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For a product manufactured in large quantities, tolerance limits play a fundamental role in setting limits
on the process capability. Existing methodologies for setting tolerance limits in life test experiments focus
primarily on one-sample problems. In this study, we extend tolerance limits in the presence of covariates in
life test experiments. A method constructing approximate tolerance limits is proposed under log-location-
scale regression models, a class of models used widely in reliability and life test experiments. The method
is based on an application of the large sample theory of maximum likelihood estimators, which is modified
by a bias-adjustment technique to enhance small sample accuracy. The proposed approximate tolerance
limits are shown asymptotically to have nominal coverage probability under the assumption of “indepen-
dent censoring.” This includes Type I and Type II censoring schemes. Simulation studies are conducted to
assess finite sample properties under the log-location-scale regression models. The method is illustrated
with two datasets. R codes for implementing the proposed method are available online on the Technomet-

rics web site, as supplemental materials.
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1. INTRODUCTION

In the process of quality control in mass production, one of
the most important quantitative measurements is the tolerance
limit calculated from a controlled experiment. For example, a
manufacturer may need to construct a lower tolerance limit for
a battery that can be expected, with 95% confidence, to contain
90% of its lifespan after 1 year of operation. Other applications
can be found in Hahn and Meeker (1991).

Since the pioneering work of Wilks (1941), many researchers
derived tolerance limits under parametric models (see sections 3
and 4 of Patel 1986), which sometimes require special tables.
Asymptotic approximations are commonly used as a convenient
alternative to the exact approach when exact limits are difficult
to obtain or do not exist. Other recent developments in the area
of tolerance limits appear in Wang and Iyer (1994), Hamada
et al. (2004), Fernholz and Gillespie (2001), Wang and Tsung
(2009), Cai and Wang (2009), and Krishnamoorthy and Mathew
(2004).

Tolerance limits under censoring were discussed frequently
in engineering contexts. Goodman and Madansky (1962) de-
scribed several guidelines for the optimality of tolerance lim-
its and showed that the exact tolerance limit derived under
exponential distribution with Type II censoring satisfies these
optimality criteria. Bain (1978) gave the exact tolerance limit
under the Weibull distribution with Type II censoring. Bain’s
approach requires special tables. The approach proposed by
Lawless (2003) is to construct tolerance limits based on piv-
otal quantities. This approach can be applied to a wider class of
distributions, such as the so-called log-location-scale families.
Tolerance limits under Type I censored data are less tractable
than those under Type II censored data. Exact tolerance limits
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under Type I censoring have not been derived and studies usu-
ally rely on the asymptotic approximation. Tolerance limits un-
der the Weibull distribution with censoring can also be obtained
as the confidence limits for the quantile (Bryan 2006).

The generalization of tolerance limits which incorporates co-
variates is useful in engineering, medical, and other contexts.
In a real data example, shown in Section 6.2, lifetimes of mo-
torettes are measured under various temperatures. In this kind
of experiment, we are interested in calculating the lower tol-
erance limit at a given temperature. However, the construction
of tolerance limits in the presence of covariates has rarely been
discussed in previous studies. Most existing results on tolerance
limits have dealt with one-sample problems. Jones et al. (1985)
formulated their tolerance limits using log-location-scale re-
gression models. However, their methods are not applicable if
there is censoring. Justification of their approach is conducted
by simulations only in the absence of covariates. In this study,
we present explicit formulas for calculating tolerance limits un-
der log-location-scale regression models. The method can han-
dle a class of right-censoring schemes, including Type I and
Type II censoring. We utilize large sample approximations to
derive tolerance limits and establish their asymptotic validity.
The method presented utilizes the standard approach for nor-
mal approximation and a bias-adjustment technique to obtain
approximate tolerance limits.

This article is organized as follows. The regression models
and estimation procedures are introduced in Section 2. Sec-
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tion 3 presents the proposed method of obtaining the approx-
imate tolerance limits and establishes asymptotic validity. In
Section 4, we compare existing tolerance limits with the pro-
posed method. Section 5 investigates the performance of the
proposed method and the competitors by simulations. Section 6
presents the results from data analysis. Finally, a conclusion is
provided in Section 7.

2. REGRESSION ANALYSES UNDER CENSORING

2.1 Log-Location-Scale Models Under Censoring

The most commonly used parametric models for censored
failure time data are log-location-scale regression models
(Kalbfleisch and Prentice 2002; Lawless 2003). Forj=1,...,
n, let T; be the failure time and Z; = (l,z]’.)/ , where z; =
(z1j, - .., zpj) is the vector of observed characteristics. A class
of models considered here is log-location-scale regression mod-
els

log(T)) =Z;B + o Wj, (1)

where B = (Bo, 1. ..., Bp) and o > 0 are unknown parame-
ters and Wy, ..., W, are independent random variables with a
known density function f(-). The model in Equation (1) in-
cludes many common regression models in reliability and life
test experiments. For example, Weibull and log-normal regres-
sion models for T; correspond to f(w) = exp{w — "} and
fw) = W12 / V27, respectively. Under Equation (1), the dis-
tribution function for 7j is

G(|Z)) = F{(log(r) — Z;B) /o }.

where F(t) = f(_ co.1] f(u)du and the hazard function for 7j is
h(tZ)) ={dG(t|Z;)/dt} /{1 — G(t|Z;)}.

For right-censored data, we observe X; = min(7}, Cj), §; =
I(T; < Cj), and Z;, where C; is a random censoring time. We
impose the following assumption:

Assumption A (Independent right-censoring). Let R(¢) =
{;T; > t,Cj > t} be a “risk set” that identifies those subjects
that are at risk of failure at time ¢. Then, the instantaneous fail-
ure rates at time ¢ can be expressed as the product of the hazard
ratios at risk, that is,

Pr(t <Tj<t+di,8j=1;j=1,...,nR(), Z;)

=[] 1z as).

