
1 

 

Main Title: Analysis of Survival Data with Dependent Censoring  

Subtitle: Copula-Based Approaches 

 

Takeshi Emura 

Graduate Institute of Statistics, National Central University, Taoyuan, Taiwan  

Corresponding to: takeshiemura@gmail.com 

Yi-Hau Chen 

Institute of Statistical Science, Academia Sinica, Taipei, Taiwan 

 

Preface 

 

About this book 

This book introduces copula-based statistical methods to analyze survival data involving 

dependent censoring. The book explains why the problem of dependent censoring arises in 

medical research, and illustrates how copula-based statistical methods remedy the problem. 

The book introduces a variety of copula-based methods to deal with dependent censoring, 

including the copula-graphic estimator, parametric/semiparametric maximum likelihood 

estimators, univariate selection method, and prediction method. The book also introduces the 

basic theory of copulas for modeling bivariate survival data. 

There are many general books on survival analysis such as Kalbfleisch and Prentice 

(2002), Lawless (2003), Klein and Moeschberger (2003), and Collett (2003, 2015). These 

books focus on the standard statistical methods that have been developed under the 

assumption of independent censoring. Nonetheless, all these books mention the importance of 

scrutinizing the independent censoring assumption when applying the standard methods to 

real data. Kalbfleisch and Prentice (2002), Lawless (2003), and Klein and Moeschberger 

(2003) provides competing risks approaches to deal with dependent censoring without using 

copulas. In his latest edition of “Modelling Survival Data in Medical Research”, Collett 

(2015) added a new chapter, “Dependent censoring”, where some techniques of dealing with 

dependent censoring are introduced. Our book introduces a variety of copula-based statistical 

methods that are not discussed in the above-listed books. 

Our emphasis is placed on survival data arising from medical studies. I hope that the 

book appeals to those working as (bio) statisticians in medical and pharmaceutical institutes. 
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Of course, statistical methods presented in this book can be applied to many fields, especially 

in engineering and econometrics where survival analysis plays an important role. 

 

Use as a Textbook 

Readers (instructors) may begin with the basic survival analysis in Chapter 2. Then, proceed 

gradually to study advanced topics in Chapters 3-5. The book may be used as a textbook for 

classroom teaching aimed at graduate students or a short course aimed at (bio) statisticians. 

Alternatively, readers may study each chapter independently. Perhaps, students majoring 

in science or rigorous statisticians may feel comfortable to read Chapters 2 and 3 before 

Chapters 4 and 5. On the other hand, biostatisticians who have learned to use survival analysis 

may directly start from Chapter 5; they might be more interested in how to implement the new 

methods with R and how to interpret the outputs. Chapter 6 collects open problems for future 

research. This might help find research topics for students and researchers. 

Exercises are attached to Chapters 2 and 3, though readers are certainly not necessary to 

complete them. Nevertheless, ambitious readers or students seeking their thesis topics are 

encouraged to work on them. 
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Abbreviations 

CG estimator,   Copula-Graphic estimator 

FGM copula,   Farlie-Gumbel-Morgenstern copula 

MLE,   Maximum Likelihood Estimator 

OS,   Overall Survival 

PI,    Prognostic Index 

RR,   Relative Risk 

SD,   Standard Deviation 

SE,   Standard Error 

 

Notations 

Aa ,   an element a  belonging to a set A  

a ,   the transpose of a column vector a  

]|[ YXE ,   the conditional expectation of X  given Y  

BAf : ,   a function from the domain A  to the range B  

dt

dttf )( 
,   the limit of 

t

ttf



 )(
 as 0t  

)1,0(N ,   the standard normal distribution 

)( I ,   the indicator function: 1)( AI  if  A  is true, or 0)( AI  if  A  is false 

)|Pr( BA ,   the conditional probability of A  given B  
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Chapter 1: Setting the scene 

 

Abstract: This first chapter presents the purpose of the book. We first illustrate the issues of 

dependent censoring arising from medical research. We then explain several benefits of 

investigating dependent censoring. We finally illustrate how copula-based methods have been 

grown through the literature of survival analysis. 

 

Keywords: censoring, competing risk, Cox regression, endpoint, informative dropout, 

multivariate survival analysis, overall survival 

 

1.1 Survival analysis and censoring 

Survival analysis is a branch of statistics concerned with event times. In many examples of 

survival analysis, event times may be time-to-death as the name survival suggests. Time-to-

death for patients is termed overall survival (OS) which is considered as the most objective 

measure of patient health in cancer research.  

Analysis of survival data is complicated by censoring. If patient follow-up is terminated 

before observing time-to-death, they are said to be censored. Censoring is unavoidable in 

survival data; the study has a planned end of follow-up, or patients may decide to withdraw 

from the study. Typically, medical researchers and statisticians analyze survival data by 

assuming that censoring mechanisms are unrelated to the event of interest. Indeed, standard 

tools in survival analysis, such as the Kaplan-Meier estimator and Cox regression, deal with 

censoring under the assumption that event time and censoring time are statistically 

independent. 

If censoring mechanisms involve dropout or withdrawal due to a worsening of the 

symptoms, censoring may introduce bias into the results of statistical analysis. This type of 

dropout is often called informative dropout. Informative dropout is just one of many 

contributing causes of censoring. More generally, if event time of interest is censored by any 

mechanism related to the event, this phenomenon shall be referred to dependent censoring. 

Most of the standard survival analysis methods give unbiased results under the independent 

censoring assumption, that is, censoring mechanisms are unrelated to the event of interest. 

The book hopes to provide a systematic account of the issues of dependent censoring and 

to give survival analysis methods that apply copulas to appropriately deal with the issues.  
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1.2 Informative dropout 

In a medical follow-up study for cancer patients, survival time may be censored at the time of 

dropout owing to tumour progression, toxicity of treatment, initiation of second treatment, etc. 

Then, overall survival and dropout time may be positively correlated because a patient may 

typically die soon after dropout. This leads to informative dropout. Some discussions about 

the issues of informative dropout and dependent censoring are found in Kalbfleish and 

Prentice (2002), Chen (2010), Staplin (2012), Collett (2015), Staplin et al. (2015), Emura and 

Chen (2016) and references therein. 

   Censoring due to informative dropout may have a deleterious effect on the results of data 

analysis. Consider a case, where many terminally ill patients have dropped out of a clinical 

trial to stay in the comfort of their own home. This means that the data collected on the 

clinical trial miss many deaths that could be observed. Consequently, the Kaplan-Meier 

survival curve that treats those patients as censoring (i.e., being alive at their dropout) may 

exhibit upward bias. The Cox regression analysis can adjust the bias if there are covariates 

that can predict the occurrence of dropout and other causes of censoring. 

Dependent censoring refers to the situation where the dependence between censoring time 

and survival time is not explained by observable covariates. In other words, dependent 

censoring is a consequence of residual dependence that is not adjusted by covariates. In a 

sense, the concern for dependent censoring is reduced by collecting as many covariates as 

possible. For instance, a late-stage cancer patient may result in short survival and high chance 

to drop out due to tumour progression, which gives the positive dependence between survival 

and dropout times. Hence, the cancer stage can be included as one of covariates to achieve the 

conditional independence between survival and dropout. Some diagnostic plots are suggested 

to detect residual dependence (Chapter 14 of Collett (2015); Siannis et al. 2005; Chapter 5 of 

this book). 

Residual dependence causes the partial likelihood estimator (Cox 1972) to be biased. 

Suppose that one wishes to assess the effect of a covariate 1x  on overall survival through the 

Cox model )exp()()|( 1101 xthxth  , where 1  represents the covariate effect and )(0 th  is the 

baseline hazard function. The partial likelihood estimator gives a consistent estimate for 1  

under the conditional independence assumption between overall survival and censoring time 

given 1x . Unfortunately, if there exists another covariate 2x  influencing both survival and 

dropout, the conditional independence assumption would be violated as the variation of 2x  

induces residual dependence (Figure 1.1).  
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Figure 1.1 A mechanism of yielding residual dependence between survival and dropout 

triggered by an unmeasured covariate. 

 

Indeed, the so-called shared frailty models are derived as a consequence of residual 

dependence due to unmeasured covariates (Oakes 1989). While the frailty models are not the 

main focus of this book, they are helpful to introduce a mechanism of residual dependence. In 

Chapter 3, we shall provide more systematic discussions about residual dependence by 

relating the shared frailty models with the copula models. 

1.3 Benefits of investigating dependent censoring 

As mentioned earlier, a motivation to study dependent censoring emerges from medical 

research. Researchers may demand a bivariate survival model to specify the interrelationship 

between survival time and censoring time. This book introduces copulas as the main tool for 

constructing such models. In the following, we shall pick up specific advantages for adopting 

copula-based approaches to deal with dependent censoring. 

 

Examining the influence of dependent censoring:  

If researchers perform the Cox regression analysis by incorrectly imposing the independent 

censoring assumption, estimates of regression coefficients can be biased. Emura and Chen 

(2016) applied copulas to examine the bias owing to residual dependence. These analyses 

show that the bias is influenced by the rate of censoring, the degree of dependence, and the 

type of copulas. This issue shall be detailed in Chapter 3. Beside this method, copulas provide 

a variety of sensitivity analyses. The copula-graphic estimator (Zheng and Klein 1995; Rivest 

and Wells 2001) can be used to examine how the survival curve is influenced by dependent 

censoring. Likelihood-based sensitivity analyses are referred to Chen (2010) under a semi-

parametric model and Emura and Michimae (2017) under a parametric model. Moradian et al. 

Survival 

Dropout  

x1: Covariate of interest 

x2: Unmeasured covariate       

Dependence  

induced by x2 
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(2017) applied copulas to see the influence of dependence on survival forests. Sugimoto et al. 

(2017) adopted copula models to examine the influence of dependent censoring on the power 

and sample size of the log-rank test in clinical trials with multiple endpoints. 

 

Improving prediction by using dependent censoring:  

The effect of dependent censoring can potentially be useful for improving the performance of 

prediction. Intuitively, dependent censoring due to patient dropout is related to patients’ health 

status and hence contains some predictive information about OS. Siannis et al. (2005) 

proposed a graphical diagnostic method by plotting a prognostic index against a censoring 

index (see also Chapter 14 of Collett (2015)). If the censoring index is positively correlated 

with the prognostic index, high risk of death is predicted by high intensity of censoring.  

The diagnostic procedure has a certain drawback that requires parametric models to be 

fitted to both OS and censoring time. This strong assumption is understandable due to the 

identifiability problem of the competing risks relationship between OS and censoring time. 

Indeed, developing prediction models is a challenging problem. Chapter 5 is devoted to the 

idea of Emura and Chen (2016) who proposed an alternative diagnostic plot and a prediction 

method for OS by utilizing the information of dependent censoring. 

 

1.4 Copulas and survival analysis: a brief history 

Briefly speaking, a copula is a function to link two random variables by specifying their 

dependence structure. A mathematician, Abe Sklar, first used the word copula in his study of 

probabilistic metric space (Sklar 1959). In his paper, he gave a mathematical definition of 

copulas and established the most fundamental theorem about copulas, known as Sklar’s 

theorem. More about copulas can be found in the book of Nelsen (2006). 

Apparently, the applications of copulas in survival analysis became active after David 

George Clayton introduced his bivariate survival model (Clayton 1978). David Oakes soon 

realized the importance of Clayton’s model and reformulated Clayton’s bivariate survival 

model into its current form (Oakes 1982). While neither Clayton nor Oakes mentioned about 

copulas, their work yielded one of the most important copulas for bivariate survival analysis, 

later known as the Clayton copula.  

Clayton’s model is regarded as the gamma frailty model, a special case of shared frailty 

models (Oakes 1989). On the other hand, Clayton’s model is a special case of Archimedean 

copula models (Genest and MacKay 1986). Oakes (1989) touched upon the paper of Genest 

and Mackay (1986) but did not mention about copulas. Many important works on bivariate 
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survival analysis were generated under Clayton’s model without mentioning about 

Archimedean copulas. These include the estimation procedure of Hsu and Prentice (1996) 

and the goodness-of-fit test of Shih (1998). 

One of the earliest papers that successfully and explicitly applied copulas to the bivariate 

survival data seems to be Shih and Louis (1995) who proposed a two-stage estimation 

approach. They used copulas to develop a unified estimation method applicable to many 

copulas, rather than the method specific to Clayton’s model. See also Burzykowski et al. 

(2001, 2005) for studying the association between survival endpoints based on copulas. 

Later on, the goodness-of-fi test of Shih (1998) that was developed solely for Clayton’s 

model were generalized to a unified test applicable to a broad class of bivariate survival 

models described by Archimedean copulas (Emura et al. 2010). 

While the method of Shih and Louis (1995) can handle bivariate event times, it essentially 

requires the assumption of independent censorship. An inconvenience occurs if one event time 

censors the other. For instance, death dependently censors time-to-tumour progression. Hence, 

it is not a valid way to apply the two-stage estimation by treating time-to-tumour progression 

and overall survival as bivariate event times subject to independent censoring. This problem is 

known as competing risks or dependent censoring. In general, estimation with competing 

risks data is substantially more challenging than estimation with bivariate survival data due to 

the identifiability issue (Tsiatis 1975); competing risks data do not allow one to observe two 

event times simultaneously (one event censors the other) and hence the data may not identify 

the dependence structure between event times. 

The paper by Zheng and Klein (1995) gave a partial solution to the identifiability problem 

of dependent censoring by an assumed copula between two event times. They generalized the 

Kaplan-Meier estimator under independent censoring to the copula-graphic (CG) estimator 

under dependent censoring. For Archimedean copula models, Rivest and Wells (2001) 

obtained the explicit expression of the CG estimator, derived its asymptotic properties using a 

martingale theory, and formulated a sensitivity analysis on the choice of the assumed copula. 

Nowadays, the CG estimator is one of the most important tools for analyzing data with 

competing risks or dependent censoring (Staplin 2012; de Uña-Á lvarez and Veraverbeke 2013; 

2017; Emura and Chen 2016; Emura and Michimae 2017; Moradian et al. 2017). Note that 

the CG estimator is still of limited use for fitting real medical data since it cannot handle 

covariates. 

