α̂) ≈ Â−2
α̂ B̂α̂. (4.2)

For other AC models, explicit derivation of the variance estimator becomes
very complicated. We suggest using the jackknife method for variance estimation
as in Chaieb, Rivest, and Abdous (2006). This is a convenient tool that can
be applied to all members of AC models, even in the presence of censoring.
Specifically, the variance of θ̂ = (α̂, ĉ)T can be estimated by

n − 1
n

∑
j

(θ̂(−j) − θ
(·))(θ̂(−j) − θ

(·))T ,

where θ̂(−j) is the estimator after deleting the jth observation and θ̄(·) =∑
j θ̂(−j)/n.

In the simulation studies provided in the on-line supplement, we compare
the performance of the estimator at (4.2) and the jackknife estimator under the
Clayton model. Both variance estimators have reasonable performances in finite
samples. The analytic estimator has smaller mean squared error (MSE) than
the jackknife estimator in all cases, but the difference is modest. Confidence
intervals using the two variances with the normal approximation have similar
coverage probabilities that are close to the nominal level in all cases.

5. Extension and Modification

5.1. Extension under right censoring

Consider the situation in which Y is subject to left-truncation by X and
right- censoring by another variable C. Assume that C is independent of (X,Y ).
The sample can be written as {(Xi, Zi, δi)(i = 1, . . . , n)} satisfying Xi ≤ Zi,
where Zi = Yi ∧ Ci, δi = I(Yi ≤ Ci), and (Xi, Yi, Ci)(i = 1, . . . , n) are random
replications of (X,Y,C).

Chaieb, Rivest, and Abdous (2006) expressed the semi-survival AC model as

π∗(x, y) = Pr(X ≤ x,Z > y | X ≤ Z) = SC(y)
φ−1

α [φα{FX(x)} + φα{SY (y)}]
c∗

,

where SC(y) = Pr(C > y), x ≤ y, and c∗ is a normalizing constant. The
objective is to estimate the unknown parameters (α, c∗, FX(·), SY (·), SC(·)). We
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re-parameterize θα{cπ(x, y)} as θα{c∗v(x, y)}, where cπ(x, y) = c∗v(x, y) and
v(x, y) = π∗(x, y)/SC(y).

Now we modify the first estimating function based on conditional likelihood
estimation. To simplify the presentation, we use the same notation but change
definitions. To read

ϕ =
{

(x, y) | x ≤ y,
∑

j

I(Xj ≤ x, Zj = y, δj = 1) = 1,

∑
j

I(Xj = x, Zj ≥ y) = 1
}

,

∆(x, y) =
∑

j

I(Xj = x, Zj = y, δj = 1), R(x, y) =
∑

j

I(Xj ≤ x, Zj ≥ y).

The proposed estimating function is then given by

UL(α, c∗) =
∫∫

(x,y)∈ϕ

θ̇α{c∗v̂(x, y)}
θα{c∗v̂(x, y)}

[
∆(x, y) − θα{c∗v̂(x, y)}

R(x, y) − 1 + θα{c∗v̂(x, y)}

]
,

(5.1)
where v̂(x, y) = R(x, y)/{nŜC(y)} and ŜC(y) is an estimator of SC(y). In the
presence of censoring, UL(α, c∗) can also be expressed in terms of pairwise concor-
dance indicators as in (3.2.a), refer to Appendix B of the on-line supplement for
details. Under independent censorship, SC(y) can be estimated by the Lynden-
Bell estimator

ŜC(y) =
∏

j:Zj≤y,δj=0

{1 − 1
R(Zj , Zj)

}.

The estimating equation UL(α, c∗) = 0 can be solved jointly with the second
estimating equation proposed by Chaieb, Rivest, and Abdous (2006). In Ap-
pendix C of the on-line supplement, we derive explicit forms for these estimating
functions for selected examples of φα(t).