JER(t)

Remark 1. Assumption A is commonly employed in re-
cent textbooks on failure time data analysis (see chapter 6 of
Kalbfleisch and Prentice 2002 and section 2.2 of Lawless 2003).
It encompasses a variety of commonly used censoring schemes.
The independent right-censoring includes cases such as Type |
censoring, Type II censoring, and progressive Type II censoring
(see section 2.2 of Lawless 2003). Our proposal for the toler-
ance limits can handle censoring schemes that satisfy Assump-
tion A.
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2.2 Maximum Likelihood Estimator

Under Equation (1) and Assumption A, the likelihood of the
observed data {(X}, 6;, Z;); j =1, ..., n} can be written as

log(X;) — Z/B\ | ¥
oI5

J
log(X)) —Z' 1-4;
x{l—F(Og(’I; ,ﬂ)} .

The maximum likelihood estimator (MLE) maximizes L(8, o),
and is denoted by (/§, 6). The joint distribution of (ﬁ ,0) can be
approximated by the normal distribution with mean (8, o) and
covariance matrix in(/} ,6)~ !, where i,,(fS ,0) is the observed
Fisher information matrix. The justification for the normal ap-
proximation follows from the counting process and martingale
theory (Andersen et al. 1993). The classical theory of MLE for
iid random variables is not enough for our use, since under As-
sumption A, {(X}, 8;, Z;);j =1, ..., n} may not be a collection
of n independent samples. Regularity conditions for the normal
approximation are provided in Appendix A.1.

3. APPROXIMATE TOLERANCE LIMITS

Lower tolerance limits provide (I — «)100% confidence of
including (1 — x)100% of lifetimes drawn conditioning on Z.
Let x = {(X;,0;,Z;);j=1,...,n} be a set of observed data.
Formally, we define the statistic Lz(x) to be a (1 — «)-content,
(1 — ) 100%-confidence lower tolerance limit under the covari-
ate Z if

Pr(1 -Gz ()Z) > 1 —k)=1—a, 2)

where the probability statement is made on the sampling distri-
bution of .

We focus on the lower tolerance limit under Equation (1) and
Assumption A. Lower tolerance limits are of interest in many
engineering or reliability applications. For instance, a manufac-
turer may have a desire to obtain the limit before which few
failure events occur. Extension of the proposed method to up-
per tolerance limits and tolerance intervals is discussed in Sec-
tion 3.3.

3.1  The Motivation for the Proposed Formulas

Before presenting the proposed formulas for Lz (), we give
outlines of our derivations. To illustrate the main idea, we tem-
porarily ignore censoring by letting C; = oo. Following Good-
man and Madansky (1962), the exact lower tolerance limit has
the form

Lz(x) ={2n/x}_,(2n)} - {=log(1 — )} exp(Bo) ~ (3)

for a simple model when Z]’. =1,B=pocR, f(w)= exp{w —

eV}, and 0 = 1, where X12—a (f) denotes the lower (1 — «)th
quantile of the chi-squared distribution with the degrees of free-
dom f and By = log{}_; Tj/n}.

Note that the formula {—log(1 —«)}exp(Bo) is the kth quan-
tile of 7j. Let G;(i) (k) = {—1log(1 — k)}exp(Bo). Consequently,
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(A;;&)(K) = {—log(1 — K)}exp(ﬁo) is an estimator of G;(}D(K)
and Equation (3) can be rewritten as

Lz(X) = Kan - Gy (). )

where Ky, = 2n/x12_a (2n). In fact, if we check Bain (1978),
the tolerance limits for the Weibull distribution also take a sim-
ilar form. However, it is more difficult to obtain the correspond-
ing coefficient for K ,, which may require specific tables.

To extend the result to the general model in Equation (1), we
can obtain the «th quantile of T; as G_I(K|Zj) = exp{ZJ’.ﬂ +
oF~1(x)} under Equation (1) and set a functional form for
Lz(x) as

KZ, G \(x|Z),

where G~! (K |Z) = exp{Z/B + 6 F~'(x)} is the MLE of G~ (|
Z) and KZ , is an appropriate value depending on Z, «, and

Ol n
n. Note that Gexp(/c) in Equation (4) is an unbiased estima-
tor of Gexlp(/c). However, G~ (x|Z) = exp{Z/ﬁ + 6F (k)

may be a biased estimator for G_l(K|Z) with the bias Bf =
E{G‘l(/c|Z) — G_I(K|Z)}. To seek a better lower tolerance
limit by eliminating the bias, we consider the limit with the
form

Lz(x) =

In the simple example mentioned earlier, we have Kg.’n =

KZ, {G"'(x|Z) - BZ). (5)

2n/ X12_ o(2n) and B% =0 given Z = 1. However, the formula of
BZ was not derived under Equation (1) and it is fairly difficult
to find the number Kin which satisfies Equations (2) and (5)
given the value of B%. In fact, in many specific models of Equa-
tion (1), BZ and Kgn depend on unknown parameters and cen-
soring patterns.

3.2 Proposed Tolerance Limit

We propose the lower tolerance limit in Equation (5) with
Z ,, and Bf obtained by asymptotic approximation. A conve-
nient way to approximate BZ is to use the jackknife estimator

1 A A
=(n— 1){; Y Gl iz - G—‘(K|Z>},

where G} (k|Z) is the estimator G~! (k|Z) with the ith ob-
servation being deleted. If we find that BZ = 0 by analytical
calculation, using jackknife is redundant and we can re-define

= 0. Applying a Taylor series expansion to Equations (2)
and (5), as shown in Appendix A.2, an appropriate choice be-
comes

A

KZ, = exp[~z1-a{Ain(B, 6) 1A}/,

where A’ = (Z', F~!(«)). Thus, the proposed tolerance limits

have the form
Lz(x) =k wn G («x|Z) - BZ). (6)

Even when BZ ;é 0, we can set BZ
set L%( X) =

0 in Equation (6) and
G~ !(k|Z). In this case, we have

1og(L%<x>) =Z/B+6F (k) — 21 o{A1.(B.6) A}/,
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The above expression is equivalent to the Wald-type lower con-
fidence limits for Z’'8 + o F~! (), which is the kth quantile of
log(T;) given Z (Lawless 2003, p. 295). However, it is known
that the coverage probability of the Wald-type confidence limit
for a quantile is not very accurate unless the sample is very
large. For instance, at least n = 200 is necessary under simula-
tion settings of Section 5. In Section 5, we compare the finite
sample performance of Lz(x) and L%( X) by simulations.