Braekers and Veraverbeke (2005) extended the CG estimator to deal with a covariate. 

Unfortunately, this approach is too restrictive in medical applications since it cannot handle 
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more than one covariate. Indeed, all the CG type estimators are derived from moment-based 

equations, which may not be naturally extended to handle covariates. 

Likelihood-based approaches can naturally deal with covariates under an assumed copula 

for dependent censoring. Likelihood-based regression analyses are straightforward and 

workable under parametric models (Escarela and Carrière 2003), though the full parametric 

assumptions are too strong in many medical applications. Alternatively, Chen (2010) adopted 

a semi-parametric likelihood method to perform regression under bivariate competing risks 

models, where the copula is assumed and the marginal distributions follow the transformation 

Cox model. Chen’s method reduces to the partial likelihood method under the independence 

copula and the identity transformation. 

The copula-based approaches are further extended to handle semi-competing risks data. 

Fine et al. (2001) introduced the concept of semi-competing risks in which a non-terminal 

event can be censored by a terminal event, but not nice versa. This brings an alternative 

solution to the identifiability of a model of dependent censoring by removing the competing 

risk for the terminal event time. Their statistical approach was developed under Clayton’s 

model and it was later extended to Archimedean copula models by Wang (2003). Chen (2012) 

further extended the copula models to implement semiparametric regression analysis on the 

transformation Cox model. Several recent works have applied copula-based methods for 

clustered semi-competing risks data (Emura et al. 2017a, b; Peng et al. 2018). 

Nowadays, copulas have been extensively applied for analysis of survival data subject to 

dependent censoring or competing risks. For a methodological point of view, copulas often 

offer a more transparent strategy for building a model of dependent censoring and estimating 

parameters in the model. As an instance, one may compare Clayton’s elegant but rather 

esoteric idea of the conditional likelihood estimation (Clayton 1978) with the more 

transparent idea of the two-stage likelihood estimation (Shih and Louis 1995). In addition, the 

likelihood method of Chen (2012) would be more transparent than the moment-type 

estimating equations of Fine et al. (2001) that were derived under Clayton’s model. Indeed, 

the likelihood method of Chen (2012) is adaptive to more complex copula models, such as the 

joint frailty-copula model  (Emura et al. 2017a, b). 

In summary, copulas have provided flexible bivariate survival models to perform 

survival analysis under dependent censoring. Here, copulas stipulate the dependence 

structure between event times while they impose no restriction on the marginal survival 

models. For these copula-based methods, one can choose any copula that he/she likes, which 

provides considerable flexibility and adaptability to different types of data. In addition, one 
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can utilize mathematical and computational tools of copulas that have been well-developed 

in the literature (e.g., Nelsen 2006; Weiß 2011; Joe 2014; Schepsmeier and Stöber 2014; 

Durante and Sempi 2015). 

 

Remark: There are many articles that we could not mention in this historical review. Our 

review focuses on likelihood-based inference methods that are the major interest in this book. 
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Chapter 2: Introduction to survival analysis 

 

Abstract: This chapter provides a concise introduction to survival analysis. We review the 

essential tools in survival analysis, such as the survival function, Kaplan-Meier estimator, 

hazard function, log-rank test, Cox regression, and likelihood-based inference. 

 

Keywords: censoring, Cox regression, independent censoring, Kaplan-Meier estimator, log-

rank test, overall survival, time-to-tumour progression 

 

2.1 Survival time 

In survival analysis, the term survival time refers to the time elapsed from an origin to the 

occurrence of an event. In many medical studies, the origin is the time at study entry which 

can be the start of a medical treatment, the initiation of a randomized experiment, or the 

operation date of surgery. In epidemiological and demographic studies, the origin is often the 

date of birth. The event may be the occurrence of death. 

In medical research, the term overall survival refers to survival time measured from entry 

until death of a patient. For instance, to measure the effect of chemotherapy or radiotherapy in 

locally advanced head and neck cancer, researchers may use overall survival as the primary 

endpoint (Michiels et al. 2009). In this study, the origin is the start of randomization. 

 

2.2 Kaplan-Meier estimator and survival function 

We shall introduce the random censorship model where we consider two random variables 

 

  T  : survival time 

  U :  censoring time 

 

Due to censoring, either one of T  or U  is observed. One can observe T  if death comes faster 

than censoring ( UT  ). On the other hand, one cannot exactly observe T  if censoring comes 

faster than death ( TU  ). Even if the exact value of T  is unknown for the censored case, T  

is known to be greater than U . What we observe are the first occurring time ( },min{ UT  ) 

and the censoring status ( }{ UT   or }{ TU   ). The random censorship model typically 
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assumes that T  and U  are independent, namely )Pr()Pr(),Pr( BUATBUAT   for 

sets A  and B . 

Survival data consist of  ),( iit  , ni ...,,1 , where 

 

 it   :  survival time or censoring time whichever comes first, 

 i  :  censoring indicator ( 1i  if  it  is survival time, or 0i  if it  is censoring time ). 

 

Under the random censorship model, one can write },min{ UTti   and )( UTi  I , 

where )( I  is the indicator function. We shall assume that all the observed times to death are 

distinct ( ji tt   whenever ji   and 1 ji  ), so that there is no ties in the death times. 

With the survival data, one can estimate the survival function )Pr()( tTtS   by the 

following estimator: 

 

Definition 1: The Kaplan-Meier estimator (Kaplan and Meier 1958) is defined as 














1,

1
1)(ˆ

ii tt in
tS



,         )(max0 i
i

tt   

where  


n

ii ttn
1

)(
 I  is the number at-risk at time it ; 1)(ˆ tS  if no death occurs up to 

time t ; )(ˆ tS  is undefined for )(max i
i

tt  . 

 

The derivation of the Kaplan-Meier estimator: Consider a survival function that is a 

decreasing step function with jumps only at points where a death occurs at observed times of 

death. Then, one can write (Exercise 1 in Section 2.9) the survival function in the form 









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



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
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i

tT

tT
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

. 

Second, suppose that T  and U  are independent. Then, one can write 



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Finally, we replace the probability ratio of the last expression by its estimate to obtain 
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It is now clear that the Kaplan-Meier estimator relies on the independence assumption 

between T  and U .■ 

 

The Kaplan-Meier survival curve is defined as the plot of )(ˆ tS  against t , starting with 0t  

and ending with )(maxmax i
i

tt  . The curve is a step function that jumps only at points where a 

death occurs. On the curve, censoring times are often indicated as the mark“＋”. 

 

If )(maxmax i
i

tt   corresponds to time-to-death of a patient, then 0)(ˆ
max tS . If 

)(maxmax i
i

tt   corresponds to censoring time of a patient, then 0)(ˆ
max tS . It is misleading 

to plot )(ˆ tS  only up to the largest death time )(max
1;

i
i

t
i 

, especially when many patients are 

alive beyond )(max
1;

i
i

t
i 

.  

Survival data often include covariates, such as gender, tumour size, and cancer stage. 

With covariates, survival data consist of ),,( iiit x , ni ...,,1 , where 

 

 )...,,( 1
 ipii xxx :  p -dimensional covariates. 

 

In traditional survival analysis, the data is analyzed under the following assumption: 

 

 Independent censoring assumption: Survival time and censoring time are independent given 

covariates. That is, T  and U  are conditionally independent given x . 

 

   For a patient i , one can define the survival function denoted as )|Pr()|( ii tTtS xx   for 

0t . The survival function is the probability that the patient is alive at time t . The survival 

function )|( itS x  is, in fact, the patient-level survival function as it is conditionally on the 

patient characteristics ix . The survival function at 0x i  is called the baseline survival 

function and denoted as )|()(0 0x  itStS . 

A parametric model is given by a survival function that is specified by a finite number of 

parameters. For instance, we consider an exponential survival function 

)exp()|( ix

i textS
 , 0t , where 0  and    are parameters. Let ix  denote 
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the gender with 1ix  for male and 0ix  for female. One can show that 

)exp(

0 )()|( ix

i tSxtS


  for 0t , where )exp()0|()(0 txtStS i   is the baseline survival 

function. With this model, survival difference between male and female is captured by  . 

The case 0  corresponds to poor survival prognosis for male relative to female; the case 

0  corresponds to good survival prognosis for male relative to female. The case 0  

corresponds to equal survival prognosis between male and female. 

A semi-parametric model is given by a survival function that is partially specified by a 

finite number of parameters. For instance, we consider a survival function 

)exp(

0 )()|( ix

i tSxtS


 , where the form of the baseline survival function )(0 tS  is unspecified. 

In terms of  , one can compare survival between males and females without assuming a 

specific model on the baseline survival function. 

 

2.3 Hazard function 

Hereafter, we suppose that )|( itS x  is a continuous survival function. The instantaneous death 

probability between t  and dtt   is )|()|()|Pr( iii dttStSdttTt xxx  , where dt  

is an infinitely small number. Since this probability is equal to zero, one can consider the rate 

by dividing by dt  such that  

dt

tdS

t

ttStS

dt

dttStS
tf iii

t

ii
i

)|()|()|(
lim

)|()|(
)|(

0

xxxxx
x 










. 

This is the density function.  

The hazard rate describes the instantaneous death rate between t  and dtt   given that the 

patient is at-risk at t : 

 

Definition 2: The hazard function (or hazard rate function) is defined as 

 
)|(

)|(
),|Pr(

)|(
i

i
i

i
tS

tS
dt

d

dt

tTdttTt
th

x

x
x

x






 . 

 

The hazard function at 0x i  is called the baseline hazard function and denoted as 

)|()(0 0x  ithth . The cumulative hazard function is defined as 
t

ii duuhtH
0

)|()|( xx . 

The survival function is derived from the hazard function through })|(exp{)|( ii tHtS xx  . 
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The hazard rate is also known as the force of mortality in actuarial science and 

demography. For example, let t  “60 years old”, dt  “1 year”, and 1ix  for male or 0ix  

for female. Then, the force of mortality )1|60( ixh  is equal to the probability of death 

within the next one year for a 60-year-old man. The Japanese life tables show 

)1|60( ixh =0.0064 (0.64%). The value of )1|( ixth  monotonically increases as t  grows, 

which represents the effect of natural aging. Eventually, it reaches )1|100( ixh =0.3995 

(39.95%). This implies that 40% of Japanese males who have just celebrated their 100
th

 

birthday will die before their next birthday. Life tables for almost any country are available in 

the internet (e.g., google “Taiwan life table”). 

Unfortunately, the hazard function for cancer patients in medical studies rarely shows any 

simple pattern (e.g., monotonically increasing or decreasing). In many clinical trials, the time 

t  is measured from the start of treatment, and hence, the ages are regarded as covariates. In 

this case, the hazard of patients may be influenced by the treatment effect, the follow-up 

processes, and cancer progression, so the effect of natural aging may diminish. In 

epidemiological studies focusing on age-specific incidence of a particular disease, the time t  

is measured from birth as in the example from Japanese life tables. However, the shape of the 

hazard function of disease incidence may be difficult to specify.  

This implies that many simple models, such as the exponential, Weibull and lognormal 

models, may not fit survival data from cancer patients. This is why semi-parametric models 

are more useful and widely applied in medical research. One may still accept the assumptions 

that the hazard function is continuous, does not abruptly change over time, and smooth 

(continuously differentiable). Hazard models with cubic splines (Chapter 4) meet these 

assumptions without restricting too much the shape of the hazard function.  

The semi-parametric model 
)exp(

0 )()|( ix

i tSxtS


  can alternatively be specified in terms of 

the hazard function 

)exp()()|( 0 ii xthxth                                                       (2.1) 

where the form of )(0 th  is unspecified. One can show dttSdth /})(log{)( 00   and 

})(exp{)( 00 tHtS  , where 
t

duuhtH
0

00 )()( . 

Let ix  be a dichotomous covariate, such as gender with 1ix  for male and 0ix  for 

female. Under the model (2.1), the relative risk (RR) is defined as 
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)0|(

)1|(
)exp(






i

i

xth

xth
RR  . 

For instance, the value 2RR  implies that death rate for 1ix  is twice the death rate for 

0ix .  

Let ix  be a continuous covariate, such as a gene expression. If the scale of ix  is 

standardized (to be mean=0 and SD=1), then )exp(RR  is interpreted with respect to one 

SD increase. If one is interested in the effect of 2ix  relative to 2ix , then )4exp( RR . 

 

2.4 Log-rank test for two-sample comparison 

The log-rank test is a method to test the quality of the hazard rates between two groups. 

Specifically, we consider the null hypothesis 

0),1|()0|(:0  txthxthH ii , 

where 1ix  for male and 0ix  for female, for instance. This null hypothesis is the same as 

the equality ( | 0) ( | 1)i iS t x S t x    due to the relationship between the hazard function and 

survival function. We wish to test 0H  without making any model assumption, but with the 

assumption that there are no ties in death times. The treatment of ties shall be briefly 

discussed in Section 2.8. 

Let  


n

ii xttn
11 }1,{

 I  be the number of males and  


n

ii xttn
10 }0,{

 I  be 

the number of females at-risk at time it . Hence, 10 ii nn   is the total number at-risk at time it . 

Each death at time it  corresponds to either the death of male ( 1ix ) or the death of female 

( 0ix ). If there is no effect of gender on survival, male and female have the same death rate. 

Hence, the conditional expectation of ix  given ),,1( 10 iii nn  is 

0 1 0 1

0 1

0 1 0 1

1

1 0

[ | 1, , ] Pr( 1| 1, , )

Pr( 1, 1| , )
                                

Pr( 1, 1| , ) Pr( 0, 1| , )

( | 1)
                                

( | 1)

i i i i i i i i

i i i i

i i i i i i i i

i i i

i i i i

E x n n x n n

x n n

x n n x n n

n h t x

n h t x n

 



 

   

 


    




 

1

0 1

( | 0)

                                .

i i

i

i i

h t x

n

n n






 

The last equation holds under the null hypothesis 0H . The difference between ix  and its 

expectation leads to the log-rank statistic 
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







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







n

i ii

i
ii

nn

n
xS

1 10

1 . 

Hence, 0S  is associated with higher death rate in male than that in female. Under 0H , the 

mean of S  is zero. If we assume that ix ’s are independent,  


 


n

i ii

ii
i

nn

nn
SVar

1
2

10

01

)(
)(  . 