5.2. Modification for small risk sets

The proposed estimation procedure, as well as that proposed by Chaieb,
Rivest, and Abdous (2006), are based on the implicit assumption that R(tj , tj+) ≥
1 for all tj . However it sometimes happens that an empty risk set occurs especially
in the tail area. Several remedies have been proposed (Klein and Moeschberger
(2003, p.122)). Here we adopt the idea of Lai and Ying (1991) and propose the
modification

φα{ŜY (t)} = −
∑

j:zj≤t,δj=1

[
φα

{
c∗

R̃(zj)
nŜc(zj)

}
− φα

{
c∗

R̃(zj) − 1
nŜc(zj)

}]
I{R̃(zj) ≥ bna},
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Table 1A. Comparison of two estimators for the association parameter under
the Clayton model.

(c, c∗) − log(α) n = 250 n = 500
(τ) Proposed Chaieb et al. Proposed Chaieb et al.

(0.55, 0.34) 0.5108 3.6 (0.37) 7.8 (0.98) -2.2 (0.19) -0.3 (0.51)
(0.55, 0.39) (0.25) 0.5 (0.35) 5.2 (0.80) 0.3 (0.14) 1.2 (0.40)
(0.66, 0.45) 1.6 (0.44) 6.1 (1.04) -0.6 (0.19) -1.3 (0.49)
(0.66, 0.53) 0.7 (0.29) 0.5 (0.74) -1.2 (0.12) -1.5 (0.38)
(0.80, 0.63) -0.9 (0.44) 1.5 (1.13) -0.3 (0.18) 2.9 (0.53)
(0.80, 0.80) 0.3 (0.17) 5.4 (0.53) 2.5 (0.08) 3.7 (0.26)
(0.63, 0.36) 1.0986 3.0 (0.44) 7.1 (1.09) -0.3 (0.20) -0.5 (0.52)
(0.63, 0.42) (0.5) -3.5 (0.44) -3.2 (0.95) -1.5 (0.18) 2.7 (0.49)
(0.74, 0.48) -5.4 (0.52) -5.5 (1.27) -0.1 (0.23) 0.2 (0.62)
(0.74, 0.58) -0.2 (0.20) 4.0 (0.54) -4.6 (0.18) -2.9 (0.47)
(0.86, 0.66) 2.5 (0.56) 6.2 (1.44) -0.7 (0.24) 0.2 (0.74)
(0.86, 0.86) -6.7 (0.28) -2.1 (0.86) 0.6 (0.13) 0.6 (0.38)

Each cell contains the bias (×10−3) and MSE (×10−2) (in parenthesis) of the

corresponding estimator based on 500 replications.

where 0 < a < 1 and b > 0 are arbitrary tuning parameters. Modifications for
φα{F̂X(t)} and ŜC(t) are obtained in a similar way. In simulations not shown
here, we found that taking b = 1 and a = 1/10 produced less biased results.
Under the Clayton and Frank models with negative association (α > 1), we
found some simulated datasets for which the estimating equation for c∗ does not
have zero. This problem can be alleviated by the same type of modification to
the estimating equation.

6. Numerical Analysis

6.1. Simulation studies

The main purpose of the simulation studies was (i) to check the validity of
the proposed estimators, and (ii) to compare the performance of the proposed
method with that of Chaieb, Rivest, and Abdous (2006). Random replications
of (X,Y ) were generated from the Clayton and Frank models with exponential
marginal distributions subject to X ≤ Y . For the Clayton model, the values
of − log(α) were chosen to be 0.511 and 1.099 and, for the Frank model, the
values of − log(α) were set to 2.380 and 5.746. The former setting corresponds to
π = 0.25 and the latter corresponds to τ = 0.5. The censoring variable C followed
an exponential distribution. With c = Pr(X ≤ Y ) and c∗ = Pr(X ≤ Y ∧C). We
report the bias and MSE based on 500 replications.