The tolerance limit in Equation (6) is an approximate toler-
ance limit in that it may not satisfy Equation (2) in a strict sense.
Rather, Equation (2) holds as n — oo. The validity of the ap-
proximation is formally stated in the following theorem:

Theorem 1. Assume that conditions (A) through (E) in Ap-
pendix A.1 hold, and that B, = O(n~!) as n — 0. Under Equa-
tion (1) and Assumption A,

lim Pr(1 - GLz(OIZ)>1—k)=1—«
n—o0
forany0 <k <land0<a <1.

Conditions (A) through (E) and the proof of Theorem 1 can
be found in Appendix A.1 and A.2, respectively. The condition
B, = O(n™") is a sufficient condition for the jackknife method
to have second-order correctness (Lehmann and Casella 1998,
p. 84). Now we provide examples of the proposed tolerance
limits.

Example 1 (Weibull and exponential regressions). If one as-
sumes f(w) = exp{w — €"} in Equation (1), then T; follows

a Weibull regression model G(#|Z;) = 1 — exp{—(t/e /’3)1/"}
The lower tolerance limit is

Lz(x) = exp[~z1_o{A'i,(B, ) 'A}/?]

x [exp(Z'B)(—log(1 — )} — B,],
(Z,log{—log(1 — K)}),
P ii5(B.6) ips(B.6)
W(B,6) = [,’ L }
(B0 ; i 5,(B.6) ijo(B.6)

”
— LZZ/- X '
— 62N i ’

) . 1 logX Z’ﬂ /6
e’

where A’ =

i p(B,6)

o

and

A logX; — Z’ﬂ X \ /o
b= () (55) o)
e’

In exponential regression models, o = 1 is known a priori and
the parameters to be estimated are B only. Accordingly, the
lower tolerance limit is given by

Lz(0 = exp[—z1-o {25, (B°=H ™' 2}'/?]
x [exp(Z' B7="){—log(l — k)} — B,].
where ﬁ"zl is the MLE given o =1 and

0 l(ﬂa 1)_ZZ i Z’ﬂ‘; -
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Example 2 (Log-normal regression). If one assumes f(w) =
1/ NG exp(—w?/2) in Equation (1), T; follows a log-normal
regression model G(#|Z;) = ®{(log(?) — Zj’ﬂ) /o'}, where @ (x)
is the cumulative distribution function of the standard normal
distribution. The lower tolerance limit is

Lz(x) = exp[—z1-o{A'in(B, ) 'A)/?]
x [exp(Z'B+6 -z0)—B,, (1)

where A’ = (Z/, z,),

1 logX; — Z/B
Eijj’.[aj +(1- aj)w(%ﬂ,

. Z;[ logX;—Z}B
ijps(B.6) = 6—;[@7’

iip(B,6)=

~

o

logX; — Z/B\ logX; — Z
+(1=8)w L f) !y }

o o
R logX-—Z’.B 1ogX-—Z/.[}
ljU(ﬁ 6) = 13_3 ! [28] Ja. !
logX; — Z'B
+(1—8l-){x<u)
o
N W(logXiA— Z}ﬁ) logXiA— ZB ”
o o
and
A =¢p@)/{1—®®} and  wx) = —xr(x) + 22 ().

3.3 Extension of the Proposed Tolerance Limit

It is possible to modify the proposed methods to upper
tolerance limits or tolerance intervals. The upper (1 — «)-
content, (1 — ) 100%-confidence tolerance limits under a con-
dition Z have the form KZ, - {G™'(1 — k|Z) — BZ}, where
the value KZ and B, can be obtained in a way similar to the
lower tolerance limits. If L,(x) is the lower (1 — Kk1)-content,
(1 — 1) 100%-confidence tolerance limit and Lz(x) is the up-
per (1 — k»)-content, (1 — ap) 100%-confidence tolerance limit,
then [LZ(x),Zz(x)] can be used as a (1 — k; — k2)-content,
(1 — a1 — a2)100%-confidence tolerance interval. Under simi-
lar conditions as Theorem 1, we have

Jim Pr{G(Lz(012) = GL(01Z2) 2 1 = 1 = k2}

>1—o) —oan.

Thus, even when the sample size goes to infinity, [L,(x),
Lz(x)] is still conservative because its coverage probability
may be greater than (1 — o1 — «2)100%.

It may be of interest in some applications to find simulta-
neous tolerance limits at different covariate values. That is,
we hope to find a collection of {Lz(x);/=1,...,L} so that
Pr(1-G(Lz,(X)|Z)) > 1—«k;1l=1,...,L) =1—a. Wecan find
each Lz (x) by directly applying the proposed methods. How-
ever, the confidence associated with all of the tolerance limits
is no longer (1 — «)100%. A convenient way to adjust the con-
fidence level is based on the Bonferroni method. It might be of
interest to explore more sophisticated procedures for construct-
ing simultaneous tolerance limits.
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4. COMPARISON WITH EXISTING METHODS

4.1 Existing Tolerance Limits Under the

Log-Location-Scale Regression Models

Jones et al. (1985) proposed a tolerance limit for log-
location-scale regression models. They considered the regres-
sion model under the following assumptions:

log(7j) = Z}ﬁ* + 0" W,
E(W;)=0 var(W/) = 1.