The log-rank test for no gender effect is based on the Z-statistic )(/ SVarSz   or the chi-

square statistic 2z . The P-value is computed as )||||Pr( zZ  , where )1,0(~ NZ . 

 

Example 1:  

Consider a sample of 5 females and 5 males ( 10n ) with it (1650, 30, 720, 450, 510, 1110, 

210, 1380, 1800, 540), i (0, 1, 0, 1, 1, 0, 1, 1, 0, 1), and ix (0, 0, 0, 0, 0, 1, 1, 1, 1, 1). To 

calculate the log-rank statistic, it is convenient to summarize the data into Table 2.1. 

 

Table 2.1 Tabulation of the 10n  samples. 

Death times: 

it  with i 1 

Observed: 

ix  

Expected: 

)/( 101 iii nnn   

30 0 5/10 

210 1 5/9 

450 0 4/8 

510 0 4/7 

540 1 4/6 

1380 1 2/3 

 

The log-rank statistic has the “(observed)-(expected)” form, namely 

46.046.33
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The negative value of S implies that the observed mortality of male is lower than its expected 

value under 0H . The variance is computed from Table 2.1 as 

1.436
3
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Hence, the test statistic is 384.0436.1/46.0)(/  SVarSz , and the P-value is 

70.0)384.0||Pr( Z . We see no significant evidence for gender effect on survival. ■ 

 

The log-rank test is a non-parametric test that does not employ any distributional 

assumption. The log-rank test simply examines the excess mortality. Software packages for 

survival analysis display both “observed” and “expected” numbers of deaths in their outputs, 

in addition to the Z-value and P-value. The log-rank test can also handle left-truncation (Klein 

and Moeschberger 2003). The log-rank test has variants, such as multi-group tests, log-rank 

trend tests, and stratified log-rank tests (Collett 2003; Klein and Moeschberger 2003). 

 

2.5 Cox regression 

Since the hazard function is the basis of the risk comparison between two groups, it is then 

natural to incorporate the effect of covariates into the hazard function. 

 

Definition 3: The Cox proportional hazards model (Cox 1972) is defined as 

)exp()()|( 0 ii thth xβx  , 

where )...,,( 1
 pβ  are unknown coefficients and )(0 h  is an unknown baseline hazard 

function. 

 

The Cox model states that the hazard function )|( ith x  is proportional to )(0 th  with the 

relative risk )exp( ixβ . This implies that all patients share the same time-trend function )(0 th . 

The most striking feature of the Cox model is that the form of )(0 h  is unspecified. Hence, the 

Cox model is a semi-parametric model, offering greater flexibility over parametric models 

that specify the form of )|( ith x . 

One can estimate β  without estimating )(0 h . Based on data ),,( iiit x , ni ...,,1 , let 

}:{ ii ttR    be the risk set that contains patients at-risk at time it . The partial likelihood 

estimator )ˆ...,,ˆ(ˆ
1

 pβ  is defined by maximizing the partial likelihood function (Cox 

1972) 
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The log-partial likelihood is 

 
  


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
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L
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)exp(log)(log)(


 xβxβββ  .                          (2.2) 

The derivatives of )(β  give the score function, 
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The second-order derivatives of )(β  constitute the Hessian matrix, 
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Since )(βH  is a negative definite matrix (see Exercise 3 in Section 2.9), the log-likelihood 

)(β  is concave. This implies that )(β  has a unique maxima β̂  that solves 0βS )( . 

Interval estimation for β  is implemented by applying the asymptotic theory (Fleming 

and Harrington 1991). The information matrix is defined as )ˆ()ˆ( ββ Hi  . The standard 

error (SE) of j̂  is jjj iSE })ˆ({)ˆ( 1
β

  that uses the j-th diagonal element of the inverse 

information matrix. The 95% confidence interval (CI) is )ˆ(96.1ˆ
jj SE   . 

   To gain more insight into Cox regression, we consider a simple case where ix  denote the 

gender defined as 1ix  for male and 0ix  for female. In this setting, the Cox model is 

written as )exp()()|( 0 ii xthxth  , where the factor )exp(  represents the RR of male 

relative to female. 

We shall demonstrate how the factor )exp(  is estimated by maximizing the log-partial 

likelihood in Equation (2.2). We solve the score equation 0)( S  where 
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Hence, the estimate of )exp(  needs to satisfy the equation 
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This is the ratio of the expected number of deaths in male divided by the expected number of 

deaths in female, which agrees with the interpretation of )exp( . 

   Equation (2.3) can be solved by the fixed-point iteration algorithm. First, applying the 

initial value 1)exp(   to the right-hand side of Equation (2.3), we have 
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 . 

We apply this value of )exp(  to the right-hand side of Equation (2.3) to give an updated 

value of )exp( . This process is repeated until the updated value does not change from the 

previous step. While the fixed-point iteration gives us an insight about how )exp(  is 

estimated from data, it requires a large number of iterations until convergence.  

A computationally faster algorithm is the Newton-Raphson algorithm, which utilizes the 

score function  ddS /)()(   and the Hessian 22 /)()(  ddH  . The algorithm 

starts with the initial value 0)0(  , and then follows the sequence 

)()( )()(1)()1( kkkk SH    ,        ...,1,0k . 

The algorithm converges if 0|| )()1(  kk  . Then, the estimate is )(ˆ k   and its standard 

error is )ˆ()ˆ( 1   HSE . The score function is 
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. 

   We use Example 1 to compare the convergence between the fixed-point iteration and 

Newton-Raphson algorithms. Table 2.2 shows that the Newton-Raphson converges faster 

than the fixed-point iteration. The two algorithms reach the same value 3156.0ˆ  . 
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Table 2.2 Iteration algorithms to compute ̂  using the data of Example 1. 

Iteration number 

k  

Fixed-point iteration 

)(k  

Newton-Raphson 

)(k  

0 0 0 

1 -0.3093212 -0.3204982 

2 -0.3154621 -0.3155884 

3 -0.3155858 - 

NOTE: The convergence criterion is 5)()1( 10||   kk  . 

 

   The Wald test for the null hypothesis 0:0 H  is based on the Z-value )ˆ(/ˆ  SEz  . 

The P-value is computed as )||||Pr( zZ  , where )1,0(~ NZ . 

The score test for the null hypothesis 0:0 H  uses the score statistic, and its variance, 
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)0(})0({  . 

The score test based on })0({/)0( SVarSz   is exactly the same as the log-rank test. This 

coincidence does not imply that the log-rank test relies on the Cox model assumption 

(Section 2.8). 

   The Newton-Raphson algorithm can also be applied to the multi-dimensional case ( 2p ) 

(see Section 2.7). The fixed-point iteration algorithm, however, may not be easily applied to 

the multi-dimensional case (see Exercise 4 in Section 2.9). 

 

2.6 R survival package 

We shall briefly introduce the R package survival to analyze real data. After installing the 

package, we enter survival time it , censoring indicator i , and covariate ix  for 10n  

patients. Then, we run the codes: 

 

library(survival) 
t.event=c(1650, 30, 720, 450, 510, 1110,  210, 1380, 1800, 540) 
event=c(0, 1, 0, 1, 1, 0, 1, 1, 0, 1) 
x=c(0,0,0,0,0,1,1,1,1,1)  ## female=0, male=1 
survdiff(Surv(t.event, event) ~ x)  ## log-rank test 
summary( coxph(Surv(t.event,event)~x) ) ## Cox regression 
fit=survfit(Surv(t.event, event)~1) ## Kaplan-Meier estimator 
plot(fit,mark.time=TRUE) ## Kaplan-Meier survival curve 
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The outputs are shown below and Figure 2.1. 

 

> survdiff(Surv(t.event, event) ~ x)  ## log-rank test 
Call: 
survdiff(formula = Surv(t.event, event) ~ x) 
            N   Observed   Expected    (O-E)^2/E     (O-E)^2/V 
x=0      5                  3            2.54        0.0834             0.148 
x=1      5                  3            3.46        0.0612             0.148 
 Chisq= 0.1  on 1 degrees of freedom, p= 0.701  
> summary( coxph(Surv(t.event,event)~x) ) ## Cox regression 
Call: 
coxph(formula = Surv(t.event, event) ~ x) 
  n= 10,   number of events= 6  
        coef     exp(coef)    se(coef)             z      Pr(>|z|) 
x -0.3156         0.7294     0.8249    -0.383          0.702 
 
    exp(coef)    exp(-coef)    lower .95    upper .95 
x      0.7294             1.371        0.1448           3.673 
 
Concordance= 0.581  (se = 0.123 ) 
Rsquare= 0.014   (max possible= 0.898 ) 
Likelihood ratio test= 0.15  on 1 df,   p=0.7026 
Wald test                   = 0.15  on 1 df,   p=0.702 
Score (logrank) test = 0.15  on 1 df,   p=0.7009 

 

The results on the log-rank test show 46.046.33 S  with the chi-square statistics 

148.02 z  and the P-value = 0.701 (see the row of “x=1”). The results on Cox regression 

show 316.0ˆ  , 729.0)ˆexp(  RR , 825.0)ˆ( SE , and 38.0)ˆ(/ˆ   SEz . The P-

value of the Wald test is 0.702. Hence, the log-rank test and the Wald test show similar results. 

In addition, the log-rank test and the score test yield the identical result.  

Since the difference between the two groups is not significant, we combine the two groups 

and then draw the Kaplan-Meier survival curve. Figure 2.1 display the Kaplan-Meier survival 

curve and the 95% CI. 
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Figure 2.1 The Kaplan-Meier survival curve and the 95% CI calculated from the data of 

Example 1 ( 10n ). Censoring times are indicated as the mark“＋”. 

 

 

2.7 Likelihood-based inference 

This section considers likelihood-based methods for analyzing the data ),,( iiit x , 

ni ...,,1 . Recall that we defined survival time T  and censoring time U  such that: 

 itT   and itU   if 1i , 

 itT   and itU   if 0i . 

Combining these two events, the likelihood for the i -th patient is expressed as 

ii

iiiiiii tUtTtUtTL
 


1

)|,Pr()|,Pr( xx . 

Under the independent censoring assumption,  
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where )|Pr()|( iiT tTtS xx  , dttdStf iTiT /)|()|( xx  , )|Pr()|( iiU tUtS xx  , and 

dttdStf iUiU /)|()|( xx  . In addition to the independent censoring assumption, we further 

impose the following assumption: 
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Non-informative censoring assumption: The censoring distribution does not involve any 

parameters related to the distribution of the survival times. That is, )|( iU tS x  does not contain 

parameters related to )|( iT tS x  . 

 

Under the non-informative censoring assumption, the term ii

iiUiiU tStf


)|()|(
1

xx


 is 

unrelated to the likelihood for the survival times, and can simply be ignored. Therefore, the 

likelihood function is re-defined as 







n

i

iiTiiT

n

i

iiTiiT tHthtStfL iii

11

1
])|(exp[)|()|()|( xxxx


, 

where )|(/)|()|( iTiTiT tStfth xxx   and 
t

iTiT duuhtH
0

)|()|( xx . The log-likelihood is  





n

i

iiTiiTi tHthL
1

])|()|(log[log xx .                               (2.4) 

   Usually, censoring is non-informative if it is independent. Only an artificial or unusual 

example yields informative but independent censoring (p.150 of Andersen et al. 1993; p. 196 

of Kalbfleish and Prentice 2002). It is well-known that independent censoring is more crucial 

assumption than non-informative censoring that does not lead to bias in estimation. 

Throughout the book, we focus on dependent censoring rather than informative censoring. 

   If censoring is dependent, the likelihood for the i -th patient is 
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Therefore, the log-likelihood is defined as 





n
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iiiiiUiiiTi ttthth
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## ])|,()|(log)1()|(log[ xxx  , 
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 )|,Pr(log)|(,)|,Pr(log)|( ##

xxxx , 

are the cause-specific hazard functions, and  

( , | ) logPr( , | ) logPr( min{ , } | )i i i i i i i it t T t U t T U t       x x x  

is the cumulative hazard function for min{ , }T U . 
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Suppose that the log-likelihood is parameterized by φ . Then, the maximum likelihood 

estimator (MLE) is defined by maximizing the log-likelihood, )(maxargˆ φφ φ  . To find 

the MLE numerically, one can use the score function φφφS  /)()(   and the Hessian 

matrix φφφφ  /)()( 2H . The MLE φ̂  is obtained from the Newton-Raphson 

algorithm  

)()( )()(1)()1( kkkk H φSφφφ
  ,         ...,1,0k . 

Interval estimates for φ  follow from the asymptotic theory of MLEs. The information matrix 

is defined as )ˆ()ˆ( φφ Hi  . The SE for j̂  (the j-th component of φ̂ ) is 

jjj iSE })ˆ({)ˆ( 1
φ

  that uses the j-th diagonal element of the inverse information matrix. 

The 95% CI is )ˆ(96.1ˆ
jj SE   . 

For instance, the Cox model takes the form ( , )φ θ β  and 0( | ) ( ; )exp( )i ih t h t x θ β x , 

where 1( , , )m θ  is a vector of parameters related to the baseline hazard function. We 

assume that the baseline cumulative hazard function 0 ( ; )H t θ  is an increasing step function 

with jumps 0( ; ) jdH t e


θ  at it t  with 1i . Hence, the number of parameters in θ  is 

equal to the number of deaths 
1

n

ii
m 


 . The MLE  ˆ ˆˆ ( , )φ θ β  is obtained from the 

Newton-Raphson algorithm. It has been shown that β̂  is equivalent to the partial likelihood 

estimator and θ̂  is the Breslow estimator  
1

ˆ ˆ

0
ˆ( ; ) j

j
j t t

h t e e






  

β x
θ  (van der Vaart 1998; 

van Houwelingen and Putter 2011). 

 

2.8 Technical notes 

Readers can skip this section as it does not influence the understanding of the latter chapters 

of the book. 

The log-rank test possesses an easy-to-understand optimality criterion. The log-rank test 

is asymptotically efficient (most powerful) to detect the constant hazard ratio 

 )0|(/)1|( ii xthxth  for some 1 . Any reasonable test, such as the t-test, has 

optimality criteria to detect some specific form. The details on the asymptotic efficiency are 

referred to Andersen et al. (1993) and Fleming and Harrington (1991). 

