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a b s t r a c t

A goodness-of-fit testing procedure for Archimedean copula (AC) models is developed
based on right-censored data. The proposed approach extends an existing method, which
is suitable for the Clayton model, to general AC models. Asymptotic properties of the
proposed test statistics under the true model assumption are derived. Simulation analysis
shows that the proposed test has reasonable performance. Finally, two real data examples
are analyzed for illustrative purposes.
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1. Introduction

Copula models are popular choices for describingmultivariate data. They have themajor advantage that the dependence
structure can be studied separately from marginal distributions. Archimedean copula (AC) models form a useful family
of copula models in which the dependence structure can be further characterized by a univariate function (Nelsen,
2006, Section 4). See Frees and Valdez (1998) for insurance applications and Wang and Wells (2000) for biomedical
applications. In this article, we consider the bivariate case and propose a testing procedure for checking the goodness-of-fit
for the imposed AC model assumption.
If the failure time variables (X, Y ) follow a copula model, their joint survival distribution S(x, y) = Pr(X > x, Y > y) can

be written as

S(x, y) = C{SX (x), SY (y)},

where SX (x) = S(x, 0) and SY (y) = S(0, y) are the marginal survival functions, and C(u, v) : [0, 1]2 → [0, 1] is the copula
function. For AC models, the bivariate copula function can be further simplified as

Cα(u, v) = φ−1α [φα(u)+ φα(v)], (1)

where φα(·) : [0, 1] → [0,∞] is a univariate function which has two continuous derivatives satisfying φα(1) = 0, φ′α(t) =
∂φα(t)
∂t < 0 and φ′′α(t) =

∂2φα(t)
∂t2

> 0. The parameter α measures the degree of association related to Kendall’s τ , which is a
rank-invariant correlation measure. Specifically, let (Xi, Yi) and (Xj, Yj) be two random replications of (X, Y ). Kendal’s tau is
defined as

τ = Pr(∆ij = 1)− Pr(∆ij = 0),
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where∆ij = I{(Xi − Xj)(Yi − Yj) > 0}. It holds that

τ = 4
∫
∞

0

∫
∞

0
S(x, y)dS(x, y)− 1 = 4

∫ 1

0

∫ 1

0
C(u, v)dC(u, v)− 1 = 4

∫ 1

0

φα(t)
φ′α(t)

dt + 1,

where the last identity specifies the relationship between τ andα for an ACmodel. The following cross ratio function (Oakes,
1989) is useful for describing the local association:

θ∗(x, y) =
S(x, y) · ∂2S(x, y)/∂x∂y
∂S(x, y)/∂x · ∂S(x, y)/∂y

.

For AC models, Oakes (1989) showed that θ∗(x, y) can be written as

θ∗(x, y) = θα{S(x, y)}, (2)

where θα(v) = −vφ′′(v)/φ′(v) is a univariate function.
Semiparametric inference of the association parameter α for a chosen AC model has been a popular research topic in

the literature. The form of φα(·) is assumed but the marginal distributions are not specified. Therefore how to choose an
appropriate φα(·) based on the data at hand is an important issue for practical applications. Oakes (1989) and Genest and
Rivest (1993) derived analytic properties of ACmodels that are useful formodel selection. Specifically, Oakes (1989) showed
that

E[∆ij | X̃ij = x, Ỹij = y] =
θα{S(x, y)}

θα{S(x, y)} + 1
, (3)

where X̃ij = Xi∧Xj and Ỹij = Yi∧Yj, where a∧b = min(a, b). Genest and Rivest (1993) derived that the variable V = S(X, Y )
has the distribution function

Kα(v) = Pr(V ≤ v) = v − λα(v), (4)

where λα(v) = φα(v)/φ′α(v) for 0 < v ≤ 1.
Eq. (4) has been adopted for model selection by Genest and Rivest (1993) for complete data and by Wang and Wells

(2000) for bivariate censored data. The idea is to measure the goodness-of-fit based on the distance between nonparametric
and model-based estimators of K(v) = Pr(V ≤ v) which characterizes the model. However, the distribution of the
distance statistics (i.e., the supremum norm or L2 form of a function) is quite complicated. Alternatively, some authors
suggested approximating the distribution of a test statistics under the null hypothesis based on re-sampling techniques
such as parametric bootstrap procedures (Dobric and Schmid, 2007; Nikoloulopoulos and Karlis, 2008; Genest et al., 2009).
However, the computational cost of re-sampling methods may restrict their applicability.
A different strategy, originally proposed by Gill and Schumacher (1987), is to compare the discrepancy between two

point estimators which are derived under the same class of estimating functions but with different weight functions. If the
imposed model assumption is correctly specified, the two estimators will be close to each other. On the other hand, when
the model assumption is wrong, the values of the two estimators will fall apart if the weights are properly chosen. Formal
goodness-of-fit tests can be constructed since asymptotic properties are easier to handle. Shih (1998) adopted this idea to
check the assumption of the Clayton model with φα(t) = (t−α − 1)/α. In this article we extend this approach to general AC
models based on Eq. (3). The proposed goodness-of-fit statistics are introduced in Section 2. Section 3 contains simulation
results and Section 4 contains real data applications. Concluding remarks are given in Section 5.

2. The proposed test

We consider testing

H0 : C(u, v) = φ−1α [φα(u)+ φα(v)] for some α ∈ R.