(8a)
(8b)

The parameters (8%, o*) in Equation (8a) and (B, o) in Equa-
tion (1) can have different meanings since W; in Equation (1)
does not always have mean 0 and variance 1. In the absence
of censoring and under Equations (8a) and (8b), Jones et al.
(1985) proposed the following approximate tolerance limit.
Let (ﬁ*, 6*) be the MLE under Equations (8a) and (8b). The
key of their derivation is that, under Equation (8a) and in the
absence of censoring, the distributions of (B* — B*) /o™ and
(6* —o™*) /o™ are pivotal quantities. They utilized the analytical
form of the asymptotic covariance matrix for /n(B* — B*, 6* —
0*)/o* for selected distributions of Wj* Based on these results,
they were able to obtain the approximate tolerance limit as a
lower confidence limit for the xth quantile of T given Z. Note
that Equation (8b) played the role of stabilizing their proposed
tolerance limits (Jones et al. 1985, p. 110). The extension of
their method to deal with Type II censoring is considered in the
absence of covariates.

An important practical difference between the method pro-
posed by Jones et al. (1985) and the one proposed in this
study is the treatment of censoring. As already mentioned, the
proposed methods can handle a class of independent right-
censoring schemes in the presence of covariates. On the other
hand, Jones et al. (1985) treated cases with Type II censoring
only in the absence of covariates. It is not obvious that their
method can be directly applied to the other censoring schemes.
To accommodate censoring in our approach, we directly ap-
proximate the distribution of ﬁ(ﬁ — B, — o) without going
through pivotal quantities. The asymptotic covariance matrix of
ﬁ(ﬁ — B,6 — o) is approximated by the observed Fisher in-
formation matrix.

The assumption in Equation (8b) is imposed for their ap-
proach but not for ours. In fact, in recent standard textbooks,
such as Kalbfleisch and Prentice (2002) and Lawless (2003),
it is customary not to impose Equation (8b) for the error
term. Usually, the Weibull regression model refers to Equa-
tion (1) with the density f(w) = exp{w — "} of W;, which has
mean —y, where y = 0.5772... is Euler’s constant, and vari-
ance 2/6. Many computer codes, such as “survreg” in R and
“LIFEREG” in SAS, can be adapted to do calculation under
Equation (1). The observed Fisher information matrix is eas-
ily calculated from these programs, irrespective of the types of
censoring under consideration.

Equations (1) and (8a) with (8b) are equivalent for the log-
normal regression model, where the densities of W; and W*
have the same form, f(w) = e™" 22 /~/27 . In this case, it is pos-
sible to compare the two methods. Following the formulas from
Jones et al. (1985), in the absence of censoring, their proposal
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for a (1 — «x)-content, (1 — a)100%-confidence lower tolerance
limit under Z = (1, Z)’ is given by

L7 (x)

& (12422222 2 /@en)}/?
(n—p—1'2

1—23_,/(2n)

. n 172 e
_“{Z” B (n—p— 1) 1—z%_a/(2n)”

x G~ (k|Z), 9)

where 2 =1 + z’{zjzjzj/-/n}_lz and G~ (x|Z) = exp{Z’ﬁ +
6 - 7 }. On the other hand, the proposed tolerance limit is Equa-
tion (7). Now it is clear that both methods utilize the quantile
estimator. A major difference between Equations (7) and (9)
is due to our inclusion of the bias adjustment term B, in Equa-
tion (7). Also, the formulas in the square bracket of Equation (9)
differ from their counterparts in Equation (7) due to the differ-
ent ways in which the normal approximation is applied. Note
that Equation (7) is applicable to data with independent right-
censoring while Equation (9) is not. Numerical studies compar-
ing Equations (7) and (9) will be presented in Section 5.2.

= eXp[—m_a

4.2 Comparison With the Exact Tolerance Limits

Although the proposed approach is formulated in the pres-
ence of covariates, by setting Z; = 1, the resulting formula is
also applicable under one-sample problems. Exact tolerance
limits exist in a special case under one-sample settings. In such
cases, they can serve as a theoretical basis for evaluating the
accuracy of approximate tolerance limits. Although there is no
reason to apply the approximate tolerance limits to data under
these specific cases, when the exact solution is available, the
result of this section may provide a strong theoretical basis for
the proposed approach.

Now we revisit the example in Section 3.1, where T; follows
an exponential distribution function Gexp(f) = 1 —exp(—t/ ePo).
But now, the data may be Type II censored so that C; = T),
where r < n is a prespecified number and 7, is the rth ob-
served failure time. In this case, the MLE of the quantile is
given by

G () = {—log(1 — k)Y exp(Bo) = (—log(1 — k)} Y X;/r.
J

which is unbiased for G\ (k) = {—1log(1 — «)}exp(Bo). Set-

exp
ting B, =0 and following the formula in Example 1, the pro-
posed tolerance limit becomes Lz—1(x) = exp(—z1_ar_1/ 2) .
6&;(/(). On the other hand, the optimal tolerance limit pro-
vided by Goodman and Madansky (1962) is given by L?fut x) =
2r/x}_o 2r) - G ().

We compare the proposed tolerance limit with the optimal
one. The ratio of the optimal tolerance limit to the proposed
one is

O _
RO — L2 (0)  2rexpGiar™'?)
Lz=1(x) Xi_,2r)

Figure 1 shows the plot of R(r) for r € [4, 100].
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Figure 1. The plot of R(r) = L?pt( Xx)/Lz(x) for the number of fail-
ure events r € [4, 100]. The numbers 0.99, 0.9, and 0.5 represent the
confidence level 1 — a.