If the form of )0|(/)1|(  ii xthxth  is non-constant, then the log-rank test may be sub-

optimal. For example, Gehan’s generalized Wilcoxon test statistic (Gehan 1965) defined as 
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can be more powerful than the log-rank statistic if the ratio )0|(/)1|(  ii xthxth  strongly 

deviates from 1 in the early stage of follow-up. The generalized Wilcoxon test statistic is a 

special case of the weighted log-rank statistics (Fleming and Harrington 1991; Klein and 

Moeschberger 2003). If there is a concern about the non-constant hazard ratio, the weighted 

log-rank statistics may be employed.  

A gross misunderstanding is that the log-rank test is a test tailored to detect the effect in 

a proportional hazards assumption. As mentioned earlier, the log-rank statistic is a non-

parametric test to detect excess mortality without any model assumption. 

We have derived the Kaplan-Meier estimator and the log-rank test under the assumption 

that all times to death are distinct (no ties). To handle ties, it is useful to introduce counting 

process formulations (Andersen et al. 1993; Fleming and Harrington 1991). For 1,0k , let 

 


n

k kxtttY
1

},{)(
 I  be the number at-risk at time t , and let 

 


n

k kxtttN
1

},1,{)(
  I  be the number of deaths up to time t . Then, at time t , 

the number of deaths in male is  


n
xtttNd

11 }1,1,{)(
  I , and the total number of 

deaths is  


n
tttNd

1
}1,{)(

  I .  

The Kaplan-Meier estimator for the group k  is defined as 

ˆ ˆ( ) {1 ( ) }k k

u t

S t dH u


  ,        1,0k , 

where ˆ ( ) ( ) / ( )k k kdH t dN t Y t  is called the Nelson-Aalen estimator. 

The conditional distribution of )(1 tNd  given 0 1( ( ), ( ), ( ) )dN t Y t Y t  is a hypergeometric 

distribution with mean 

1
1 0 1

0 1

( ) ( )
{ ( ) | ( ), ( ), ( ) }

( ) ( )

dN t Y t
E dN t dN t Y t Y t

Y t Y t



. 

Consequently, the aggregated differences between the observed and expected deaths is 

1 1
1 1

0 1 0 10 0 0

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )

dN t Y t dN t Y t
S dN t dN t

Y t Y t Y t Y t

   
    

  
   . 

The univariate partial likelihood estimator as derived in Equation (2.3) has a counting 

process form 
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This means that the estimator is the ratio of the expected number of deaths in male divided by 

the expected number of deaths in female. This way of interpreting the univariate estimator is 

suggested in Emura and Chen (2016) to argue the robustness of the estimator against the 

model misspecification. Under the independent censoring assumption, ̂  is a consistent 

estimator for *  that is the solution to 
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where ntYt knk /)(lim)(   and the integral is on the range of t  with 0)()( 10 tt  . If the 

proportional hazards model )0|()exp()1|( 0  ii xthxth   holds for some 0 , then 0

*   . 

Even if the proportional hazards model does not hold, *  is still meaningful since )exp( *  is 

interpreted as the RR. However, the interpretation of the partial likelihood estimator may not 

be robust against the violation of the independent censoring assumption (Chapter 3). 

 

2.9 Exercises 

1. Deriving the Kaplan-Meier estimator: Consider a survival function )Pr()( tTtS   that 

is a decreasing step function with steps at observed times of death. Assume that all the 

observed times to death are distinct ( ji tt   whenever ji   and 1 ji  ). 

(1) Show )Pr()|Pr()Pr( 11   iiii tTtTtTtT  if 1 ii tt . 

(2) Show 



j

i

iij tTtTtT
1

1 )|Pr()Pr(  if 0011   tttt jj   and 1)0( S . 

(3) Show )|Pr(1)|Pr( 1 iiii tTtTtTtT    if there is no death in the interval ),( 1 ii tt  . 

(4) Show 


















j

i i

i
j

tT

tT
tS

1 )Pr(

)Pr(
1)( . 

 

2. Weibull regression: Let iiiT   xα0)log( , where )exp()Pr( x

i ex   for 

 x . 

(1) Derive the survival function )|( itS x  and the hazard function )|( ith x . 
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(2) Show that the model can be expressed as )exp()()|( 0 ii thth xβx  . 

(3) Show )|Pr(),|Pr( ii wTtTwtT xx   for 10   and 0w . What does this 

inequality imply? 

 

3. Consider a discrete random vector )...,,( 1 ipii XXX  whose distribution is given by 

 





iR

k
ki

  )exp(

)exp(
)Pr(

xβ

xβ
xX ,      }:{ ii ttRk   ,     ni ...,,1 . 

This represents the risk of the k-th patient relative to the total risk for those who are at-risk of 

death at time it . By assuming the independence of the sequence iX , ni ...,,1 , one can 

obtain the partial likelihood function  


n

i ii
iL

1
)Pr()(


xXβ . 

(1) Express the score function )(βS  using  )( iE X . 

(2) Express the Hessian matrix )(βH  using )( iVar X . 

(3) Discuss about the conditions to make )(βH  negative definite. 

 

4. Suppose that data ),,( iii xt  , ni ...,,1 , follow the model )exp()|( ix

i textS
 , where 

0  and   . Let  


n

i im
1
  be the number of deaths. 

(1) Write down the log-likelihood function ),(log),(  L . 

(2) Derive the score functions   /),(  and   /),( . 

(3) Derive the fixed-point iteration algorithm and apply it to the data of Example 1. 

(4) Derive the Hessian matrix of ),(  . 

(5) Derive the Newton-Raphson algorithm and apply it to the data of Example 1. 

(6) Derive the Newton-Raphson algorithm under the transformed parameter )log(
~

   and 

apply it to the data of Example 1. 

(7) Compare the numbers of iterations in all the three algorithms. 

 

5. Use the lung cancer data available in the compound.Cox R package (Emura et al. 2018) to: 

(1) Perform univariate Cox regression treating the ZNF264 gene or the NF1 gene as a 

covariate. Are these genes univariately associated with survival? 

(2) Perform multivariate Cox regression treating both the ZNF264 and NF1 genes as 

covariates. Are these genes associated with survival? 



32 

 

(3) Discuss about the influence of multicollinearity between ZNF264 and NF1. 

 

References  

Andersen PK, Borgan O, Gill RD, Keiding N (1993), Statistical Models Based on Counting Processes. 

New York: Springer-Verlag. 

Collett D (2003). Modelling Survival Data in Medical Research, 2nd edition. CRC press, London. 

Cox DR (1972). Regression models and life-tables (with discussion), J R Stat Soc Series B Stat 

Methodol 34: 187-220. 

Emura T, Chen YH (2016). Gene selection for survival data under dependent censoring, a copula-

based approach, Stat Methods Med Res 25(6): 2840-57. 

Emura T, Chen HY, Matsui S, Chen YH (2018) compound.Cox: univariate feature selection and 

compound covariate for predicting survival. CRAN 

Fleming TR, Harrington DP (1991). Counting Processes and Survival Analysis, John Wiley & Sons. 

Gehan EA (1965). A generalized Wilcoxon test for comparing arbitrarily singly-censored samples. 

Biometrika 52: 203-224. 

Kalbfleisch JD, Prentice RL (2002). The Statistical Analysis of Failure Time Data, 2nd Edition. Wiley, 

New York. 

Kaplan EL, Meier P (1958). Nonparametric estimation from incomplete observations. J Am Stat Assoc. 

53(282): 457-481. 

Klein JP, Moeschberger ML (2003) Survival Analysis Techniques for Censored and Truncated Data. 

Springer, New York. 

Michiels S, Le Maître A, Buyse M, Burzykowski T, Maillard E, Bogaerts J, Pignon JP (2009). 

Surrogate endpoints for overall survival in locally advanced head and neck cancer: meta-analyses of 

individual patient data. Lancet Oncol 10(4): 341-50. 

van der Vaart AW (1998). Asymptotic statistics, Cambridge Series in Statistics and Probabilistic 

Mathematics, Cambridge: Cambridge University Press. 

van Houwelingen HC, Putter H (2011). Dynamic Prediction in Clinical Survival Analysis, CRC Press,  

New York. 



33 

 

Chapter 3:  Copula models for dependent censoring 

 

Abstract: This chapter provides mathematical infrastructures for copula models, focusing on 

applications to survival analysis involving dependent censoring. After reviewing the concept 

of copulas, we introduce measures of dependence, including Kendall’s tau and the cross-ratio 

function. We also introduce the idea of residual dependence that explains how dependence 

between event times arises and how it can be modeled by copulas. Finally, we apply copulas 

for modeling the effect of dependent censoring and analyze the bias of the Cox regression 

analysis owing to dependent censoring. 

 

Keywords: Archimedean copula, Clayton’s copula, Cox regression, cross-ratio function, 

Gumbel’s copula, Kendall’s tau, residual dependence, univariate Cox regression 

 

3.1 Introduction 

Roughly speaking, a copula is a function to link two random variables by specifying their 

dependence structure. The word copula is a Latin word that means bond, link or tie (Nelsen 

2006), where co means together. A mathematician, Abe Sklar, first used the word copula in 

his study of probabilistic metric space (Sklar 1959). In his paper, he gave a mathematical 

definition of copulas and established the most fundamental theorem about copulas, known as 

Sklar’s theorem. The full history of copulas can be found in the book of Nelsen (2006).  

   This chapter provides a mathematical background for bivariate copula models that have 

been used in survival analysis. Let T  be survival time, U  be censoring time, and x  be a 

vector of covariates. Also let )|Pr()|( xx tTtST   and )|Pr()|( xx uUuSU   be the 

marginal survival functions given x . We consider a bivariate survival function 

})|(),|({)|,Pr( xxx uStSCuUtT UT ,                           (3.1) 

where a function C  is called copula (Nelsen 2006) and a parameter   describes the degree 

of dependence between T  and U . With this model, the dependency between T  and U  is 

described by C . As we shall detail in Section 3.2, the copula function C  must satisfy 

certain mathematical conditions such that Equation (3.1) becomes a valid survival function. 

Kendall’s tau ( ) is a well-known measure to assess the dependence between T  and U , 

which is defined by 

}|0))((Pr{}|0))((Pr{ 12121212 xx  UUTTUUTT , 



34 

 

where 1 1( , )T U  and 2 2( , )T U  are drawn from the model (3.1). Remarkably, Kendall’s tau is 

solely expressed as a function of C  through 

1),(),(4

1

0

1

0

   dvduCvuC  . 

This expression implies that Kendall’s tau does not depend on the marginal survival functions. 

The copula model (3.1) has a number of other mathematical properties that are useful for 

modeling dependent censoring.  

This chapter is organized as follows. Sections 3.2 and 3.3 describe the definition and 

fundamental properties of copulas. Section 3.4 explains the concept of residual dependence. 

Section 3.5 applies copulas to analyze the bias of the Cox regression analysis owing to 

dependent censoring. 

 

3.2 Bivariate copula 

This section provides a concise introduction to copulas.  

A bivariate copula is defined as a bivariate distribution function whose marginal 

distributions are the uniform distribution on ]1,0[ . Let ]1,0[]1,0[: 2 C  be a bivariate 

copula indexed by a parameter  . By the definition, any bivariate copula satisfies the 

following conditions 

 

(C1)    0),0()0,(  vCuC  , uuC )1,( , and vvC ),1(  for 10  u  and 10  v . 

(C2)    0),(),(),(),( 11211222  vuCvuCvuCvuC   for  10 21  uu  and 10 21  vv . 

 

Condition (C1) requires the uniformity of the two marginal distributions. Condition (C2) 

requires that C  produces a probability mass on the rectangular region ],[],[ 2121 vvuu  . 

For a copula C , one can consider a pair of random variables ),( WV  such that 

),(),Pr( vuCvWuV  . If one defines a pair of random variables ),( UT  by setting 

)|(1
xVST T

  and )|(1
xWSU U

 , its bivariate survival function satisfies Equation (3.1). 

Now suppose that C  has the density function defined as 

),(),(
2

]1,1[ vuC
vu

vuC 



     for   10  u   and  10  v . 

Then, Condition (C2) is equivalent to the condition of the nonnegative density: 
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(C2’)   0),(]1,1[ vuC   for  10  u  and 10  v . 

 

Condition (C2) implies Condition (C2’) since  

vu

vuCvvuCvuuCvvuuC
vuC

vu
v
u 











),(),(),(),(
lim),(

0
0

2


 . 

Condition (C2’) implies Condition (C2) since 

  




u v

dsdttsC
ts

vuC
0 0

2

),(),(  . 

The following copulas meet Conditions (C1) and (C2): 

 

The independence copula: 

uvvuC ),( , 

The Clayton copula (Clayton 1978): 

0,)1(),( /1   

 vuvuC ,  

The Gumbel copula (Gumbel 1960), also known as the Hougaard copula: 

0,})log()log({exp),( 1

1

11 







  

 vuvuC , 

The Frank copula (Frank 1979): 


















1

)1)(1(
1log

1
),(






 e

ee
vuC

vu

,       0 . 

The Joe copula (Joe 1993): 

1,})1()1()1()1({1),( /1  
 vuvuvuC , 

The Farlie-Gumbel-Morgenstern (FGM) copula (Morgenstern 1956): 

11      },)1)(1(1{),(   vuuvvuC .       

 

   Figure 3.1 gives the scatter plots for ( iT , iU ), 500...,,1i , under the Clayton copula model 

with the standard exponential distribution defined as 

 /1}1)()({),Pr(   ut

ii eeuUtT ,      for  2   and  8 . 
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These data were generated by setting ii VT log  and ii WU log , where ( iV , iW ), 

500...,,1i , were generated from the Clayton copula. The plots exhibit positive dependence 

between iT  and iU , where the levels of dependence are different between 2  and 8 . 

Figure 3.1 The scatter plots of 500n  pairs generated from the standard exponential 

distribution under the Clayton copula with 2  ( 5.0 )  and 8  ( 8.0 ). 