Tables 1A and 1B summarize the results for the two competing estimators of
α under the Clayton model and Frank model, respectively. The results in Table
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Table 1B. Comparison of two estimators for the association parameter under
the Frank model.

(c, c∗) − log(α) n = 250 n = 500
(τ) Proposed Chaieb et al. Proposed Chaieb et al.

(0.50, 0.31) 2.380 -371.9 (216.14) -360.6 (241.92) -243.3 (131.45) -257.1 (151.72)
(0.50, 0.36) (0.25) -294.2 (201.13) -342.5 (239.21) -140.5 ( 94.01) -141.8 ( 96.03)
(0.63, 0.43) -102.2 (100.42) -106.3 (116.84) -99.2 ( 51.85) -88.4 ( 59.76)
(0.63, 0.51) -162.9 ( 95.06) -156.4 (102.07) -35.9 ( 44.27) -34.6 ( 48.62)
(0.81, 0.63) -53.5 ( 52.87) -36.0 ( 55.31) -19.4 ( 26.87) -24.5 ( 28.49)
(0.81, 0.81) -68.6 ( 37.55) -68.1 ( 37.62) -26.1 ( 20.53) -25.8 ( 20.53)
(0.50, 0.29) 5.746 -429.6 (293.47) -411.3 (332.07) -373.9 (130.48) -349.2 (146.83)
(0.50, 0.34) (0.5) -367.3 (223.11) -368.2 (247.30) -246.1 (115.74) -252.5 (129.13)
(0.69, 0.44) -182.2 (129.78) -155.9 (147.13) -0.1259 ( 68.20) -96.1 ( 73.32)
(0.69, 0.53) -136.9 (100.55) -142.4 (104.41) -114.0 ( 49.40) -100.0 ( 51.47)
(0.88, 0.66) -57.0 ( 64.71) -21.4 ( 72.73) -78.0 ( 33.97) -78.0 ( 36.76)
(0.88, 0.88) -128.3 ( 41.53) -128.2 ( 41.56) -27.8 ( 21.91) -27.5 ( 22.01)

Each cell contains the bias (×10−3) and MSE (×10−2) (in parenthesis) of the

corresponding estimator based on 500 replications.

1A show that the proposed estimator has significantly better performance under
Clayton’s model, reducing the MSE to half or one third in all cases. On the other
hand, Table 1B shows that the gain in efficiency is modest under Frank’s model.
It is interesting to note that, under the Frank model in the absence of censoring
(c = c∗), the two estimators produce similar results. In this case, we found that
the numerical value of

θ̇α{cπ̂(x, y)}
θα{cπ̂(x, y)}

1 + θα{cπ̂(x, y)}
R(x, y) − 1 + θα{cπ(x, y)}

(6.1)

did not vary much at different values of (x, y), which explains the similarity
in MSE. Nevertheless when the censoring proportion increased, the value of at
(6.1) depended more on (x, y) and the proposed estimator tended to have better
performance. Notice that the MSE of both estimators was larger under the Frank
model (Table 1B) than those under the Clayton model (Table 1A). From (5.1), we
see that the suggested weight under the Clayton model (see UL(α) in Appendix
C1 of the on-line supplement) does not contain any nuisance parameter. On the
other hand, the weight under the Frank model (see UL(γ) in Appendix C2 of the
on-line supplement) involves estimation of the nuisance parameter v(x, y).

Table 2 details the performance of the marginal estimators proposed by
Chaieb, Rivest, and Abdous (2006) under the Clayton and Frank models, where
PCEN = Pr(C < Y | X ≤ Z) denotes the proportion of censoring in the
sample. Their estimating equations were calculated jointly with our proposal
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Table 2. The proposed estimators of marginal functions and truncation
proportion.

parameter True n=250 n=250 n=500 n=500
PCEN =0.00 PCEN =0.41 PCEN =0.00 PCEN =0.41

Clayton model
c/c∗ 0.86/0.66 2.0 (0.04) 1.3 (0.27) 2.0 (0.02) 0.4 (0.15)