It is seen that R(r) > 1. This implies that the optimal toler-
ance limit is larger than the approximate limit for a finite value
of r. It also indicates that the proposed tolerance limit is con-
servative in finite samples. The discrepancy between the two
methods gets larger when the confidence level 1 — « increases.
However, it becomes negligible when r is large and, for any
a,R(r) — 1 as r — oo (see Appendix B).

5. SIMULATION STUDIES
5.1 Finite Sample Properties of the Proposed Method

To investigate the properties of the proposed tolerance limit
with finite sample sizes, we conducted extensive simulation
studies. Four models are considered:

Model 1: T; follows the Weibull regression model with Z; =
(1, z1)

Model 2: T; follows the Weibull regression model with Z; =
(1,215, 22)

Model 3: T; follows the log-normal regression model with
Z;=(1,z1)

Model 4: T; follows the log-normal regression model with
Z; = (1,21, 22)) .

The parameters to be estimated are (8o, B1,0) for Models 1
and 3 and (Bo, B1, B2,0) for Models 2 and 4, respectively.
The covariate zj; takes O or 1 with equal probability while
the covariate zp; has a uniform distribution on [0, 1]. Failure
times 7} are then generated according to Models 1 through 4,
with censoring times C; generated from the same model, so
that Pr(C; < Tj|Z;) = 0.5. Subjects are treated as censored if
C j < Tj

We generate 1000 sets of {(X;,d;,Zj);j=1,...,n} with
n=25,50,...,275,300, and then calculate the proposed tol-
erance limit [Lz(x)] and the Wald-type limit [Lg( x)]. Recall
that Lz(x) utilizes the jackknife bias-adjustment while L%( X)
does not. When computing these tolerance limits, fixed values
for Z/ = (1,1) and Z' = (1, 0.5, 0.5) are chosen for Models 1
and 3 and Models 2 and 4. The prediction at Z' = (1, 0.5,0.5)
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Figure 2. Coverage probabilities for the proposed tolerance limit
Lz(x) (denoted by B;, = jackknife) and the Wald-type limit L%( X)
(denoted by B, = 0). The 0.90-content, 95%-confidence tolerance
limits are calculated at n = 25, 50, ...,275,300. The percentage of
censoring is denoted by CEN% = 100Pr(C; < T;|Z;). (a) Weibull
regression with Z;ﬂ = By + z1;81, where (By,B1,0) = (0,1,1).
(b) Weibull regression with ZB = By + z1;81 + 22iB2. Where
(Bo, B1, B2,0)=(0,1,1, 1.

considers a value of zj; that is intermediate to the two values
used in the experiment.

We compare the coverage probabilities of Lz(x) and L%( X)
with the nominal level 1 — «. The coverage probability is the
proportion of limits satisfying 1 — G(Lz(x)|Z) > 1 —« [or 1 —
G(L%(x)lZ) > 1 — k] over 1000 datasets.

Figure 2 shows the results under the Weibull regression mod-
els. It is clear that the performance of coverage probabilities is
significantly improved by adding the bias-correction term B,.
For both methods, the coverage probabilities get closer to the
nominal 95% level when the sample size increases. The cover-
age probabilities for the bias-corrected tolerance limits are be-
tween 93% and 95% for n > 75, and they sometimes deviate
to 92% for n = 25. On the other hand, the tolerance limits cal-
culated without bias-correction clearly suffer from undercover-
age.

Figure 3 shows the results under the log-normal regression
models. The results are very similar to the case of Weibull re-
gression models. Again, including the bias term B, significantly
improves the coverage probabilities in all cases. As a result,
the bias-corrected version of the tolerance limits has coverage
probabilities between 93% and 95% for n > 75. The results for
other values of (By, B1,0) and Z', not shown here, also sug-
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Figure 3. Coverage probabilities for the proposed tolerance limit
Lz(x) (denoted by B, = jackknife) and the Wald-type limit L(Z)( X)
(denoted by B;, = 0). The 0.90-content, 95%-confidence tolerance lim-
its are calculated at n = 25,50, ..., 275, 300. The percentage of cen-
soring is denoted by CEN% = 100Pr(C; < T;j|Z;). (a) Log-normal
regression with Z;ﬂ = By + z1;81, where (Bgy,B1,0) = (0,1,1).
(b) Log-normal regression with Z;ﬂ = Bo + z1i81 + 22iB2, where
(Bo. B1, B2,0)=(0,1,1,1).

gest that the bias-correction contributes positively to coverage
performance.

In summary, despite the additional computational burden due
to the jackknife, the bias-correction method leads to much bet-
ter results. In our numerical experience, the undercoverage of
the Wald-type limit is due to the upward bias of Gk |Z). As a
result, the tolerance limit L%( X) = IA(OZ[ n" G! (x|Z) is stochasti-
cally larger than desired. The effect of bias-correction becomes
less significant when sample sizes get very large since the bias
of G! (k|Z) converges to zero as n — 0.

5.2 Numerical Comparison With Other Tolerance Limits

The performances of the proposed tolerance limit [Lz(x)],
the Wald-type limit [L%( x)], and the limit proposed by Jones
et al. (1985) are compared by a simulation study. In the ab-
sence of censoring, the coverage probabilities of the three ap-
proaches based on 1000 replications under the log-normal re-
gression models (Model 3 and 4) are presented in Tables 1
and 2.