 

   An Archimedean copula is defined as 

})()({),( 1 vuvuC     , 

where the function ],0[]1,0[:   is called a generator of the copula, which is continuous 

and strictly decreasing from 0)0(   to 0)1(  . If 


)(lim)0(
0

t
t   , the generator 

function   is called a strict generator and has the inverse function ]1,0[],0[:1 

  (p.112 

of Nelsen 2006). Under these conditions, C  satisfies Condition (C1). To meet Condition 

(C2), the generator   must be a convex function. Therefore, it suffices to assume 

0/)( dttd   and 0/)( 22 dttd   for any )1,0(t , 0)1(  , and )0( . The proof 

verifying Conditions (C1) and (C2) under these assumptions is referred to Theorem 4.1.4 of 

Nelsen (2006). 

The Clayton copula has a strict generator  
 /)1()(  tt  for 0 . The limit 

)log(lim)(lim
0

0

00
tt

d

dtt
t 









 







 
  
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is also a strict generator corresponding to the independence copula. Thus, 

uvvuC  ),(lim 0   under the Clayton copula.  

The Clayton copula can be extended to the range 01    with some modification. In 

this case, the generator is non-strict since   /1)0( . A mathematical inconvenience is 

that the domain of 1

  is restricted to ]/1,0[  . This drawback is remedied by extending the 

domain by defining the pseudo-inverse 
  /11 })1,0max({)(   tt  for 0t  [Definition 

4.1.1 of Nelsen (2006)]. Consequently, the Clayton copula can be extended as 




















.01 if   })0,1max({

,0 if                                 

,0 if        )1(

),(
/1

/1













vu

uv

vu

vuC  

The negative-parameter Clayton copula is occasionally useful (e.g., Emura et al. 2011). 

Table 3.1 summarizes the generator functions of the Clayton, Gumbel, Frank and Joe 

copulas. These four copulas have a strict generator function. The FGM copula does not have a 

generator function as it is not an Archimedean copula. 

 

Table 3.1 Examples of copulas 

 Parameter Generator: )(t  Kendall’s tau:   )(/)()( ssssr     

Clayton 0   /)1( t  )2/(   1  

Gumbel 0  1})log({  t  )1/(   )log(/1 s  

Frank 0  

















1

1
log





e

e t

 















   

1

1
1  

4
1

0




dt

e

t
t

 
se

s



1

 

Joe 1  })1(1log{ t  dt
eet tt


 


0

2

22/2)1(
41





 










1

)1(11 



ss

s
 

FGM 11    none 9/2  none 

 

3.3 Dependence measures 

Let ),( WV  be a pair of random variables  such that ),(),Pr( vuCvWuV  . Kendall’s 

tau is a measure of dependence between V  and W , defined as 

}0))((Pr{}0))((Pr{ 12121212  WWVVWWVV , 

where ),( 11 WV  and ),( 22 WV  have the same distribution as ),( WV . It can be shown that  
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1),(),(41),(),(4

1

0

1

0

]1,1[

1

0

1

0

    dudvvuCvuCdvduCvuC  . 

For instance, under the FGM copula, one can calculate the above integral to compute 

9/2   for 11   . This means that the range of   under the FGM copula is limited 

to the interval between 9/2  and 9/2 . 

An Archimedean copula has a simpler form 


















0

2

1

1

0

)(41
)(

)(
41 dss

ds

d
sdt

t

t





 




 . 

Table 3.1 summarizes   for the Clayton, Gumbel, Frank, and Joe copulas. In these copulas, 

  increases with   and 1  as  .  

It is convenient to define partial derivatives of a copula: 

),(),(]0,1[ vuC
u

vuC 



 ,     ),(),(]1,0[ vuC

v
vuC 




 ,    ),(),(

2
]1,1[ vuC

vu
vuC 




 . 

The cross-ratio function (Oakes 1989) is defined as 

),(),(

),(),(
),(

]1,0[]0,1[

]1,1[

vuCvuC

vuCvuC
vuR




  . 

Under the independence copula, 1),( vuR  for 10  u  and 10  v . Remarkably, the 

Clayton copula has the constant cross-ratio  1),( vuR . The cross-ratio function 

describes the local dependence at a location ),( vu : 

 

 1),( vuR ; positive local dependence, 

 1),(0  vuR ; negative local dependence, 

 1),( vuR ; local independence. 

 

A simplified formula of the cross-ratio function is available for an Archimedean copula. 

Using basic derivative rules, it can be shown that 

}),({),( vuCrvuR   , 

where )(/)()( ssssr    . Table 3.1 shows the formulas for )(r  under selected copulas. 

Hence, the cross-ratio function depends on ),( vu  only through a one dimensional quantity 

),( vuCs  . Oakes (1989) obtained an inverse formula to obtain )(  from )(r . 
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The cross-ratio function has a practical interpretation as the relative risk (RR). Consider a 

medical follow-up in which the endpoint is time-to-death T . A patient may drop out at time 

U  due to reasons such as treatment toxicity and tumour progression (informative dropout). 

We are interested in how the timing of dropout influences the risk of death. For this purpose, 

we evaluate the influence of dropout using the conditional hazard functions: 

 

 dtuUtTdttTtuUthT /),,|Pr(),|( xx  : 

- the hazard function of death given that a patient has dropped out at time u  

 dtuUtTdttTtuUthT /),,|Pr(),|( xx  :  

- the hazard function of death given that a patient has not yet dropped out at time u  

 

Under a model })|(),|({)|,Pr( xxx uStSCuUtT UT , the RR is expressed as 

})|(),|({
),|(

),|(
xx

x

x
uStSR

uUth

uUth
UT

T

T





. 

If 1R , patients who have dropped out at time u  possess higher risk of death compared to 

those who have not yet dropped out at time u . The Clayton copula yields the constant RR for 

any t  and u , and hence, is regarded as a type of proportional hazards models. 

   The usefulness of the cross-ratio function is not restricted to the case where U  is the time of 

dropout and T  is time-to-death. One may define U  as a predictive biomarker for cancer 

recurrence and T  as time-to-recurrence (Day et al. 1997). Emura et al. (2017a, b) considered 

the case where U  is time-to-tumour progression and T  is time-to-death under their joint 

frailty-copula model. If we define U  as the delayed entry time (left-truncation time), the 

cross-ratio function is useful to assess the degree of dependent truncation (Emura et al. 2011). 

The issues of dependent truncation shall be shortly discussed in the final chapter of this book. 

We have seen that the Clayton copula has nice properties for statistical modeling: 1) a 

simple copula function, 2) simple expression of Kendall’s tau, 3) constant cross-ratio function, 

and 4) interpretability of the parameter   as the RR. These properties are extremely useful for 

modeling bivariate survival data and interpreting the results of data analysis. 

 

3.4 Residual dependence 

This section introduces the concept of residual dependence between survival time and 

censoring time. Residual dependence arises when some important covariates influencing 
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both survival time and censoring time are ignored or omitted during the analysis of data. 

This idea was considered by Clayton (1978) when he introduced his bivariate survival model. 

In the Cox model )exp()()|( 0 xβx  thth , the regression coefficients β  are estimated by 

the partial likelihood estimator. The consistency of the estimator critically relies on the 

independent censoring assumption represented as  

)|()|()|,Pr( xxx uStSuUtT UT ,                                   (3.2) 

where )|Pr()|( xx tTtST   and )|Pr()|( xx uUuSU   are the survival functions. 

Suppose that a two-dimensional vector of covariates ),( 21
 xxx  relates to both T  and 

U . Further suppose that a researcher is interested in the effect of 1x  on survival. If a 

researcher performs univariate Cox regression by treating 1x  as a single covariate while 

omitting 2x , the required independent censoring assumption is 

)|()|()|,Pr( 111 xuSxtSxuUtT UT , 

where )|Pr()|( 11 xtTxtST   and )|Pr()|( 11 xuUxuSU   are the marginal survival 

functions given 1x . However, one usually cannot verify the independent censoring 

assumption given only 1x  even if Equation (3.2) holds for ),( 21
 xxx . 

Figure 3.2 explains how the independent censoring assumption fails to hold by omitting 

2x . Since 2x  relates to both T  and U , the variation in 2x  induces random effects, a popular 

idea to introduce dependence in bivariate survival models (Oakes 1989). For instance, if 2x  

is a gene expression predictive of tumour progression, a higher (lower) value of 2x  is linked 

to shorter (longer) values of T  and U . Consequently, T  and U  exhibit positive association. 

 

 

 

Figure 3.2 A mechanism of yielding residual dependence between survival time and 

censoring time by omitting a covariate. 

Survival time (T) 

Censoring time (U) 

x1: Covariate of interest 

x2: Omitted covariate       

Dependence  

induced by x2 
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The above discussions lead to a principle that the independent censoring assumption is 

less likely to hold if many important covariates are omitted or ignored from the Cox model. 

This mechanism of yielding dependence is termed residual dependence. In particular, the 

independent censoring assumption may not be fulfilled for Cox regression with only one 

covariate (univariate Cox regression). Residual dependence may arise in a meta-analysis 

where important covariates are missing in some studies (Emura et al. 2017a,b). 

The mechanism of yielding residual dependence in univariate Cox regression is seen by 

using mathematical expressions as follows. Suppose that T  and U  are conditionally 

independent given x , that is, Equation (3.2) holds. Assume the Cox models 

})(exp{)|Pr( tetT T
xβ

x  and })(exp{)|Pr( ueuU U
xγ

x , where )(tT  and 

)(uU  are cumulative hazard functions. Let )()( jjeX j


xβ
 and )()( jjeYj


xγ

, where )( jβ  is 

β  excluding j ; similarly )( jγ  and  )( jx  are defined. Thus, the bivariate survival function 

is assumed to be }.)()(exp{)|,Pr( jU

x

jT

x
YueXteuUtT jjjj 


x It follows that, 

for a given jx  (the j-th component of x ), 

]})|Pr({},)|Pr({[)|,Pr( 1

)(

1

)()(),( jjjjjjj xuUxtTxuUtT  





 γβγβ       (3.3) 

where }|)exp({),()(),( jjjjj xvYuXEvu  γβ , )0,()( )(),()( uu jjj   γββ  , and 

( ) ( ), ( )( ) (0, )j j jv v   γ β γ  are Laplace transforms. For a special case where γβ  , we obtain 

an Archimedean copula model 

]})|Pr({})|Pr({[)|,Pr( 1

)(

1

)()( jjjjjj xuUxtTxuUtT  





 βββ  .         (3.4) 

The above analysis indicates that the model (3.2) yields dependency between T  and U  

given only jx . Hence,  

)|Pr()|Pr()|,Pr( jjj xuUxtTxuUtT  ,       pj ...,,1                 (3.5) 

does not hold in general, which is a more stringent condition than Equation (3.2). 

   In general, T  and U  may be dependent for any given jx  with an unknown dependence 

structure. Sklar’s theorem (Sklar 1959; Nelsen 2006) guarantees that the bivariate survival 

function is written as 

})|Pr(,)|Pr({)|,Pr( jjjj xuUxtTCxuUtT  ,      pj ...,,1 ,      

where jC  is a copula. Equation (3.5) corresponds to uvvuC j ),(  for pj ...,,1 . This is 

clearly a strong assumption in light of Equation (3.3) or (3.4). Although the form of jC  is 
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difficult to specify, copulas can relax the stringent condition of uvvuC j ),(  for 

pj ...,,1 . We shall further consider this copula-based method in Chapter 5. 

 

3.5 Biased estimation of Cox regression due to dependent censoring 

Following Emura and Chen (2016), we shall apply copulas to study biased estimation of Cox 

regression when dependent censoring exists. Define notations 

 T : survival time, 

 U : censoring time, 

 x : covariate taking 0 or 1. 

The conditional independence between T and U given x  is not assumed so that T  may be 

dependently censored by U . The hazard function for T  is defined as  

dtxtTdttTtxth /),|Pr()|(  . 

Under the univariate Cox model )exp()()|( 0 xthxth  , one can show 

)0|(

)1|(
log






xth

xth
 . 

The parameter   is interpreted as the log of hazard ratio comparing )1|( xth  and 

)0|( xth . Recall that the partial likelihood estimate of   is essentially equal to the log of 

observed hazard ratio (Chapter 2). However, under dependent censoring, the observed 

hazard rates do not correctly capture )1|( xth  and )0|( xth , and hence the estimate of 

  may be biased. 

To quantify the bias, we use the cause-specific hazard function 

dtxtUtTUTdttTtxth /),,|,Pr()|(#   

which describes the apparent hazard for death in the presence of dependent censoring (p.251, 

Kalbfleisch and Prentice 2002). With dependent censoring, observed survival data give a 

biased estimate of )|( xth  while they give an asymptotically unbiased estimate of )|(# xth  

(Fleming and Harrington 1991). The equality )|()|(# xthxth   holds under either one of the 

following two conditions. 

 

Condition (A): T and U are independent given x  (independent censoring assumption). 

Condition (B): Survival time is not censored, that is, 0)|Pr(  xTU . 
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Otherwise, )|(# xth  and )|( xth  are usually different. The larger discrepancy between 

)|(# xth  and )|( xth  corresponds to the stronger effect of dependent censoring on the bias. 

Within the counting process theory, the equality )|()|(# xthxth   itself is adopted as the 

formal definition of independent censoring (Fleming and Harrington 1991), a slightly 

weaker assumption than Condition (A).  

We shall examine the effect of dependent censoring under a copula model 

})|(),|({)|,Pr( xuSxtSCxuUtT UT , 

where )|Pr()|( xtTxtST   and )|Pr()|( xuUxuSU   are the marginal survival 

functions, and C  is a copula with a parameter  . As indicated in Rivest and Wells (2001), 

the cause-specific hazard function becomes )|()|()|(# xthxtxth   , where 

})|(),|({

)|(})|(),|({
)|(

]0,1[

xtSxtSC

xtSxtSxtSC
xt

UT

TUT




  . 

This motivates us to define the apparent effect of the covariate x , 

   
Biaseffect True

#

#
#

)0|(

)1|(
log

)0|(

)1|(
log

)0|(

)1|(
log),(
















xt

xt

xth

xth

xth

xth
t












 . 

The equation shows that the apparent effect can be partitioned into the true effect and the 

bias. Note that the copula enters into the bias only. 