The alternative hypothesis can be any copula other than the one specified as H0. We will examine the power performance
when the alternative hypothesis follows a different ACmodel or a non-ACmodel. We will first ignore censoring to illustrate
the main idea. In Section 2.5, the proposed method will be modified to account for the censoring effect.

2.1. The main idea

In the absence of censoring, the observed data can be written as {(Xi, Yi); (i = 1, . . . , n)}, and the concordance indicator
∆ij is observable. A class of estimating equations based on Eq. (3) can be constructed as

Uk(α) =
∑
i<j

Wk(X̃ij, Ỹij, α)

[
∆ij −

θα{Ŝ(X̃ij, Ỹij)}

θα{Ŝ(X̃ij, Ỹij)} + 1

]
, (5)
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whereWk(·, ·, ·) is a weight function and Ŝ(x, y) is an estimator of S(x, y). For complete data, we can use the empirical sur-
vival function Ŝ(x, y) = 1

n

∑
i I(Xi ≥ x, Yi ≥ y). To construct a goodness-of-fit test, we need to choose twoweight functions,

and then obtain α̂kwhich solvesUk(α) = 0 for k = 1, 2. UnderH0 and some regularity conditions, n1/2{α̂1−α̂2} converges to
amean-zero normal distribution. The power of the test depends on the choice of twoweights. In principle, one weight func-
tion should utilizemoremodel informationwhile the other should be lessmodel-dependent. It is expected that n1/2{α̂1−α̂2}
will show a large discrepancy when H0 does not hold. We propose to choose one weight function using some likelihood in-
formation, which will be discussed in Section 2.2. For the other weight function, we suggest the unweighted version since
it does not contain any model information. Sometimes, for better normal approximation, one may use n1/2{γ̂1− γ̂2}, where
γ is a monotone function of α.

2.2. Conditional likelihood and the weight function

We generalize the likelihood approach proposed by Clayton (1978) and show that the resulting estimating function can
also be written as the form of Uk(α) in (5). Define the set of grid points,

ψ =

{
(x, y) |

n∑
i=1

I(Xi = x, Yi ≥ y) = 1,
n∑
i=1

I(Xi ≥ x, Yi = y) = 1

}
.

Define D(x, y) =
∑n
i=1 I(Xi = x, Yi = y), which measures the number of observed failures at (x, y) ∈ ψ , and R(x, y) =∑n

i=1 I(Xi ≥ x, Yi ≥ y), which measures the number at risk at (x, y) ∈ ψ . Assuming that the data contains no ties and
conditional on R(x, y) for (x, y) ∈ ψ , D(x, y) is a Bernoulli random variable with the success probability Pr{D(x, y) = 1 |
R(x, y) = r}. Clayton (1978) derived this probability under the Clayton model with φα(v) = (v−α − 1)/α. For an AC model,
we show that

Pr{D(x, y) = 1 | R(x, y) = r} =
θα{S(x, y)}

r − 1+ θα{S(x, y)}
.

Combining all the points inψ under theworking assumption of independence among different grids, the likelihood function
can be written as

L(α) =
∏

(x,y)∈ψ

[
θα{S(x, y)}

R(x, y)− 1+ θα{S(x, y)}

]D(x,y) [ R(x, y)− 1
R(x, y)− 1+ θα{S(x, y)}

]1−D(x,y)
. (6)

Motivated by the paper of Oakes (1986), we apply some algebraic operations (given in Appendix A) to show that the resulting
log-likelihood can be written as

l(α) =
∑
i

log
[

θα{S(Xi, Yi)}
Rii − 1+ θα{S(Xi, Yi)}

]
+

∑
i<j

(1−∆ij) log

[
Rij − 1

Rij − 1+ θα{S(X̃ij, Ỹij)}

]
, (7)

where Rij = R(X̃ij, Ỹij) = nŜ(X̃ij, Ỹij). The resulting score function becomes

U1(α) =
∑
i<j

θ̇α{Ŝ(X̃ij, Ỹij)}[θα{Ŝ(X̃ij, Ỹij)} + 1]

θα{Ŝ(X̃ij, Ỹij)}[Rij − 1+ θα{Ŝ(X̃ij, Ỹij)}]

[
∆ij −

θα{Ŝ(X̃ij, Ỹij)}

θα{Ŝ(X̃ij, Ỹij)} + 1

]

=

∑
i<j

W1(X̃ij, Ỹij)

[
∆ij −

θα{Ŝ(X̃ij, Ỹij)}

θα{Ŝ(X̃ij, Ỹij)} + 1

]
, (8a)

where θ̇α(v) = ∂θα(v)/∂α. The second estimating function is given by

U2(α) =
∑
i<j

[
∆ij −

θα{Ŝ(X̃ij, Ỹij)}

θα{Ŝ(X̃ij, Ỹij)} + 1

]
. (8b)

By solving Uk(α) = 0, we have α̂k for k = 1, 2.
Though we have assumed the absence of ties in the derivation, the resulting Eqs. (8a) and (8b) can still be calculated for

tied data without any tie breaking method. Note that the validity of (8a) and (8b) is due to the moment equation (3) that is
derived under the continuity assumption of S(x, y). If the underlying distribution is continuous but ties occur due to random
round-off of the observation, the resulting bias in (8a) and (8b) should be modest. On the other hand, if ties occur due to the
discrete mass in the distribution, the proposed method may not be appropriate.