Table 1 shows the results under Model 3. As the sample sizes
increase, the coverage probabilities for Lz(x) and L%( X) get
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Table 1. Coverage probabilities of the three methods under Model 3

closer to the nominal levels. However, the coverage probabili-
ties of Lz(x) are much closer to the nominal levels than those

7' =(1,0) 7 =(1,1) ot bz
of L;(x) in all cases. On the other hand, the correctness of the
Lz(x) Ly(x) Jomnes Lz(x) Ly(x) Jones jonds et al. approach appears to vary with the values of Z se-
(1)1 —a=0.90 lected. For instance, the first four entries in the third column of
Po=0,81=0,0=1 Table 1 show that the coverage probabilities are between 0.850
n=25 0.908 0.804 0865  0.882 0833 0911 4nq 0.865, and do not get closer to 0.90 as the sample size in-
Z z ?g 0 8382 82‘;3 8222 823; 82‘7% ggﬁ crease.s. The results under Model 4 a.re provided in Table 2. The
n=200  0.900 0885  0.850 0906 0878  0.932 behaviors of the three tolerance limits are analogous to that of
Bo=0.pi=1.0=1 Table 1. In almost all entries, Lz () provides the best coverage
n=25 0.875 0821 0829 0882 0.838 0907 performance compared to the other two methods.
n=50 0.897 0876 0836 0902 0863 0934 From the previous results, it is shown that Lz(x) provides
n=100  0.893 0874  0.847 0910 0.851  0.942 more reliable coverage probabilities than L% (x) and the method
n=200 0906 0879 0855 0904 0897 0931 of Jones et al. (1985). Jones et al. justified the correctness of
)1 —a =095 their method by simulations in the absence of covariates (i.e.,
Bo=0,8=0,0=1 one-sample case). In the presence of covariates, however, the
n=25 0.932 0.880  0.908  0.927 0.888  0.958 accuracy of their methods may be questionable, at least in our
n=50 0939 0899 0904 0947 0910 0963 simulation settings.
n =100 0.945 0.912 0911 0.957 0.938 0.974
n=200 0.952 0934 0916  0.942 0.927  0.968 Remark 2. For certain data, it is impossible to find the max-
Bo=0,81=1,0=1 imum of the likelihood function. One of the major reasons for
n=25 0914 0874 0885  0.933 0.872  0.957 this problem is the small number of observed failure times.
n=50 0931 0911 089% 0933 0916 0961 The problem is also partly due to the ability of the maxi-
n=100  0.934 0925 0895  0.942 0935 0964 i/ ation program for the software at hand. In our simulations,
n =200 0.948 0.930 0.906 0.955 0.927 0.978

NOTE: Coverage probabilities for 0.90-content, 100(1 — ') %-confidence tolerance lim-
its are calculated under the log-normal regression models:

log(Tj) = fo + Bi1z1j + o Wj.

the “survreg” in R implements a sophisticated maximization
program which successfully found the maximum in all 1000
datasets that we simulated with n =25 and Pr(C; < T}j|Z;) =
0.5. However, small datasets contain little information about the

Table 2. Coverage probabilities of the three methods under Model 4

7' =(1,0,0) 7' =(1,0.5,0) 7' =(1,05,0.5)
Lz(x) LY Jones Lz(x) LYo Jones Lz(x) LY Jones
(1)1 —a=0.90

ﬂ():O»ﬁl =07132=O’O- =1
n=25 0.916 0.836 0.787 0.915 0.822 0.828 0.881 0.760 0.915
n=>50 0.907 0.863 0.776 0.901 0.834 0.816 0.891 0.824 0.934
n =100 0.905 0.876 0.750 0.897 0.858 0.835 0.888 0.853 0.927
n =200 0.901 0.879 0.783 0.904 0.862 0.828 0.898 0.860 0.936

/30=07131 =17ﬁ2=170=1
n=25 0.913 0.813 0.753 0.927 0.811 0.838 0.889 0.788 0.925
n=50 0.924 0.842 0.751 0.894 0.853 0.821 0.893 0.822 0.916
n =100 0.902 0.863 0.740 0.910 0.863 0.826 0.886 0.860 0.926
n =200 0.901 0.863 0.755 0.903 0.891 0.829 0.910 0.858 0.940

2)1—a=095

:3020»:31 207:32:010 =1
n=25 0.935 0.871 0.818 0.949 0.875 0.892 0.919 0.857 0.960
n=50 0.941 0.924 0.828 0.949 0.918 0.881 0.933 0.894 0.967
n =100 0.959 0.923 0.820 0.960 0.939 0.888 0.944 0.910 0.969
n =200 0.948 0.943 0.820 0.947 0.934 0.886 0.944 0.937 0.970

Bo=0,81=18=10=1
n=25 0.946 0.891 0.836 0.938 0.894 0.879 0.910 0.871 0.963
n=50 0.942 0.905 0.824 0.959 0.909 0.905 0.943 0.898 0.980
n =100 0.946 0.922 0.820 0.939 0.923 0.870 0.956 0.901 0.973
n =200 0.954 0.932 0.829 0.943 0.913 0.874 0.946 0.918 0.980

NOTE: Empirical coverage probabilities for 0.90-content, 100(1 — ) %-confidence tolerance limits are calculated under the log-normal regression models:

log(Ty) = Bo + B121j + Bazoj + o Wj.
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model, and therefore asymptotic approximation is questionable.
Another potential problem resulting from small sample size is
that Lz(x) can be negative if G~ (x|Z) < BZ. This condition is
noted only occasionally when G« |Z) is fairly close to zero.
Such a case can occur, for example, if x <0.99,1 —a <0.95,
and n < 25. In our numerical experience, we found that Lz(x)
is always positive as long as n > 50.

6. DATA ANALYSIS

The proposed tolerance limits are illustrated by two data ex-
amples in this section.