   Under the Cox model )exp()()|( 0 xthxth  , one can formulate the bias of estimating  , 

)0|(

)1|(
log),(),(Bias #






xt

xt
tt








 . 

The bias vanishes if uvvuC ),( . The bias is usually nonzero except for some special 

copulas. To visualize the effect of the bias, we suggest fixing the value t  at the median 

survival 5.0)0|( tST  and plotting ),(Bias t  against  . 

We conducted numerical analysis under the Clayton copula model 

0,}1)|()|({)|,Pr( /1    xuSxtSxuUtT UT ,               (3.6) 

where )exp()0|()|( x

TT tSxtS  , )exp()0|()|( x

UU uSxuS   and 
)1/(

)0|()0|( CC pp

TU tStS


  for 

10  Cp . Here, 100Cp  (%) is the censoring percentage such that )|Pr( xTUpC  . 

Then, one can calculate ),(Bias t  by using 

1})0|({})0|({

})0|({

1)|()|(

)|(
)|(

)exp()exp(

)exp(























 x

U

x

T

x

T

UT

T

tStS

tS

xtSxtS

xtS
xt . 
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Figure 3.3 displays ),(Bias t  under the Clayton copula model when t  is fixed such that 

5.0)0|( tST . If the censoring percentage is high (70%), the bias differs substantially from 

zero. Furthermore, the bias inflates as   deviates from zero. For the censoring percentages 

30% and 50%, the bias is modest. The bias vanishes if the censoring percentage is zero; that 

is 0),(Bias t  for any 0 . 

 

 

Figure 3.3 The plot of   ),(),(Bias # tt  under the Clayton copula with parameter  . 

 

It is interesting to point out that ),(Bias t  under the Gumbel copula behaves very 

differently from that under the Clayton copula. Under the Gumbel copula, 

.]})0|(log{})0|(log[{})0|(log{              

]})0|(log{})0|(log{[})0|(log{              
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Hence )0|()1|( tt    . This implies that 0),(Bias t  for any   and t . 

   We wish to compare ),(Bias t  with the actual bias  ]ˆ[E , where ̂  is the partial 

likelihood estimator. To do so, we conducted Monte Carlo simulations. We generated data of 

500n  under the Clayton copula model in Equation (3.6). The marginal survival function is 
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)exp()0|( ttST  , and the covariate takes 0ix  or 1ix  with probability 0.5. All parameter 

settings followed those for Figure 3.3. We computed ̂  using the data, and then calculated 

 ]ˆ[E  based on 1000 repetitions. Figure 3.4 shows that  ]ˆ[E  is very similar to 

),(Bias t . Our additional simulations under the Gumbel copula show that  ]ˆ[E  is very 

close to zero which agrees with 0),(Bias t . 

 

 

Figure 3.4 The bias  ]ˆ[E  under the Clayton copula with parameter  . 

 

3.6 Exercises 

1. Show that Condition (C2’) does not hold for 




/1)1(),(   vuvuC  with 01   . 

 

2. Verify Conditions (C1) and (C2’) for the Clayton, Gumbel, FGM, and Joe copulas. 

 

3. Define a pair of random variables ),( UT  by setting )|(1
xVST T

  and )|(1
xWSU U

 , 

where a pair of random variables ),( WV  satisfies ),(),Pr( vuCvWuV  . Show 

})|(),|({)|,Pr( xxx uStSCuUtT UT . 
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4. Show that the copula density for an Archimedean copula is expressed as 

3]1,1[ }]),({/[)()(}),({),( vuCvuvuCvuC    .  

 

5. Calculate Kendall’s tau for the Clayton, Gumbel, FGM, and Joe copulas. 

 

6. Calculate the cross ratio function R  under the Clayton, Gumbel, FGM, and Joe copulas. 

 

7. Verify the equality )|()|(# xthxth   under Condition (A) or (B). 

 

8. Let )exp()0|()|( x

TT tSxtS  , )exp()0|()|( x

UU uSxuS  , and 
)1/(

)0|()0|( CC pp

TU tStS


 . 

Show )|Pr( xTUpC   under Condition (A). 

 

9. Express )|Pr( xTU   under the Clayton copula model (3.6). Hint: expression may be in an 

integral form on [0,1] (Emura and Pan 2017). 
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Chapter 4: Analysis of survival data under an assumed copula 

 

Abstract: This chapter introduces statistical methods for analyzing survival data subject to 

dependent censoring. We review the copula-graphic estimator, parametric likelihood methods, 

and semi-parametric likelihood methods developed under a variety of copula models. All 

these approaches employ an assumed copula, a copula function that is completely specified 

including its parameter value to avoid the nonidentifiability. 

 

Keywords:  Burr distribution, competing risk, copula-graphic estimator, maximum likelihood 

estimator, spline, Weibull distribution 

 

 

4.1 Introduction  

The idea of an assumed copula was suggested by Zheng and Klein (1995) in their analysis of 

survival data subject to dependent censoring. They considered a bivariate distribution function 

of survival time and censoring time, where the form of the copula function is completely 

specified, including its parameter value. This strong assumption of the copula is imposed to 

make the model identifiable. Assuming the independence copula is equivalent to the 

assumption of independent censoring between survival time and censoring time.  

Zheng and Klein (1995) view censoring as a competing risk of death and view death as a 

competing risk of censoring. This is the setting of bivariate competing risks where one can 

observe the first-occurring event time and the type of the observed event (death or censoring 

whichever comes first). With this view, survival data with dependent censoring is equivalent 

to bivariate competing risks data. In the context of competing risks, the independence among 

event times is rarely assumed since many medical and engineering applications yield event 

times that are positively associated. Hence, statistical methods for analyzing bivariate 

competing risks data can be applicable for analyzing survival data with dependent censoring. 

Under an assumed copula, Zheng and Klein (1995) estimated the marginal survival 

function by the copula-graphic (CG) estimator. The survival function estimated by the CG 

estimator is analogous to the one estimated by the Kaplan-Meier estimator. The CG estimator 

reduces to the Kaplan-Meier estimator under the independence copula. In real applications, 

the CG estimator is calculated by assuming one of Archimedean copulas. Rivest and Wells 

(2001) obtained a simple expression of the CG estimator when the assumed copula belong to 
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Archimedean copulas. Nowadays, the CG estimator is an indispensable tool for analyzing 

survival data with dependent censoring (Braekers and Veraverbeke 2005; Staplin 2012; de 

Uña-Á lvarez and Veraverbeke 2013; 2017; Emura and Chen 2016; Emura and Michimae 

2017; Moradian et al. 2017). Note, however, that the CG estimator cannot handle covariates. 

Likelihood-based approaches can naturally deal with covariates under an assumed copula. 

Throughout this chapter, we review the copula-graphic estimator, parametric likelihood 

methods, and semi-parametric likelihood methods developed under an assumed copula. 

 

 

4.2 The copula-graphic (CG) estimator 

Analysis of survival data often begins by drawing the Kaplan-Meier survival curve which 

graphically summarizes survival experience of patients in the data. However, under dependent 

censoring, the Kaplan-Meier estimator may give biased information about survival. A survival 

curve calculated from the CG estimator provides unbiased information about survival if the 

copula function between death time and censoring time is correctly specified. Below, we shall 

introduce the CG estimator under an Archimedean copula as derived in Rivest and Wells 

(2001). 

Consider random variables, defined as 

 

  T  : survival time 

  U :  censoring time 

 

Consider an Archimedean copula model 

}])({})({[),Pr( 1 uStSuUtT UT     ,                           (4.1) 

where ],0[]1,0[:   is a generator function, which is continuous and strictly decreasing 

from )0(  to 0)1(   (Chapter 3); )Pr()( tTtST   and )Pr()( uUuSU   are the 

marginal survival functions.  

   Let ),( iit  , ni ...,,1 , be survival data without covariates, where },min{ iii UTt  , 

)( iii UT  I , and )( I  is the indicator function. Assume that all the observed times 

are distinct ( ji tt   whenever ji  ). Based on the data, one can estimate the survival 

function by the following estimator: 
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 The CG estimator is defined as 

















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


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

 
 




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)(ˆ
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ii
T

n

n

n

n
tS



  ,         )(max0 i
i

tt   

where  


n

ii ttn
1

)(
 I  is the number at-risk at time it ; 1)(ˆ tST  if no death occurs up to 

time t ; )(ˆ tST  is undefined for )(max i
i

tt  . 

 

The derivation of the CG estimator: Assume that )(tST  is a decreasing step function with 

jumps at death times. Thus, 1i  implies )()( dttStS iTiT   and )()( dttStS iUiU  . 

Setting itut   in Equation (4.1), we have 

})({})({}),Pr({ iUiTii tStStUtT    . 

In the left-side of the preceding equation, we estimate ),Pr( ii tUtT   by nni /)1(  , 

where  


n

ii ttn
1

)(1
 I  is the number of survivors at time it . Accordingly, 

})({})({
1

iUiT
i tStS
n

n
  







 
.                                   (4.2) 

Meanwhile, we set dttut i   in Equation (4.1), and then estimate 

),Pr( dttUdttT ii   by nni / . Then,  

})({})({ iUiT
i tSdttS

n

n
  








,          1i .                         (4.3) 

Equations (4.2) and (4.3) result in the system of difference equations 
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We impose the usual constraint that 1)( dttS iT  when it  is the smallest death time. Then, 

the solution to the different equations is 
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which is equivalent to the CG estimator. ■ 
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   Under the independence copula, given by )log()( tt  , the CG estimator is equivalent to 

the Kaplan-Meier estimator. Under the Clayton copula, given by  
 /)1()(  tt  for 0 , 

the CG estimator is written as 

1/

, 1

1ˆ ( ) 1
i i

i i
T

t t

n n
S t

n n


 




 

 

      
       

       
 . 

This CG estimator can be computed by the compound.Cox R package  (Emura et al. 2018). 

   The CG estimator provides a graphical summary of survival experience for patients in the 

same manner as the Kaplan-Meier estimator. 

 

The survival curve is defined as the plot of )(ˆ tST  against t , starting with 0t  and ending 

with )(maxmax i
i

tt  . The curve is a step function that jumps only at points where a death 

occurs. On the curve, censoring times are often indicated as the mark “＋”. 

 

If )(maxmax i
i

tt   corresponds to time-to-death of a patient, then 0)()(ˆ 1

max  

tST . 

This is because 






 
)0(

1
 

n

ni  for some i in the definition of the CG estimator. If 

)(maxmax i
i

tt   corresponds to censoring time of a patient, then 0)(ˆ
max tS . 

 

Additional remarks: The CG estimator can be modified to accommodate a variety of different 

censoring and truncation mechanisms. de Uña-Á lvarez and Veraverbeke (2013) derived the 

CG estimator when survival time is subject to both dependent censoring and independent 

censoring. This estimator is convenient if the data provide the causes of censors for all 

patients. For instance, censoring caused by dropout may be dependent while censoring caused 

by the study termination is independent (see Chapter 14 of Collett (2015)). de Uña-Á lvarez 

and Veraverbeke (2017) derived the CG estimator when survival time is subject to both 

dependent censoring and independent truncation. Chaieb et al. (2006) and Emura and 

Murotani (2015) derived the CG estimator when survival time is subject to independent 

censoring and dependent truncation.  
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4.3 Model and likelihood 

Throughout this chapter, we consider a bivariate survival function 

})|(),|({)|,Pr( xxx uStSCuUtT UT , 

where C  is a copula (Nelsen 2006) with a parameter  ; )|Pr()|( xx tTtST   and 

)|Pr()|( xx uUuSU   are the marginal survival functions. The covariates are defined as 

),( 21 xxx   such that 1( | ) ( | )T TS t S tx x  and 2( | ) ( | )U US u S tx x . For instance, if 1x =(Age, 

gender) and 2x =(gender), the model does not consider the effect of age on censoring time.  

Survival data consist of  ),,( iiit x , ni ...,,1 , where )...,,( 1
 ipii xxx  is a vector of 

covariates. The likelihood for the i -th patient is expressed as 

1 1# #Pr( , | ) Pr( , | ) ( | ) ( | )i i i i

i i i i i i i T i i U i iL T t U t T t U t f t f t
    

     x x x x , 
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are called the sub-density functions. Therefore, the log-likelihood is defined as 
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## ])|(log)1()|(log[ xx  .                             (4.4) 

An equivalent expression is 
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are the cause-specific hazard functions, and  

( , | ) logPr( , | ) logPr( min{ , } | )i i i i i i i it t T t U t T U t       x x x  

is the cumulative hazard function for min{ , }T U . 

With appropriate models on C , )|( xTS , and )|( xUS , one can obtain the maximum 

likelihood estimator (MLE) with Equation (4.4) or (4.5).  
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4.4 Parametric models 

 

4.4.1 The Burr model 

Escarela and Carrière (2003) considered a copula model with the Burr distribution defined as 

11 /1

111 })(1{)|(
 

 ttS iiT x ,   0t ;     22 /1

222 })(1{)|(
 

 uuS iiU x ,   0u , 

where 0j , 0j , and 0exp( )ji j j ji   β x  for j 1 and 2. The Burr distribution 

includes many distributions as special cases; 1j  gives the Pareto distribution, 1j  gives 

the log-logistic distribution, and 0j  gives the Weibull distribution. For the copula, 

Escarela and Carrière (2003) considered the Frank copula. 


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
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




 e

ee
vuC

vu

,       0 . 

Their motivation to use the Frank model is that they wish to consider both positive 

dependence  ( 0 ) and negative dependence ( 0 ) between two variables. 

 

4.4.2 The Weibull model  

Likelihood-based analyses of Escarela and Carrière (2003) focused on the Weibull model 

})(exp{)|( 1

11

 ttS iiT x ,    0t ;     })(exp{)|( 2

22

 uuS iiU x ,    0u . 

With the Frank copula model, they maximize the log-likelihood of Equation (4.4) with respect 

to ),,,,,( 22201110  ββ  given the value  . This leads to the profile likelihood 

)|,,,,,(max)( 22201110
),,,,,(

*

22201110




ββ
ββ

  . 

The MLE  of ),,,,,( 22201110  ββ  is obtained at a given value )(maxargˆ *    . 