3036 T. Emura et al. / Computational Statistics and Data Analysis 54 (2010) 3033–3043

For the Clayton model with φα(t) = (t−α − 1)/α, θα{S(x, y)} = α + 1, which is a constant. In this special case,
Eqs. (8a) and (8b) reduce to the results in Shih (1998). For the Gumbel model with φα(v) = {− log(v)}α+1, we have
θα{S(x, y)} = 1− α/{log S(x, y)} and

W1(X̃ij, Ỹij) =
2 log Ŝ(X̃ij, Ỹij)− α

{log Ŝ(X̃ij, Ỹij)− α}{α − Rij log Ŝ(X̃ij, Ỹij)}
.

Therefore,

U1(α) =
∑
i<j

2 log Ŝ(X̃ij, Ỹij)− α

{log Ŝ(X̃ij, Ỹij)− α}{α − Rij log Ŝ(X̃ij, Ỹij)}

[
∆ij −

log Ŝ(X̃ij, Ỹij)− α

2 log Ŝ(X̃ij, Ỹij)− α

]
. (9)

We will use the Gumbel model for illustration in subsequent discussions.

2.3. Asymptotic distributional theory

In this section, we derive the asymptotic distribution of n1/2(α̂1 − α̂2) and also n1/2(γ̂1 − γ̂2) if the latter provides a
better approximation to the normal distribution. The theoretical challenge comes from the fact thatU1(α) andU2(α) involve
the estimator Ŝ(x, y) (see Eq. (9) for the Gumbel case). Lemma 1 states that U1(α) and U2(α) can be approximated by the
following two U-statistics:

Ũ1(α) =
∑
i<j

θ̇α{S(X̃ij, Ỹij)}[θα{S(X̃ij, Ỹij)} + 1]

θα{S(X̃ij, Ỹij)}S(X̃ij, Ỹij)

[
∆ij −

θα{S(X̃ij, Ỹij)}

θα{S(X̃ij, Ỹij)} + 1

]
, (10a)

and

Ũ2(α) =
∑
i<j

[
∆ij −

θα{S(X̃ij, Ỹij)}

θα{S(X̃ij, Ỹij)} + 1

]
. (10b)

Lemma 1. Under the correct model and regularity conditions in Appendix B.1,

n
(
n
2

)−1
U1(α) =

(
n
2

)−1
Ũ1(α)+ oP(1),

(
n
2

)−1
U2(α) =

(
n
2

)−1
Ũ2(α)+ oP(1),

where oP(1) is uniform in α.
If the parameter α has a positive value as in the Gumbel model, the natural logarithm transformation can improve the normal

approximation. The following two results are derived by taking γ = logα and γ̂k = log α̂k for k = 1, 2.

Lemma 2. Under the correct model and the regularity conditions in Appendix B.1,

n1/2(γ̂1 − γ̂2) = n1/2
(
n
2

)−1∑
i<j

h{(Xi, Yi), (Xj, Yj)} + oP(1),

where the function h is symmetric in its arguments and is defined as

h{(Xi, Yi), (Xj, Yj)} ≡
1
α

(
θ̇α{S(X̃ij, Ỹij)}[θα{S(X̃ij, Ỹij)} + 1]

ALθα{S(X̃ij, Ỹij)}S(X̃ij, Ỹij)
−
1
A

)[
∆ij −

θα{S(X̃ij, Ỹij)}

θα{S(X̃ij, Ỹij)} + 1

]
,

A ≡ E

(
θ̇α{S(X̃12, Ỹ12)}

[θα{S(X̃12, Ỹ12)} + 1]2

)
and AL ≡ E

(
[θ̇α{S(X̃12, Ỹ12)}]2

θα{S(X̃12, Ỹ12)}[θα{S(X̃12, Ỹ12)} + 1]

)
.

Based on Lemma 2 and applying the central limit theorem for U-statistics (p. 162, Theorem 12.3 of Van Der Vaart, 1998), we
can obtain the following theorem.

Theorem 1. Under the correct model and the regularity conditions in Appendix B.1, n1/2(γ̂1 − γ̂2) converges in distribution to a
normal distribution with mean zero and variance σ 2 = 4E[h{(X1, Y1), (X2, Y2)}h{(X1, Y1), (X3, Y3)}].
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2.4. The proposed testing procedure

For testing H0, we propose to reject H0 at the significance level κ if |γ̂1 − γ̂2|/σ̂ is greater than the upper κ/2 percentile
of the standard normal distribution, where σ̂ is an estimator of σ/

√
n.

The asymptotic variance σ 2 can be estimated based on its analytical expression by averaging over all possible observation
triples. However this analytic formula becomes complicated for right-censored data. Alternatively, we can use the jackknife
estimator defined as

σ̂ 2Jack =
n− 1
n

n∑
i=1

{γ̂
(−i)
1 − γ̂

(−i)
2 − (γ̂

(·)
1 − γ̂

(·)
2 )}

2,

where γ̂ (−i)k is the statistic γ̂k ignoring the i-th observation and γ̂
(·)
1 − γ̂

(·)
2 =

1
n

∑n
i=1(γ̂

(−i)
1 − γ̂

(−i)
2 ).

2.5. Modification for right censoring

When (Xi, Yi) are subject to right censoring by (Ai, Bi) such that one can only observe (
^
X i,

^
Y i, δXi , δ

Y
i ) (i = 1, . . . , n),

where
^
X i = Xi ∧ Ai,

^
Y i = Yi ∧ Bi, δXi = I(Xi ≤ Ai) and δ

Y
i = I(Yi ≤ Bi). We assume that (Ai, Bi) is independent of (Xi, Yi).