6.1 Fiber Strengths Data

The first analysis uses the fiber strengths data provided in
Crowder (2000). The data consist of failure stresses (7}) along
with the lengths (z;) of n =257 fiber samples. The sample does
not include any censoring. In many engineering applications,
covariate effects may be modeled by the inverse power law of
the form

log(7}) = Bo + B1log(z)) + o Wj. (10)

To choose the right model for W;, we follow section 3.8 of
Kalbfleisch and Prentice (2002). The method utilizes the gener-
alized log-gamma distribution for W}, defined as

mi
my

fw)= T o)

exp(mw —me"),

where m; > 0. If we set g = ml_l/z, then ¢ =0 and g = 1 corre-
spond to the log-normal and Weibull regression models, respec-
tively, as special cases. The likelihood ratio statistics are 6.33
(p-value = 0.012) for Hp:q = 0 and 17.69 (p-value = 0.000)
for Hy: g = 1, respectively. Neither g = 0 nor ¢ =1 is satisfac-
tory at the 5% level. Therefore, we choose the generalized log-
gamma distribution with m; = 16 whose test for Hy : ¢ = 0.25
generates better confidence (p-value = 0.419). Parameter es-
timates are By = 1.456 (p-value = 0.000), f; = —0.167 (p-
value = 0.000), and & = 0.800.

For the purpose of illustration we consider three different
censoring schemes of the original data, which are shown in Ta-
ble 3A. For all three censoring schemes, we generate artificial
censorings so that approximately half of the entire sample is

Table 3A. Artificial censoring schemes for the breaking
strengths data

No Type 1 Type II Random

censoring censoring censoring censoring
z=1 0% 96.5% 50.9% 47.4%
z=10 0% 64.1% 50.0% 53.1%
z2=20 0% 31.4% 50.0% 47.1%
z=150 0% 15.2% 50.0% 57.6%
Total 0% 49.8% 50.2% 51.4%

NOTE: Each entry represents the percentages of censored subjects at each z. That is,

100 x 3HG < Ty =z)/Zl(z, =2).
J J
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Table 3B. 0.90-content, 95%-confidence lower tolerance limits for
the breaking strengths

Without Type 1 Type 11 Random

censoring censoring censoring censoring
z=1 3.058 1.930 2.843 2.781
z=10 2.115 1.815 1.973 1.917
z=20 1.881 1.766 1.758 1.700
z=150 1.605 1.673 1.502 1.442

NOTE: Tolerance limits under the three types of censorings are calculated by the pro-
posed method.

censored. Specifically, for Type I censoring, we chose a deter-
ministic value C; = 2.67, which is the median breaking strength
of the sample. For Type II censoring, censoring occurs when
the first 28, 32, 32, and 32 subjects fail at z; = 1, 10, 20, and 30,
respectively. For random censoring, we generated random cen-
soring times C; = exp(D;), where D; has a normal distribution
with mean Z;B — /26 ®~1(0.5) and variance 62, where (i?, o)
are the MLE under the log-normal regression model.

The 0.9-content, 95%-confidence lower tolerance limits un-
der the log-gamma regression model with m; = 16 are shown
in the first column of Table 3B at z =1, 10, 20, and 50. For ex-
ample, we can claim with 95% confidence that at least 90% of
the fibers of length z = 10 have higher tensile strength than the
limit Lz(x) = 2.115. In fact, the interval [2.115, co) brackets
98% of the samples with z; = 10.

Results under censoring are presented in Table 3B. The lower
tolerance limits calculated under censoring are close to those
calculated in the absence of censoring except for the case of z =
1 under Type I censoring. It may be due to the large percentage
of censoring (96.5%).

6.2 Motorettes Data

The second dataset is presented in Nelson and Hahn (1972).
Table 4 shows the numbers of hours to failure for motorettes at
four different temperatures.

The third column contains 17 observed failure times among
n = 40 motorettes. All the remaining mottoerets are censored at
fixed times of 8064, 5448, 1680, and 528 hours under 150°C,
170°C, 190°C, and 220°C, respectively. Such studies are typ-
ically interested in estimating the failure time distribution un-
der specified operating conditions. Following the suggestion
of Nelson and Hahn (1972), we use a transformed covariate
zj = 1000/(273.2 + °C) in the regression model. Therefore,

log(T}) = Bo + P1zj + o W,. (11

We determine the model for W; using the same method as in
Section 6.1. The likelihood ratio statistics are 5.60 (p-value =
0.018) for testing Hy : g = 0 and 1.03 (p-value = 0.310) for test-
ing Ho:q = 1, respectively. Therefore, we adopt the Weibull
regression model with Bo = —13.36 (p-value = 0.000), B =
9.730 (p-value = 0.000), and 6 = 0.325.

We compute the 0.9-content, 95%-confidence lower toler-
ance limits for failure times under Equation (11). The fifth col-
umn of Table 4 shows the lower tolerance limits under the four
operating conditions. For example, the number 1977.2 in the
second row shows that we are 95% confident that at least 90%
of failure times exceed 1977.2 h with the operating condition of



APPROXIMATE TOLERANCE LIMITS

321

Table 4. Data and results for hours to failure for motorettes and tolerance limits

Temperature  Sample size Observed failure times Censoring time  Tolerance limit
150°C 10 None 8064 5193.9
170°C 10 1764, 2772, 3444, 3542, 3780, 4860, 5196 5448 1977.2
190°C 10 408, 408, 1344, 1440 1680 778.3
220°C 10 408, 408, 504, 504, 504 528 203.9

NOTE: The third column represents the numbers of hours to failure for motorettes operating under four conditions of 150°C, 170°C, 190°C, and
220°C. The censoring is Type I at each temperature; failure times are observed only if failure occurred prior to the predetermined censoring times
at each temperature. 0.90-content, 95%-confidence lower tolerance limits are calculated for each temperature.

170°C. Nine out of ten failure times exceed the tolerance limit
of 1977.2 h at 170°C.

7. CONCLUSION

This study provides a unified approach for obtaining approx-
imate tolerance limits under the log-location-scale regression
models in the presence of censoring. The proposed tolerance
limit has an explicit formula and is easy to calculate without
using special tables and resampling methods. We also adopt a
bias-correction technique via the jackknife method to improve
small sample accuracy. In particular, the simulations show that
the bias-corrected tolerance limit provides more accurate cov-
erage probability. Asymptotic theory is also provided to justify
the proposed approach.