The data analysis of Escarela and Carrière (2003) revealed that the estimator ̂  had a wide 

confidence interval (CI) if no covariate enters the model. This phenomenon is related to the 

nonidentifiability of the model. The CI of ̂  was shrunken if many covariates enter the model. 

Heckman and Honoré (1989) showed that the nonidentifiability is resolved by adding 

covariates into the marginal models. Unfortunately, there is no papers that give the conditions 

(e.g., how many covariates or how many samples) required to give reasonable precision of ̂  

for estimating the true value  . 

In this context, we suggest regarding the approach of Escarela and Carrière (2003) as a 

two-step fashion. The first stage selects (not estimates)   via the profile likelihood. With the 
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selected value ̂ , the second stage estimates the remaining parameters 

),,,,,( 22201110  ββ  by the MLE. The SEs of ),,,,,( 22201110  ββ  may not account 

for the variation of ̂  following the approaches of an assumed copula. 

 

4.4.3 The Pareto model 

In the absence of covariates, Shih et al. (2018) considered the Pareto marginal models 

1)1()( 1

 
 ttST ,    0t ;        2)1()( 2

 
 uuSU ,    0u , 

where 0j  and 0j  are re-parameterized from the Burr models. The marginal hazard 

functions are 1 1 1( ) / (1 )Th t t     and 2 2 2( ) / (1 )Uh u u     and the marginal density 

functions are ( ) ( ) ( )T T Tf t h t S t  and ( ) ( ) ( )U U Uf u h u S u . Applying the Frank copula to 

Equation (4.4), the log-likelihood can be written as 

( )
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
 

where ( ) { ( ), ( ) }T US t C S t S t . The MLE is obtained by maximizing the preceding equation. 

They developed a Newton-Raphson algorithm to obtain the MLE  of 1 2 1 2( , , , )     

given the value  . The Bivariate.Pareto R package (Shih and Lee 2018) can be used to 

compute the MLE and the SE for the parameters. Hence, this model uses an assumed copula. 

Their Newton-Raphson algorithm employs a randomization scheme to reduce the sensitivity 

of the convergence results against the initial values, which is termed the randomized Newton-

Raphson algorithm  (Hu and Emura 2015). When   is unknown, the profile likelihood 

estimate was suggested, namely )(maxargˆ *    , where 

)|,,,(max)( 2121
),,,(

*

2121



  . However, they reported that the profile likelihood 

occasionally does not have a peak and ̂  has a large sampling variation. These problems are 

related to the nonidentifiability of competing risks data (Tsiatis 1975). 

Due to the difficulty of estimating  , Shih et al. (2018) considered a restricted model 

  )1()()( ttStS UT . The model makes a strong assumption that the two marginal 

distributions are the same. Under the Frank copula, they developed the randomized Newton-

Raphson algorithm to obtain the MLE of ),,(  . While the peak of the likelihood always 

exists under this restricted model, the variation of estimating   remains large. Including 
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covariates into the marginal Pareto models may improve the precision of ̂ . Alternatively, a 

sensitivity analysis may be considered under a few selected values of  . 

 

4.4.4 The Burr III model 

In the absence of covariates, Shih and Emura (2018) considered the Burr III marginal 

distributions 

  )1(1)( ttST ,  0t  ;       ( ) 1 (1 )US u u      ,  0u  , 

where ),,(   are positive parameters. They considered the generalized FGM copula with 

a copula parameter  . In their model, the copula is imposed on a bivariate distribution 

function rather than a bivariate survival function. More details about this copula, such as the 

range of   and the expressions of Kendall’s tau, are referred to Amini et al. (2011), Domma 

and Giordano (2013) and Shih and Emura (2016, 2018). 

Shih and Emura (2018) used the randomized Newton-Raphson algorithm to obtain the 

MLE  of ),,(   given the value of  . When the value of   is unknown, they suggested 

making inference for ),,(  , followed by the profile likelihood estimate 

)(maxargˆ *    , where )|,,(max)(
),,(

* 

  . They also proposed a goodness-of-

fit method to test the validity of the generalized FGM copula and the Burr III marginal models. 

The estimation and goodness-of-fit algorithms are implemented in the GFGM.copula R 

package (Shih 2018). Their method is developed for bivariate competing risks data, where 

dependent censoring is a competing risk of death, and death is a competing risk of dependent 

censoring. 

 

4.4.5 The piecewise exponential model 

The piecewise exponential model has been considered to fit survival data with dependent 

censoring (Staplin et al. 2015; Emura and Michimae 2017). Let maaa  100  be a knot 

sequence, where m  is the number of knots. Assume that the hazard function for T  in an 

interval ],( 1 jj aa   is a constant je


 for mj ...,,1 , such that ),,( 1 m θ  are parameters 

without restriction to their ranges. The survival function is 
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where 0)(
0

1
 k

. In a similar fashion, define the survival function ( ; )US u γ  for the 

censoring time U  , where ),,( 1 m γ .  

Emura and Michimae (2017) considered a copula model  

});(),;({),Pr( γθ uStSCuUtT UT ,   ),,( 1 m θ ,   ),,( 1 m γ , 

where );( θtST  and );( γuSU  follow the piecewise exponential models. The Clayton copula 

and the Joe copula were chosen for their numerical studies. They developed inference 

procedures based on the likelihood in Equation (4.4) given the value  . Hence, they applied 

an assumed copula. They did not use the profile likelihood for selecting   since it may not 

work with many parameters in the marginal distributions. Alternatively, they suggested a 

sensitivity analysis to examine the result under a few different values of  .  

   Staplin et al. (2015) originally proposed the piecewise exponential models for dependent 

censoring, but did not use copulas. Consequently, the sub-density functions in their likelihood 

function require some numerical integrations of the joint density of T  and U . 

 

4.5 Semi-parametric models 

 

4.5.1 The transformation model 

Chen (2010) considered a semi-parametric transformation model defined as 

1 1

1 1 0( | ) exp[ { ( ) } ]i

T iS t G t e


  
β x

x ,       2 2

2 2 0( | ) exp[ { ( ) } ]i

U iS u G u e


  
β x

x , 

where jβ  are regression coefficients, and )(jG  is a known and non-negative increasing 

function such that 0)0( jG , )(jG , and ( ) ( ) / 0j jg t dG t dt   for j 1 and 2; 0  and 

0  are unknown increasing functions. No distributional assumptions are imposed on 0  and 

0 . The linear transformation ttG j )(  corresponds to the Cox model.  

   Under the semi-parametric transformation model, the cause-specific hazard functions are 

1 1#

0 1 1 2 0 0( | ) ( ) ( ; , , , | )i

T i ih t t e t  

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β x

x β β ,       2 2#

0 2 1 2 0 0( | ) ( ) ( ; , , , | )i

U i ih t t e t  


  
β x

x β β , 

where 0 0( ) ( ) /t d t dt   , 0 0( ) ( ) /t d t dt   , 

1 1

1 1 2 0 0 1 0 1 ,1 1 2( ; , , , | ) { ( ) } ( | ) [ ( | ), ( | ) ]i

i T i T i U it g t e S t D S t S t 

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β x

β β x x x , 

2 2

2 1 2 0 0 2 0 2 ,2 1 2( ; , , , | ) { ( ) } ( | ) [ ( | ), ( | ) ]i
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Under the independence copula ( , )C u v uv  , the cause-specific hazard functions are equal 

to the marginal hazards:  

1 1 1 1#

0 1 0( | ) ( ) { ( ) }i i

T ih t t e g t e
 

 
β x β x

x ,       2 2 2 2#

0 2 0( | ) ( ) { ( ) }i i

U ih t t e g t e
 

 
β x β x

x . 

To obtain the MLE of 1 2 0 0( , , , ) β β , we treat 0  and 0  as increasing step functions 

that have jumps sizes 0 0 0( ) ( ) ( )i i id t t t      for 1i  and 0 0 0( ) ( ) ( )i i id t t t      for 

0i . Putting the cause specific hazard functions into Equation (4.5) and replacing 0 ( )it  by 

0 ( )id t  and 0 ( )it  by 0 ( )id t , we obtain the log-likelihood 

1 2 0 0 1 1 1 1 2 0 0 0
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β β β x β β

β x β β

1 2( | ), ( | ) ] ,i i U i i

i

t S t x x

 

where ( , ) log ( , )u v C u v    . Since the marginal distributions have a number of parameters 

to be estimated, the profile likelihood may not properly identify a suitable value of  . Chen 

(2010) suggested a sensitivity analysis to examine the result under a few different values of  , 

possibly selected by prior knowledge and expert opinion. 

The approach of Chen (2010) reduces to Cox’s partial likelihood approach (Cox 1972) 

under the independence copula and the linear transformation. Under these assumptions, the 

MLE 1 2 0 0
ˆ ˆ ˆ ˆ( , , , ) β β  is obtained by maximizing two functions 

1 1 0 1 1 0 1( , ) [ log ( ) ] log ( | )i i i T i i

i i

d t S t      β β x x , 

2 2 0 2 2 0 2( , ) (1 )[ log ( ) ] log ( | )i i i U i i

i i

d t S t       β β x x , 

since 1 2 0 0 1 1 0 2 2 0( , , , ) ( , ) ( , )     β β β β . Then, the MLE )ˆ,ˆ( 01 β  for ),( 01 β  is 

the partial likelihood estimator 1β̂  and the Breslow estimator 0̂   (Chapter 2). 

 

4.5.2 The spline model 

Emura et al. (2017) considered a spline-based model defined as 

})(exp{)|( 11

01
iettS iT

xβ
x


 ,       2 2

2 0( | ) exp{ ( ) }i

U iS u u e

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β x

x , 

where jβ  are regression coefficients, and the baseline hazard functions are modeled by  

)()()()(
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100 ttMgtt
dt

d
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where ))(,),(()( 51
 tMtMt M  are the cubic M-spline basis functions (Ramsay 1988). 

Here, ),,( 51 gg g  and ),,( 51 hh h  are unknown positive parameters. These five-

parameter approximations give a good flexibility in estimation for real applications (Ramsay 

1988) and is one of reasonable choices (Commenges and Jacqmin-Gadda 2015). Since the 

spline bases are easy to integrate, the baseline cumulative hazard functions are computed as 

 


5

10 )()(
  tIgt  and  


5

10 )()(
  tIht , where )(tI  is the integration of )(tM  , called 

the I-spline basis (Ramsay 1988).  

The joint.Cox package (Emura 2018) offers functions M.spline () for computing )(tM   

and I.spline () for )(tI . To compute these spline bases, one needs to specify the range of t . 

The package uses the range ],[ 31 t  for the equally-spaced knots 321   , where 

2 1 3( ) / 2    . A possible choice is 1 min ( )i it   and 3 max ( )i it  . The expressions of 

)(tM   and )(tI  are given in Appendix A. Figure 4.1 displays the M- and I-spline basis 

functions with the knots 11  , 22  , and 33  .  

 

 

Figure 4.1: M-spline basis functions (left-panel) and I-spline basis functions (right-panel) 

with knots 11  , 22  , and 33  . 
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   Under the spline model, the cause-specific hazard functions are 

1 1#
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  
β x
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where 
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2 1 2 0 0 2 ,2 1 2( ; , , , | ) ( | ) [ ( | ), ( | ) ]i U i T i U it S t D S t S t   β β x x x . 

Putting these formulas into Equation (4.5), we obtain the log-likelihood 
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The estimator of 1 2( , , , )β β g h  is obtained by maximizing the penalized log-likelihood  

2 2

1 2 1 0 2 0( , , , | ) ( ) ( )t dt t dt      β β g h , 

where 22 /)()( dttfdtf  , and ),( 21   are given nonnegative values. The parameters 

),( 21   are called smoothing parameters, which control the degrees of penalties on the 

roughness of the two baseline hazard functions. It is shown in Appendix A that 
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, 

where 2312   . A naïve approach is to set 1 2 0    as in Shih and Emura 

(2018).  

A more sophisticated approach is to choose ),( 21   by optimizing a likelihood cross-

validation (LCV) criterion (O’ Sullivan 1988). Under the independence copula, the penalized 

log-likelihood is written as the sum of two marginal penalized log-likelihoods, 

2 2

1 1 0 1 0 2 2 0 2 0( , ) ( ) ( , ) ( )t dt t dt          
    β β , 

where  

1 1 0 1 1 0 0 1 1( , ) [ log ( ) ] ( )exp( )i i i i i

i i

t t       β β x β x , 

2 2 0 2 2 0 0 2 2( , ) (1 )[ log ( ) ] ( )exp( )i i i i i

i i

t t        β β x β x . 
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We suggest choosing 1  and 2  based on the two marginal LCVs defined as 

}ˆˆ{trˆ
1

1

111 HHLCV PL

  ,       }ˆˆ{trˆ
2

1

222 HHLCV PL

  , 

where 1̂  and 2̂  are the log-likelihood values evaluated at their marginal penalized likelihood 

estimates, and 1
ˆ

PLH  and 2
ˆ

PLH  are the converged Hessian matrices for the marginal penalized 

likelihood estimations, 1Ĥ  and 2Ĥ  are the converged Hessian matrices for the marginal log-

likelihoods such that 
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where O  is a zero matrix and jp  is the dimension of jβ  for j 1 and 2. The values of 

),( 21   are obtained by maximizing 1LCV  for 1  and 2LCV  for 2 , separately. One may 

apply the R function splineCox.reg in the joint.Cox R package to find the optimal value of 1  

(or 2 ). 
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Chapter 5: Gene selection and survival prediction under dependent 

censoring 
 

Abstract: To select genes that are predictive of survival, univariate selection based on the 

Cox model has been routinely employed in biomedical research. However, this conventional 

approach relies on the independent censoring assumption, which is often an unrealistic 

assumption in many biomedical applications. We introduce an alternative approach to 

selecting genes by utilizing copulas to account for the effect of dependent censoring. We also 

introduce a method to construct a predictor based on the selected genes to predict patient 

survival. We use the non-small-cell lung cancer data to demonstrate the copula-based 

procedure for selecting genes, developing a predictor, and validating the predictor. We 

provide detailed instructions to implement the proposed statistical methods and to reproduce 

the real data analyses through the compound.Cox R package. 