The order of Xi and Xj is known if and only if X̃ij ≤ Ãij, where X̃ij = Xi ∧ Xj and Ãij = Ai ∧ Aj. Similarly, the order of Yi and Yj
can be known if and only if Ỹij ≤ B̃ij. Define Zij = I(X̃ij ≤ Ãij, Ỹij ≤ B̃ij), which indicates whether the ordering relationship is
certain or not. We can modify Uk(α) in (5) by selecting only ‘‘orderable’’ pairs with Zij = 1 such that

Uk(α) =
∑
i<j

ZijWk(X̃ij, Ỹij, α, Ŝ)

[
∆ij −

θα{Ŝ(X̃ij, Ỹij)}

θα{Ŝ(X̃ij, Ỹij)} + 1

]
(k = 1, 2), (11a)

where ∆ij = I{(
^
X i −

^
X j)(

^
Y i −

^
Y j) > 0} and Ŝ(x, y) is an estimator of S(x, y) suitable for right-censored data. Note that,

to simplify the presentation, we may use the same notations but change their definitions for the censoring case. The first
suggested weight function has the form

W1(X̃ij, Ỹij, α, S) =
θ̇α{S(X̃ij, Ỹij)}[θα{S(X̃ij, Ỹij)} + 1]

θα{S(X̃ij, Ỹij)}[Rij − 1+ θα{S(X̃ij, Ỹij)}]
,

where Rij =
∑n
l=1 I(

^
X l ≥ X̃ij,

^
Y l ≥ Ỹij) and the second one isW2(X̃ij, Ỹij, α, S) = 1.

A possible candidate of Ŝ(x, y) is the nonparametric estimator proposed by Dabrowska (1988). Since the estimator is
somewhat complicated, one may use the following model-based estimator:

S̃α(x, y) = φ−1α {φα[ŜX (x)] + φα[ŜY (y)]},

where ŜX (x) and ŜY (y) are marginal Kaplan–Meier estimators of SX (x) and SY (y), respectively. To obtain α̂k, one can solve
the equation∑

i<j

ZijWk(X̃ij, Ỹij, α, S̃(l−1))

[
∆ij −

θα{S̃(l−1)(X̃ij, Ỹij)}

θα{S̃(l−1)(X̃ij, Ỹij)} + 1

]
= 0 (11b)

successively for l = 1, 2, . . ., until some convergence criterion is met, where S̃(l) is defined as S̃α(x, y), with α being the
estimated value in the l-step. The initial value α0 may be obtained by inverting a naïve estimate of Kendall’s tau based on
{(

^
X i,

^
Y i) : (i = 1, . . . , n)}. Our simulation analysis shows that the two methods for handling the survival function yield

close results.
The asymptotic normality results can be established using similar arguments as in the uncensored case. The key step is

to approximate Uk(α) in (11a) by a U-statistic. For instance,

Ũ2(α) =
∑
i<j

Zij

[
∆ij −

θα{S(X̃ij, Ỹij)}

θα{S(X̃ij, Ỹij)} + 1

]
,

is a U-statistic that can approximate U2(α). Under regularity conditions such as those listed in Proposition 4.1 of Dabrowska
(1988), Ŝ(x, y) (or S̃α(x, y)) converges in probability to S(x, y) uniformly in (x, y) ∈ [0, τ1)× [0, τ2) for some (τ1, τ2). Then,
it follows from the same arguments as the proof of Lemma 1 that

n
(
n
2

)−1
U2(α) =

(
n
2

)−1
Ũ2(α)+ oP(1).

Applying a Taylor series expansion and the central limit theorem for U-statistics, as in the proof of Lemma 1, n1/2(log α̂1 −
log α̂2) asymptotically follows a mean-zero normal distribution.
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Table 1A
Empirical probabilities of not rejecting the Gumbel model at the 5% significance level.

τ = 0.3 τ = 0.4 τ = 0.5 τ = 0.6 τ = 0.7

n = 100

CEN%= (0, 0) 0.99 0.97 0.96 0.96 0.95
CEN%= (20, 20) 0.98 0.93 0.95 0.97 0.96
CEN%= (50, 50) 0.97 0.96 0.95 0.96 0.99

n = 200

CEN%= (0, 0) 0.97 0.95 0.92 0.93 0.93
CEN%= (20, 20) 0.95 0.94 0.94 0.93 0.96
CEN%= (50, 50) 0.95 0.97 0.98 0.97 0.96

Note: CEN% denotes the two marginal censoring rates, 100× Pr(A < X) and 100× Pr(B < Y ). The probabilities are calculated based on 100 replications.

Table 1B
Means and standard deviations (in parentheses) of the test statistic |γ̂1 − γ̂2|/σ̂Jack under H0 .

τ = 0.3 τ = 0.4 τ = 0.5 τ = 0.6 τ = 0.7

n = 100

CEN%= (0, 0) 0.06 (0.89) 0.18 (0.90) 0.28 (1.00) 0.12 (0.89) 0.32 (0.91)
CEN%= (20, 20) −0.01 (0.94) 0.30 (1.00) 0.13 (1.04) 0.19 (1.03) 0.14 (0.89)
CEN%= (50, 50) 0.15 (0.99) −0.13 (0.94) 0.14 (0.98) 0.17 (0.81) 0.06 (0.81)

n = 200

CEN%= (0, 0) 0.07 (0.94) 0.13 (1.01) 0.22 (0.94) 0.05 (0.94) 0.06 (0.94)
CEN%= (20, 20) 0.12 (0.99) 0.19 (1.02) 0.10 (1.02) 0.05 (0.89) 0.07 (0.97)
CEN%= (50, 50) −0.01 (0.83) 0.03 (0.92) 0.12 (0.84) 0.13 (0.97) 0.04 (0.90)

Note: CEN% denotes the two marginal censoring rates, 100× Pr(A < X) and 100× Pr(B < Y ). The means and standard deviations are calculated based on
100 replications.