R codes for implementing the proposed method are available
online, on the Technometrics web site, as supplemental mate-
rial. For instance, the “survreg” function in the R “survival”
library is useful to obtain the MLE and its observed informa-
tion matrix. Routine implementations of the procedure in other
high-level language such as SAS should be straightforward.

APPENDIX A: LARGE SAMPLE PROPERTIES
A.1 Regularity Conditions for Normal Approximation

Define a counting process N;(t) = I(X; <1,6; = 1) and at-
risk indicator Y;(¢) = I(X; > t). Also, define af(t) = h(t|Z;) as
a function of 8’ = (B, o). Under Equation (1) and Assump-
tion A, the likelihood function can be re-written as

LB.o) =[] []‘[{Y,-(r)a}’(r)}‘”vf“>{1—ZY,-(r)af(t)H,
J J

0<t<o0

and the score function becomes

U(0)—Z / —log{a (0} dM; (1),

where dM;(t; ) = dN; (t) -Y; (t)a (1) dt. The MLE is now de-
fined as the solution (ﬂ 6) to the martingale type estimating
equation U(@) = 0, and the asymptotic behavior follows from
the counting process and martingale theory. The regularity con-
ditions for the consistency and asymptotic normality of (f’, 6)
are covered by condition VI.1.1 of Andersen et al. (1993). Since
this condition is provided for very general settings, including
recurrent event models, it is convenient to rewrite them for our
setting. We use 0 to denote the true value of the parameter

and reserve @ for the free parameter in the parameter space
O={0=,0):BeR o>0}

(A) For all j, the first, second, and third partial derivatives of
(xj‘-’ () and log{af (1)} with respect to 8 exist and they are contin-
uous in the neighborhood of 6.

(B) For all / and m, there exist a number o (6¢); » such that

/ Z = 1og{a"‘° ()5~ 1og{a"° (O} (1) dr

P
— o (00)1,m-

(C) (Lindeberg condition) For all / and & > 0,

/ Z[—log{a”‘)(r)}}

— log{e; % 1)}

H NG > 8]Y (t)a"O(z) ato.

(D) The matrix X(0¢) = {0 (89);m} is positive-definite.
(E) There exist deterministic functions G;(#) and H;(t) such
that

83
067 06,, 00,
3

P Q; ‘| <G,

sup |——
& | 36106, 36,

log{afo(t)}‘ < Hj(0)

for all [, m, and r. Also,
] o0
- / > G ar,
n Jo ;
1 [ 0
- / > O (1) dr,
nJo —
J
I/OOZYm P ogta®n| o
— . —l0 . . s
nJjo j ! 06, 06y, g aj O['/

all converge in probability to finite quantities. Moreover, for all
& >0,

Lzl
o
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A.2 Proof of Theorem 1

By some algebraic calculation, we can write

n'2[log{G~" (k|Z) — BZ} — log(G™ " (k|Z)}]

gZ
a2 log(l - 7)
G1lz)

+n'[log{G™ (k|12)} — log{G™" (|Z)}]
122
n R
=" 4 0p(n1/zBf)
G Y(«|Z)

+n'[log{G™! (c|2)}) — log{G™' (kIZ)}],
where the second equation is derived from a Taylor expansion
log(1 —x) = —x+ o(x). From the assumption that Bf =0n )
as n — 0 and the second-order correctness of the jackknife es-

timator, we have n!/ 213‘5 = op(1) (Lehmann and Casella 1998,
p. 84). Thus, the preceding display can be further written as

n'2[log{G™" (k|Z) — BZ} — log{G™ " (k|2)}]
=op(1) +n'/*[log{G™ (k|2)} — log{G™' (x|2)}]
=op(1) +n'?A'(B' —B'.6 — o).

Now, by the delta method and Slutsky’s lemma, it follows that
the preceding equation converges weakly to a mean zero ran-
dom variable with variance

Q(B.0)=AT (B, o)A,

where J(B,0) is the Fisher ianormation matrix. Q(f,0) is
consistently estimated by nA'i,(8,5)~'A. Again, by Slutsky’s
lemma,
log{G™" (x|2) — B}) ~ log{G~" (x]2)}
(A'in(B, 5)~1A)2
converges weakly to the standard normal distribution. Rewrit-
ing the convergence result,

)

l—«
log{G~(x|Z) — B?} —log(G~ ' («|Z
— lim Pr( 0elG” (k|Z) ~ By}~ loglG™ (] )}Em—a)
n—oo {A/in(ﬂ,fr)_lA}lﬂ

= lim Pr(1 — G(Lz|Z) > 1 — k).
n— 0o

APPENDIX B: PROOF OF R(r) > 1 AS r — oo

By a Taylor series expansion, it can be shown that

RO) 2rei-a’ 2r{l + zi_or 2+ 071}
r) = =
o (20) Xi—a(2r)
2r +271_or!/? _
=2 L oeh. (B.1)
Xl_a(zr)

Let W, be a chi-square random variable with 2r degrees of free-
dom. Then, by the central limit theorem, we have

tim pr W2 =1
oo\ (@niz =S =T
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On the other hand,
W.—2 228 —2r
pr( 2 — 2" Xia21) —1-a (B3
@nlz @rls2
Equations (B.2) and (B.3) together imply
2
) Xl_a(2r) —2r B
T VAR B4

Combining Equations (B.1) and (B.4) yields the desired result
2r+2z1-4r'%)/4n)!/?

R(r) = + 03!
D= an—2r+amane 100
P24z g —1
SUPPLEMENTAL MATERIALS

Computer code: R codes that implement the proposed toler-
ance limit under the Weibull regression model. They contain
an R function that calculates the proposed tolerance limit and
an example for analyzing motorettes data. Analysis results
of the motorettes data can be easily reproduced using these
codes. (Supplemental Materials_0402.pdf)
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