FX(t1) 0.2 -1.6 (0.06) -1.7 (0.05) -0.2 (0.03) -1.1 (0.03)
FX(t2) 0.4 -2.0 (0.08) -2.1 (0.11) -0.3 (0.04) -1.1 (0.06)
FX(t3) 0.6 -0.2 (0.09) -2.3 (0.15) 0.7 (0.05) -1.9 (0.08)
FX(t4) 0.8 -1.2 (0.07) 0.7 (0.16) 1.9 (0.04) -0.9 (0.07)
SY (t1) 0.8 0.8 (0.09) 0.1 (0.08) 0.0 (0.04) 0.2 (0.04)
SY (t2) 0.6 1.5 (0.10) -0.3 (0.12) -0.7 (0.05) 0.9 (0.06)
SY (t3) 0.4 1.5 (0.08) 0.4 (0.14) -1.1 (0.04) 0.2 (0.06)
SY (t4) 0.2 -0.6 (0.06) -1.3 (0.15) -0.1 (0.03) -0.2(0.07)

Frank model
c/c∗ 0.88/0.66 -0.9 (0.11) -4.1 (0.34) -1.7 (0.06) 1.0 (0.15)

FX(t1) 0.2 -0.1 (0.08) -3.4 (0.07) -1.8 (0.04) -1.8 (0.04)
FX(t2) 0.4 -3.5 (0.11) -3.6 (0.12) -1.9 (0.05) -2.1 (0.06)
FX(t3) 0.6 -3.7 (0.09) -0.8 (0.14) -0.8 (0.05) -1.1 (0.07)
FX(t4) 0.8 -1.5 (0.06) -1.9 (0.12) -0.7 (0.03) -0.9 (0.06)
SY (t1) 0.8 -0.4 (0.11) -4.7 (0.13) -1.6 (0.07) -2.4 (0.06)
SY (t2) 0.6 -1.1 (0.11) -3.9 (0.14) -0.6 (0.06) -1.7 (0.07)
SY (t3) 0.4 -0.4 (0.10) -2.6 (0.16) -1.5 (0.05) -2.1 (0.07)
SY (t4) 0.2 -1.0 (0.06) -1.9 (0.15) -1.0 (0.03) -1.8 (0.07)

Each cell contains the bias (×10−3) and MSE (×10−2) (in parenthesis) based on

the recursive estimator using the likelihood method for the association parameter.

The censoring proportion is denoted by PCEN = Pr(C < Y | X ≤ Z).

UL(α, c∗) = 0. The estimators for distribution/survival functions were evaluated
at selected points of t with FX(t) = 0.2, 0.4, 0.6, 0.8 and SY (t) = 0.2, 0.4, 0.6, 0.8.
In all cases, (c∗, F̂X(·), ŜY (·)) were fairly unbiased. The MSE grew smaller as
the sample size increased and the censoring rate (PCEN ) decreased. The perfor-
mances under the Clayton model were very similar to, or slightly better than,
those for the Frank models.

It is worth noting that the estimated distribution/survival functions had
better performance in the tail area but poorer performance in the middle, which
differs from that of the usual Kaplan-Meier estimator. The high accuracy in the
tails may be due to the fact that the constraints F̂ (t2n−1) = 1 and ŜY (t1) = 1
were close to the true condition in the simulation setting.

6.2. Data analysis

We apply the inference procedures to the transfusion-related AIDS data dis-
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Table 3. Analysis of the transfusion-related AIDS data.

Proposed Chaieb et al.