3. Simulation results

The simulation study contains three components. We first examine the performance of the proposed test when H0 is
correctly specified. Then, we study the robustness of the proposed test under dependent censoring, a condition which
violates the assumption of independent censorship. Finally, we study the power of the test when H0 does not hold. The
level of significance is set to be 5%.
Here we use the Gumbel model for illustration. The null hypothesis is given by

H0 : C(u, v) = exp
{
−
[
(− log u)α+1 + (− log v)α+1

] 1
α+1

}
for some α > 0.

The two marginal distributions both follow an exponential distribution with the hazard rate equal to 1. Specifically, we let

X = −U1/(α+1) log(V ), Y = −(1− U)1/(α+1) log(V ),

where U ∼ Uniform(0, 1) and V has the distribution function Kα(v) = v − v log(v)/(α + 1). Five values of α whose
corresponding τ is equal to 0.3, 0.4, 0.5, 0.6 and 0.7 are chosen. The bivariate censoring variables (A, B) are generated
independently from exponential distributions such that the censoring proportion is 0, 0.2 and 0.5 respectively in each
coordinate. Based on the data, we obtain α̂k which solves Eq. (11b), and then γ̂k = log α̂k for k = 1, 2. The jackknife
estimator σ̂ 2Jack, illustrated in Section 2.4, is used for variance estimation. The null hypothesis is rejected if |γ̂1 − γ̂2|/σ̂Jack
exceeds 1.96.
Table 1A reports the empirical probabilities of not rejecting H0 based on 100 replications. When n = 100, the type-I

error rates are slightly lower than the nominal 5% level in some cases but the results improve as the sample size increases
to n = 200. Table 1B reports the means and standard deviations of |γ̂1− γ̂2|/σ̂Jack which can be used to evaluate the validity
of normal approximation. We see that, when n increases, the approximation also improves. In general, the means are close
to zero and the standard deviations are slightly less than one. This may be due to the fact that the jackknife algorithm tends
to overestimate the variance, which results in slightly lower type-I error rate.
We also evaluate the robustness of the proposed test under dependent censoring in which (A, B) and (X, Y ) are no

longer independent. Let A = C1I(X < − log(0.5)) + C2I(X ≥ − log(0.5)), where C1 and C2 are independent exponential
distributions with hazard rates θ/2 and 1/2, respectively. It is easy to see that X and A are positively correlated when 1 < θ
and negatively correlated when 0 < θ < 1. We define B in the same way.
Table 2A summarizes the empirical probabilities of not rejecting H0 based on 100 replications under the dependent

censoring setting. Surprisingly, the empirical type-I error rates are still close to the nominal 5% level. In fact, Table 2B shows
that |γ̂1 − γ̂2|/σ̂Jack can still be approximated by the standard normal distribution. However, we find that both γ̂1 and γ̂2
become biased under dependent censoring but the mean of γ̂1 − γ̂2 is still close to zero. This implies that the dependent



T. Emura et al. / Computational Statistics and Data Analysis 54 (2010) 3033–3043 3039

Table 2A
Empirical probabilities of not rejecting the Gumbel model at the 5% significance level under dependent censoring.

τ = 0.3 τ = 0.4 τ = 0.5 τ = 0.6 τ = 0.7

n = 100

θ = 1/4 CEN%= (28, 28) 0.98 0.96 0.96 0.95 0.96
θ = 1/2 CEN%= (30, 30) 0.98 0.97 0.95 0.96 0.95
θ = 2 CEN%= (39, 39) 0.97 0.98 0.97 0.99 0.98
θ = 4 CEN%= (47, 47) 0.99 0.96 0.94 0.99 0.97

n = 200

θ = 1/4 CEN%= (28, 28) 0.93 0.95 0.93 0.93 0.94
θ = 1/2 CEN%= (30, 30) 0.95 0.95 0.96 0.95 0.97
θ = 2 CEN%= (39, 39) 0.91 0.94 0.93 0.97 0.97
θ = 4 CEN%= (47, 47) 0.97 0.97 0.97 0.97 0.96

Note: θ is related to the degree of dependence between failure times and censoring times. CEN% denotes the twomarginal censoring rates, 100×Pr(A < X)
and 100× Pr(B < Y ). The probabilities are calculated based on 100 replications.

Table 2B
Means and standard deviations (in parentheses) of the test statistics |γ̂1 − γ̂2|/σ̂Jack under H0 and dependent censoring.

τ = 0.3 τ = 0.4 τ = 0.5 τ = 0.6 τ = 0.7

n = 100

θ = 1/4 CEN%= (28, 28) 0.11 (0.84) 0.01 (0.96) 0.16 (0.91) 0.17 (0.95) 0.17 (0.90)
θ = 1/2 CEN%= (30, 30) 0.21 (0.80) −0.01 (0.98) 0.23 (0.90) 0.12 (0.85) 0.19 (0.99)
θ = 2 CEN%= (39, 39) 0.08 (0.99) 0.13 (0.77) 0.06 (0.84) −0.10 (0.82) −0.01 (0.82)
θ = 4 CEN%= (47, 47) 0.08 (0.85) 0.01 (1.03) −0.31 (0.98) −0.14 (0.79) −0.06 (0.86)

n = 200

θ = 1/4 CEN%= (28, 28) 0.06 (1.15) 0.12 (0.99) 0.26 (1.05) 0.28 (1.01) 0.27 (0.95)
θ = 1/2 CEN%= (30, 30) 0.06 (0.98) 0.15 (0.94) 0.20 (0.97) −0.05 (0.91) 0.17 (0.81)
θ = 2 CEN%= (39, 39) 0.13 (1.01) 0.12 (1.00) 0.14 (1.06) −0.04 (0.92) −0.10 (0.95)
θ = 4 CEN%= (47, 47) 0.03 (0.90) 0.01 (0.94) −0.01 (0.93) −0.28 (0.85) −0.24 (0.87)

Note: θ is related to the degree of dependence between failure times and censoring times. τ denotes the Kendall’s tau between X and Y . CEN% denotes the
two marginal censoring rates, 100× Pr(A < X) and 100× Pr(B < Y ). The means and standard deviations are calculated based on 100 replications.

censoring affects the biasness of the two estimators in the same direction and with similar magnitude. We also investigated
different setups of dependent censoring, and the results were similar. More thorough analysis for the robustness under
dependent censoring deserves future study.
To assess the power of the test, data is used from the Clayton and Frankmodels, respectively. The power is the probability

of correctly rejecting Gumbel’s assumption. The empirical power functions are plotted in Figs. 1A for n = 100 and Fig. 1B
for n = 200, respectively. In each figure, we see that the power deceases as τ decreases. This is reasonable since these three
models coincide with each other as Kendall’s τ approaches zero, and it becomes more difficult to distinguish between sim-
ilar models. As the level of censoring increases, the power performance becomes worse. As expected, the powers become
larger when the sample size increases.
We further examine the power when the alternative model is similar to that specified in the null hypothesis. Here we

consider the Galambos copula model, which is not an AC model but is similar to the Gumbel AC model in some key aspects.
For example, both copulas have upper tail dependences. In terms of the Jeffreys divergence measure, the distance between
the two models is only 0.001 even when τ ≥ 0.5 (Nikoloulopoulos and Karlis, 2008). We report the results under τ = 0.5.
When the censoring proportion is 50%, the power is only 4% for n = 100 and 11% for n = 200. Nevertheless, the power in-
creases to 23% for n = 100 and 40% for n = 200 when the censoring proportion reduces to 20%. In the absence of censoring,
the power further increases to 48% for n = 100 and 79% for n = 200.
It is worth noting that the method in Shih (1998) was developed to verify the Clayton model assumption. In her

simulations, the Clayton assumption was set as the null hypothesis and the power under the Gumbel alternative was
evaluated. Comparing Shih’s analysis with the left panels of Figs. 1A and 1B, the two results are close, which implies that
reversing the roles of the null and alternative hypotheses does not matter.

4. Real data applications

The first example is from the Australian Twin Study (Duffy et al., 1990), in which (X, Y ) represents the ages at
appendicectomy measured for each twin pair. As in Prentice and Hsu (1997), a subset of the original data containing 748
dizygotic pairs is chosen. In the sample, 82 observations are uncensored, 117 are censored for X , 105 are censored for Y and
444 are censored for both X and Y . The proposed method is applied to test the goodness-of-fit for four AC model candidates
individually, and the results are summarized in Table 3A. The Gumbel model provides the best fit to the data while the
Clayton and Log-copula models are rejected at the 5% significance level.
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Fig. 1A. Empirical powers with n = 100 under H0: Gumbel versus Ha: Not Gumbel. Powers are the rates of rejecting H0 with 5% significance during
100 replications.
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Fig. 1B. Empirical powers with n = 200 under H0: Gumbel versus Ha: Not Gumbel. Powers are the rates of rejecting H0 with 5% significance during
100 replications.

Table 3A
The goodness-of-fit test results for four AC models based on the Australian Twin Study (Duffy et al., 1990).

α̂1 (τ̂1) α̂2 (τ̂2) (γ̂1 − γ̂2)/σ̂Jack p-value

Clayton 1.446 (0.182) 1.717 (0.264) −1.867 0.000
Frank 1.308 (0.143) 1.496 (0.163) −1.090 0.117
Gumbel 0.115 (0.103) 0.114 (0.102) 0.084 0.497
Log-copula 1.447 (0.295) 1.147 (0.248) 1.351 0.034

In the second example, X and Y represent the time to the first and second recurrence of infection in kidney patients on
dialysis (McGilchrist and Aisbett, 1991). Among 38 patients, 6 observations are censored for X , 12 observations are censored
for Y and 3 observations are censored for both X and Y . This data has been analyzed by Wang and Wells (2000), in which
Eq. (4) was used to construct a distancemeasure between nonparametric andmodel-based curves. For the kidney data, their
approach selected the Gumbel model which gives the smallest distance among several alternatives. Note that their method
is not a formal statistical test. Applying the proposed test to four model candidates, the p-values are 0.452 (Gumbel), 0.189
(Clayton), 0.365 (Frank) and 0.423 (Log-copula). Due to the small sample size, no model is rejected. However, the Gumbel
model still gives the largest p-value, which supports the conclusion of Wang and Wells (2000). Under the Gumbel model,
we obtain α̂1 = 0.282 (τ̂1 = 0.220), α̂2 = 0.262 (τ̂2 = 0.208).