Assumption:

Clayton copula
Estimates

95% jackknife

interval
Estimates

95% jackknife

interval

− log(α) 0.203 (τ = 0.101) (0.112, 0.295) 0.195 (τ = 0.097) (0.065, 0.326)

c 0.336 (0.201, 0.472) 0.329 (0.176, 0.483)

Wald’s chi-squarefor

for H0 : log(α) = 0

19.173

(p-value<0.001)

8.562

(p-value<0.003)

Assumption:

Frank copula
Estimates

95% jackknife

interval
Estimates

95% jackknife

interval

− log(α) 3.752 (τ = 0.369) (2.272, 5.232) 3.736 (τ = 0.368) (2.256, 5.215 )

c 0.543 (0.356, 0.729) 0.541 (0.354, 0.7271)

Wald’s chi-squarefor

for H0 : log(α) = 0

24.696

(p-value<0.001)

24.495

(p-value<0.001)

cussed in Kalbfleisch and Lawless (1989). Let T be the infection time, measured
from January 1, 1978, and X be the incubation time from the time of infection to
AIDS. Only individuals who developed AIDS by the starting date, July 1, 1986,
could be observed. Since the total study period was 102 months, individuals with
T +X ≤ 102 were included in the sample that consisted of 293 subjects. Setting
Y = 102 − T , the incubation time X is right truncated by Y . Note that there
was no external censoring.

We analyzed the data under two different model assumptions. The data
contains many ties in both X and Y . We break these ties by adding uniform
random variables on [−0.4, 0.4] which does not change the original ordering. The
results are summarized in Table 3. Under the Clayton model, both estimators of
α showed positive correlation between X and Y : patients infected earlier tended
to have longer incubation time. The dependence of the incubation period on
the calendar time of infection may be a cohort effect due to changes in personal
lifestyle or medical treatment. Both estimators rejected the null hypothesis of
quasi-independence: H0 : α = 1. This conclusion also follows from Tsai’s non-
parametric test (1990). The confidence intervals for − log(α) and c, based on the
proposed likelihood estimator, are narrower than those obtained by the estimator
of Chaieb, Rivest, and Abdous (2006). The level of association between X and
Y appeared stronger when the Frank model was assumed. As in the simulations
(Table 1B with c = c∗), the two estimators produced similar results under the
Frank model.

Figure 2 depicts the estimated incubation distributions under the two model
assumptions, applying the marginal estimators of Chaieb, Rivest, and Abdous
(2006) together with the proposed estimators for the association parameter. The
estimated curve under the Clayton model is significantly lower than that under
Frank’s model; the marginal estimators are also sensitive to the model choice.
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Figure 2. The cumulative distribution functions of the incubation time of
AIDS under two copula models.

7. Conclusion

Chaieb, Rivest, and Abdous (2006) proposed semi-survival AC models for
describing the joint behavior of two dependent variables that truncate each other,
and suggested semiparametric inference methods. Here we proposed different
approaches for parameter estimation and large-sample analysis.

For estimating the association parameter, our proposed log-rank statistics
have an equivalent expression as the pairwise concordance statistics proposed by
Chaieb, Rivest, and Abdous (2006). It is essential to choose a weight function
that leads to a more efficient estimator. For semi-competing risks data, Fine,
Jiang, and Chappell (2001) suggested some guidelines for selecting the weight
function but did not provide any theoretical justification. Here the suggested
weight function was originally derived from a conditional likelihood function,
but can also be obtained by applying the principle of GEE. Simulation analysis
confirmed that the suggested weight does produce more efficient results.

To establish large-sample properties, we used the functional delta method
to handle estimating functions with flexible weights. The variance estimator
at (4.2) can be viewed as a generalization of the results in Oakes (1982, 1986)
under bivariate censored data. Alternatively, the jackknife estimator provides a
convenient option for variance estimation.

More studies on the conditional likelihood approach are warranted. Com-
pared to moment-type estimators, this approach has the advantage that it can
handle the situation when the dimension of α exceeds one. Also, it may be in-
teresting to investigate the efficiency loss in assuming the working assumption
of independence among the different 2 × 2 tables. Extension of the approach
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under more complicated truncation settings, as in Martin and Betensky (2005),
deserves further investigation.
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