5. Conclusion

Copula models are often defined without specifying the marginal distributions. Likelihood-based strategies for model
selection, such as the Akaike Information Criterion (AIC), cannot be directly applied to such a semiparametric structure.
The proposed test extends the approach used by Shih (1998) from the Clayton model to a class of AC models. The property
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of the conditional moment in (3) is utilized to construct a class of estimating functions for the association parameter. One
suggestedweight function is derived based on the conditional likelihood function,while the other is the unweighted version.
The contrast between the two weights provides a way to detect any violation of the model assumption. Compared with
existing methods for model selection for copulas, the proposal yields a formal goodness-of-fit test.
In the presence of right censoring, we propose to delete non-orderable pairs from the estimating equation since the

remaining observations still maintain the unbiased property. This strategy has been used by Oakes (1982, 1986) and Shih
(1998). Despite its simplicity, data deletion may result in efficiency loss especially when censoring is heavy. The techniques
of handling missing data, including imputation and weighting, may be applied to handle the situation that ∆ij is unknown
due to censoring (Hsieh, 2010). This direction deserves further investigation. However, if alternative approaches involve
extra estimation for nuisance parameters, efficiency gain is not guaranteed.
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Appendix A. Derivation of the log-likelihood function

Taking the log of Eq. (6), we obtain the log-likelihood function

l(α) =
∑
(x,y)∈ϕ

D(x, y) log
[

θα{S(x, y)}
R(x, y)− 1+ θα{S(x, y)}

]
+ {1− D(x, y)} log

[
R(x, y)− 1

R(x, y)− 1+ θα{S(x, y)}

]
=

∑
i

∑
j:Xj≥Xi,Yj≤Yi

D(Xi, Yj) log
[

θα{S(Xi, Yj)}
R(Xi, Yj)− 1+ θα{S(Xi, Yj)}

]

+{1− D(Xi, Yj)} log
[

R(Xi, Yj)− 1
R(Xi, Yj)− 1+ θα{S(Xi, Yj)}

]
=

∑
i

log
[

θα{S(Xi, Yi)}
R(Xi, Yi)− 1+ θα{S(Xi, Yi)}

]
+

∑
i

∑
j:Xj>Xi,Yj<Yi

log
[

R(Xi, Yj)− 1
R(Xi, Yj)− 1+ θα{S(Xi, Yj)}

]
.

As long as Xj > Xi and Yj < Yi hold, Xi = X̃ij and Yj = Ỹij, and hence S(X̃ij, Ỹij) = S(Xi, Yj) and R(Xi, Yj) = Rij. Thus, the second
term in the previous equation becomes

L ≡
∑
i

∑
j:Xj>Xi,Yj<Yi

log

[
Rij − 1

Rij − 1+ θα{S(X̃ij, Ỹij)}

]

=

∑
i

∑
j:Xj>Xi

I(Yj < Yi) log

[
Rij − 1

Rij − 1+ θα{S(X̃ij, Ỹij)}

]
.

It follows that

L =
∑
i

∑
j:Xj>Xi

(1−∆ij) log

[
Rij − 1

Rij − 1+ θα{S(X̃ij, Ỹij)}

]
=

∑
i<j

(1−∆ij) log

[
Rij − 1

Rij − 1+ θα{S(X̃ij, Ỹij)}

]
.

Appendix B

B.1. Regularity conditions

(i) A parameter spaceΘ for α is open and the true value lies insideΘ .
(ii) θα(v) is twice differentiable with respect to α and differentiable with respect to v.
(iii) 1/θα(v) and θ ′α(v) =

∂
∂v
θα(v) are bounded with respect to parameters (α, v).

(iv) A and AL exist and are strictly positive.
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B.2. Proof of Lemma 1

First, we show that
(
n
2

)−1
{U2(α) − Ũ2(α)} converges in probability to zero uniformly in α. It is straightforward to see

that

|U2(α)− Ũ2(α)| =
∑
i<j

∣∣∣∣∣ θα{Ŝ(X̃ij, Ỹij)}

1+ θα{Ŝ(X̃ij, Ỹij)}
−

θα{S(X̃ij, Ỹij)}

1+ θα{S(X̃ij, Ỹij)}

∣∣∣∣∣
≤

∑
i<j

∣∣∣θα{Ŝ(X̃ij, Ỹij)} − θα{S(X̃ij, Ỹij)}∣∣∣ .
Let M = supα,v |θ ′α(v)| < ∞ based on the regularity condition (iii) of Appendix B.1. Applying the Taylor expansion to the
last term, it follows that(

n
2

)−1
|U2(α)− Ũ2(α)| ≤ M sup

x,y

∣∣∣Ŝ(x, y)− S(x, y)∣∣∣ .
Based on the Glivenko–Cantelli theorem, the last term converges almost surely to zero uniformly in α.

Next, we show that
(
n
2

)−1
{nU1(α)− Ũ1(α)} converges in probability to zero uniformly in α. Similarly,

|nU1(α)− Ũ1(α)| ≤
∑
i<j

∣∣∣∣∣ θ̇α{Ŝ(X̃ij, Ỹij)}[1+ θα{Ŝ(X̃ij, Ỹij)}]

θα{Ŝ(X̃ij, Ỹij)}[Ŝ(X̃ij, Ỹij)− 1/n+ θα{Ŝ(X̃ij, Ỹij)}/n]
−
θ̇α{S(X̃ij, Ỹij)}[1+ θα{S(X̃ij, Ỹij)}]

θα{S(X̃ij, Ỹij)}S(X̃ij, Ỹij)

∣∣∣∣∣
+

∑
i<j

∣∣∣∣∣ θ̇α{Ŝ(X̃ij, Ỹij)}[1+ θα{Ŝ(X̃ij, Ỹij)}]

θα{Ŝ(X̃ij, Ỹij)}[Ŝ(X̃ij, Ỹij)− 1/n+ θα{Ŝ(X̃ij, Ỹij)}/n]

∣∣∣∣∣ |θα{Ŝ(X̃ij, Ỹij)} − θα{S(X̃ij, Ỹij)}|.
Nowwe show that the last two terms, multiplied by

(
n
2

)−1
, converge in probability to zero uniformly in α. According to the

Chebyshev inequality, it is sufficient to show that the quantities

I1 = E

∣∣∣∣∣ θ̇α{Ŝ(X̃12, Ỹ12)}[1+ θα{Ŝ(X̃12, Ỹ12)}]

θα{Ŝ(X̃12, Ỹ12j)}[Ŝ(X̃12, Ỹ12)− 1/n+ θα{Ŝ(X̃12, Ỹ12)}/n]
−
θ̇α{S(X̃12, Ỹ12)}[1+ θα{S(X̃12, Ỹ12)}]

θα{S(X̃12, Ỹ12)}S(X̃12, Ỹ12)

∣∣∣∣∣
and

I2 = E

∣∣∣∣∣ θ̇α{Ŝ(X̃12, Ỹ12)}[1+ θα{Ŝ(X̃12, Ỹ12)}]

θα{Ŝ(X̃12, Ỹ12j)}[Ŝ(X̃12, Ỹ12)− 1/n+ θα{Ŝ(X̃12, Ỹ12)}/n]

∣∣∣∣∣ |θα{Ŝ(X̃12, Ỹ12)} − θα{S(X̃12, Ỹ12)}|
converge to zero. Showing this requires substantial technical efforts due to the instability of the denominator terms. The
key property in the proof is

E
[

1

θα{S(X̃12, Ỹ12)}S(X̃12, Ỹ12)

]
<∞,

which can be shown from Corollary 1 of Shih (1998), under the regularity conditions listed in Appendix B.1. After tedious
evaluations similar to the previous arguments and applying the Glivenko–Cantelli theorem to Ŝ, we can show that I1 and I2
converge to zero.

B.3. Proof of Lemma 2

Lemma 1 and the Taylor expansion for U2(eγ ) allow us to use the asymptotic expansions

n1/2(γ2 − γ ) =

{
−

(
n
2

)−1
α
˙̃U2(α∗)

}−1 {
n1/2

(
n
2

)−1
Ũ2(α)+ oP(1)

}
,

where ˙̃U2(α) = ∂Ũ2(α)/∂α and α∗ is between α and α̂2. Based on the strong law of large number for U-statistics, the term

−

(
n
2

)−1
˙̃U2(α∗) converges almost surely to a constant A. Applying the same argument to U1(eγ ), we obtain the asymptotic

expansion

n1/2(γ̂1 − γ ) = n1/2
(
n
2

)−1 Ũ1(α)
αAL

+ oP(1), n1/2(γ̂2 − γ ) = n1/2
(
n
2

)−1 Ũ2(α)
αA
+ oP(1).



T. Emura et al. / Computational Statistics and Data Analysis 54 (2010) 3033–3043 3043

Combining these formulas, we obtain the U-statistics expression

n1/2(γ̂1 − γ̂2) = n1/2
(
n
2

)−1∑
i<j

1
α

(
θ̇α{S(X̃ij, Ỹij)}[θα{S(X̃ij, Ỹij)} + 1]

ALθα{S(X̃ij, Ỹij)}S(X̃ij, Ỹij)
−
1
A

)[
∆ij −

θα{S(X̃ij, Ỹij)}

θα{S(X̃ij, Ỹij)} + 1

]
+ oP(1).

Appendix C. Two examples of AC models

Example 1 (Clayton Model). The generating function can be written as φα(v) = (v−α − 1)/α for α ∈ (0,∞). The joint
survival function can be written as

Pr(X > x, Y > y) =
[
SX (x)−α + SY (y)−α − 1

]−1/α
.

It follows that τ = α/(α + 2) and

Kα(v) = v − φα(v)/φ′α(v) = v + v(1− v
α)/α.

A special property of the Clayton model reflects in its local odds ratio, which can be expressed as θ∗(x, y) = α + 1. The
odds ratio does not depend on (x, y).

Example 2 (Gumbel Model). The generating function can be written as φα(v) = {− log(v)}α+1, α ∈ [0,∞). The joint
survival function can be written as

Pr(X > x, Y > y) = exp
{
−
[
{− log SX (x)}α+1 + {− log SY (y)}α+1

] 1
α+1

}
.

It follows that τ = α/(α + 1) and

Kα(v) = v − φα(v)/φ′α(v) = v − v log(v)/(α + 1).

The local odds ratio can be expressed as θ∗(x, y) = 1 − α
log S(x,y) . Compared with the Clayton model, however, θ

∗(x, y)
depends on (x, y).
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