 

Keywords: Clayton’s copula, competing risk, compound covariate, copula-graphic estimator, 

Cox regression, c-index, gene expression, overall survival, univariate selection 

 

5.1 Introduction 

Recent years have witnessed a rapid increase in the use of genetic covariates to build survival 

prediction models in biomedical research. Accurate prediction of survival is often possible by 

incorporating genetic covariates into prediction models, as reported in breast cancer (Jenssen 

et al. 2002; Sabatier et al. 2011; Zhao et al. 2011), diffuse large-B-cell lymphoma (Lossos et 

al. 2004; Alizadeh et al. 2011), lung cancer (Beer et al. 2002; Chen et al. 2007; Shedden et al. 

2008), ovarian cancer (Popple et al. 2012; Yoshihara et al. 2010; 2012; Waldron et al. 2014), 

and other cancers. Evaluating predictive accuracy of the survival prediction models has been a 

challenging area of research due to the high-dimensionality of genes (Michiels al. 2005; 

Schumacher et al. 2007; Bøvelstad et al. 2007; 2009; Witten and Tibshirani 2010; Zhao et al. 

2014; Emura et al. 2017). 

To overcome the difficulty of handling the high-dimensional genetic covariates, one often 

needs to obtain a small fraction of genes that are predictive of survival. The traditional 

approach, called univariate selection, is a forward variable selection method according to 

univariate association between each gene and survival, where the association is measured 

through univariate Cox regression. A predictor constructed from the selected genes has been 
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shown to be useful for survival prediction (Beer et al. 2002; Wang et al. 2005; Matsui 2006; 

Chen et al. 2007; Matsui et al. 2012; Emura et al. 2017). 

It is well known that Cox regression relies on the independent censoring assumption. From 

our discussions in Chapter 3, this assumption seems unrealistic in univariate Cox regression, 

where many covariates are omitted. If the independent censoring assumption is violated, 

univariate Cox regression may not correctly capture the effect of each gene and thus may fail 

to select useful genes. Accordingly, the resultant predictor based on the selected genes may 

have a reduced ability to predict survival. 

Emura and Chen (2016) introduced a copula-based method for performing gene selection. 

With this method, dependence between survival and censoring times is modeled via a copula, 

whereby relaxing the independent censoring assumption. In the subsequent discussions, we 

revisit their method by providing more detailed developments than the original paper. We 

have made the lung cancer data publicly available in the compound.Cox R package (Emura et 

al. 2018) to enhance reproducibility. 

The chapter is organized as follows. Section 5.2 reviews the conventional univariate 

selection. Sections 5.3-5.5 introduce the copula-based method of Emura and Chen (2016). 

Section 5.6 includes the analysis of the non-small-cell lung cancer data for illustration. 

Section 5.7 provides discussions. 

 

5.2 Univariate selection 

Univariate selection is the traditional method for selecting a subset of genes that is predictive 

of survival. As the initial step, one fits the univariate Cox model for each gene, one-by-one. 

Then, one selects a subset of genes that are univariately associated with survival. Finally, one 

builds a multi-gene predictor using the subset of genes for purpose of survival prediction. The 

predictor is usually a weighted sum of gene expressions whose weights reflect the degree of 

association. 

Let )...,,( 1
 pxxx  be a p -dimensional vector of gene expressions, where the 

dimension p  can be large. Let T  be survival time having the hazard function  

( | ) Pr( | , ) /h t t T t dt T t dt    x x . It is well-known that the multivariate Cox model 

)exp()()|( 0 xβx  thth  does not yield proper estimates of β  when p  is very large (Witten 

and Tibshirani 2010). 

In biomedical research, the univariate Cox regression analysis is the traditional strategy to 

deal with the large number of covariates (e.g., Beer et al. 2002; Chen et al. 2007). Let 
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( | ) Pr( | , ) /j jh t x t T t dt T t x dt      be the hazard function given the j -th gene. The 

univariate Cox model is specified as )exp()()|( 0 jjjjj xthxth   for each gene pj ...,,1 . 

The primary objective of using the univariate Cox model is to perform univariate selection as 

follows: For each pj ...,,1 , the null hypothesis 0:0 jH   is examined by the Wald test 

(or score test) under the univariate Cox model. Then one picks out a subset of genes that have 

low P-values from the tests. The genes with low P-values are then selected for further analysis.  

After genes are selected, they are used to build a prediction scheme for survival. In 

medical studies, it is a common practice to re-fit a multivariate Cox regression model based 

on the selected genes (e.g., Lossos et al. 2004). However, we have reservations about this 

commonly used strategy due to the poor predictive performance observed in many papers 

(e.g., Bøvelstad et al. 2007; van Wieringen et al. 2009). Alternatively, we suggest using 

Tukey’s compound covariate predictor (Tukey 1993) that combines the results of univariate 

analyses without going through a multivariate analysis. The compound covariate has been 

successfully employed in many medical studies (e.g., Beer et al. 2002; Wang et al. 2005; 

Chen et al. 2007) and biostatistical studies (Matsui 2006; Matsui et al. 2012; Emura et al. 

2012; 2017). 

The two major assumptions of univariate selection are the correctness of the univariate 

Cox model and the independent censoring assumption. The violation of these assumptions 

yields bias in estimating the true effect of genes. Emura and Chen (2016) argued that the 

independence of censoring is a more crucial assumption than the correctness of the univariate 

Cox model. The bias due to dependent censoring gets large if either the degree of dependence 

or the percentage of censoring increases (see Section 3.5). In the following sections, we shall 

introduce a copula-based univariate selection method that copes with the problem of 

dependent censoring. 

 

5.3 Copula-based univariate Cox regression  

Let T  be survival time, U  be censoring time, and )...,,( 1
 pxxx  be gene expressions. The 

joint distribution of T  and U  can have an arbitrary dependence pattern for any given jx . 

Sklar’s theorem (Sklar 1959; Nelsen 2006) guarantees that the joint survival function is 

expressed as 

})|Pr(,)|Pr({)|,Pr( jjjj xuUxtTCxuUtT  ,      pj ...,,1 ,      
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where jC  is a copula. The independent censoring assumption corresponds to uvvuC j ),(  

for pj ...,,1 , namely, 

)|Pr()|Pr()|,Pr( jjj xuUxtTxuUtT  ,      pj ...,,1 .             (5.1) 

This is clearly a strong assumption (Chapter 3).  

To relax the independent censoring assumption, Emura and Chen (2016) suggested a 

one-parameter copula model 

})|Pr(),|Pr({)|,Pr( jjj xuUxtTCxuUtT   ,     pj ...,,1 .       (5.2) 

Since the same copula C  is assumed for every j , this assumption may still be strong. 

Nevertheless, the copula relaxes the independent censoring assumption (5.1) by allowing a 

dependence parameter   to be flexibly chosen by users. One example is the Clayton copula 

0,)1(),( /1   

 vuvuC , 

where the parameter   is related to Kendall’s tau through )2/(   . The copula model 

(5.2) reduces to the independent censoring model (5.1) by letting 0 . 

For marginal distributions, Emura and Chen (2016) assumed the Cox models 

})(exp{)|Pr( 0
jj x

jj etxtT


 ,    })(exp{)|Pr( 0
jjx

jj euxuU


 ,     (5.3) 

where j  and j  are regression coefficients and j0  and j0  are baseline cumulative hazard 

functions.  

For purpose of gene selection, the target parameter is j  that is the univariate effect of the 

j-th gene on survival. Other parameters 0 0( , , )j j j    are nuisance. Under the independent 

censoring model (5.1), one can use the partial likelihood to estimate for j  while ignoring the 

nuisance parameters. However, under the copula model (5.2), the partial likelihood estimator 

gives an inconsistent estimate of j  (Chapter 3).  

The full likelihood is necessary to consistently estimate 0 0( , , , )j j j j     under the 

copula model (5.2) and the Cox models (5.3). Define notations 
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where ),(log),( vuCvu   . Observed data are denoted as },,1),,,({ nixt ijii  , 

where ),min( iii UTt   and )( iii UT  I , where )( I  is the indicator function. As in Chen 

(2010), we treat j0  and j0  as increasing step functions that have jumps sizes 

0 0 0( ) ( ) ( )j i j i j id t t t dt      for 1i  and 0 0 0( ) ( ) ( )j i j i j id t t t dt      for 0i . For 

any given  , the log-likelihood is defined as 

,}])(exp{},)(exp{[                                      

])(log)|,,,;(log)[1(                                      

])(log)|,,,;(log[)|,,,(
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 (5.4) 

where,  

1 0 0 0 ,1 0 0( ; , , , | ) exp{ ( ) } [ exp{ ( ) }, exp{ ( ) }]j ij j ij j ijx x x

ij j j j j j j jt t e D t e t e
  

         , 

2 0 0 0 ,2 0 0( ; , , , | ) exp{ ( ) } [ exp{ ( ) }, exp{ ( ) }]j ij j ij j ijx x x

ij j j j j j j jt t e D t e t e
  

         . 

The maximizer of Equation (5.4) given   is denoted as ))(ˆ),(ˆ),(ˆ),(ˆ( 00  jjjj  . 

The standard error })(ˆ{  jSE  is computed from the information matrix (Chen 2010).  

The log-likelihood in Equation (5.4) can be easily computed under the Clayton copula. It 

can be shown that )1log(),( 1   
  vuvu , 11

1, )1(),(   
 vuuvuD , and 

11

2, )1(),(   
 vuvvuD . Hence,  

1}])([exp{}])([exp{

}])([exp{
)|,,,;(

00

0

001














ijjijj

ijj

x

j

x

j

x

j

jjjjij
etet

et
t , 

1}])([exp{}])([exp{

}])([exp{
)|,,,;(

00

0

002














ijjijj

ijj

x

j

x

j

x

j

jjjjij
etet

et
t . 

One can apply these formulas to Equation (5.4) to calculate the log-likelihood function and 

maximize it by optimization algorithms.  

We implemented the computation of )(ˆ  j  and })(ˆ{  jSE  in the compound.Cox R 

package (Emura et al. 2018). In the package, the maximization of Equation (5.4) is 

performed by the nlm function after the log-transformations )(log 0 ij td  and )(log 0 ij td . 

The package uses the initial values 0 jj   and ntdtd ijij /1)()( 00  .  
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Technical remarks: Theoretically, if 0 , )(ˆ  j  approaches to the partial likelihood 

estimate of j . Numerically, however, the value   too close to zero makes the likelihood 

optimization unstable. Hence, we set )01.0(ˆ)(ˆ
jj    for 01.00   in the package. The 

value of )01.0(ˆ)(ˆ
jj    is almost the same as the partial likelihood estimate. 

 

5.4 Copula-based univariate selection  

One can use the copula-based method in Section 5.3 to perform univariate selection adjusted 

for the effect of dependent censoring. The P-value for testing the null hypothesis 0:0 jH   

is computed by the Wald test based on a Z-statistic })(ˆ{/)(ˆ  jj SE . One can select a 

subset of genes according to the P-values. With 0  in the Clayton copula, one has 

uvvuC ),( . Hence, the resultant test is approximately equal to the Wald test under 

univariate Cox regression. In this sense, the copula-based test is a generalization of the 

conventional univariate selection.  

For a future subject with a covariate vector ),,( 1
 pxx x , survival prediction can be 

made by the prognostic index (PI) defined as xβ )(ˆ  , where ))(ˆ,),(ˆ()(ˆ
1  pβ . 

The PI is a weighted sum of genes whose weights reflect the degree of univariate association. 

If 0 , one obtains PI= xβ )0(ˆ   which is equal to the compound covariate based on 

univariate Cox regression under the independent censoring assumption (Matsui 2006; Emura 

et al. 2012). 

 

5.5 Choosing the copula parameter by the c-index 

Estimation of the copula parameter   is inherently difficult due to the nonidentifiability of 

competing risks data (Tsiatis 1975). An estimator maximizing the profile log-likelihood for 

  based on Equation (5.4) typically shows very large sampling variation (Chen 2010). In our 

experience, the profile likelihood often has a peak at extreme values, for instance, either 

0   or    under the Clayton copula. These undesirable properties make the likelihood-

based strategy less useful.  

Following Emura and Chen (2016), we introduce a prediction-based strategy for choosing 

 . A widely used predictive measure is a cross-validated partial likelihood (Verveij and van 
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Houwelingen 1993). Unfortunately, the partial likelihood is not a valid likelihood under 

dependent censoring. 

A more plausible predictive measure under dependent censoring is Harrell’s c-index 

(Harrell et al. 1982). The interpretation of the c-index does not depend on a specific model. 

We adopt a cross-validated version of the c-index defined as follows. 

We calculate the c-index based on a K -fold cross-validation. We first divide n  patients 

into K  groups of approximately equal sample sizes. This process can be specified by a 

function }...,,1{}...,,1{: Kn   indicating the group to which each patient is allocated 

(Hastie et al. 2009). For each patient i , define the PI: 

ipipiiiii xx )(ˆ)(ˆ)(ˆ)(PI )(,1)(,1)(     xβ , 

where )(ˆ
)(,   ij   is obtained based on Equation (5.4) with the )(i -th group of patients 

removed. In this way, )(PI i  is a predictor of the survival outcome ),( iit   for the patient i . 

We define the cross-validated c-index: 
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Finally, we define ̂  that maximizes )(CV . We recommend 5K  that is often used when 

n  or p  is large. 

It is computationally demanding to obtain a high-dimensional vector )(ˆ
)(  iβ  for every 

group )(i . To release the computational cost, we suggest reducing the number p by using the 

initial univariate selection under 0 , e.g., based on P-value<0.2. The technique shall be 

applied to the subsequent data analysis. 

A graphical diagnostic plot for )(CV  is informative to see how the proposed method of 

choosing ̂  works. We suggest using a grid search to find the approximate value of ̂  and 

plot the values of )(CV  against the grids. Figure 5.1 shows the plots of )(CV  with 

simulated data under our previously considered setting [Case 2 of Table 2 in Emura and Chen 

(2016)]. The figure shows that ˆ( )CV   is noticeably larger than (0)CV . This suggest that  

ˆPI ( )i   has better ability to predict survival than PI (0)i  does. 
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Figure 5.1 Six replications of the cross-validated c-index )(CV . The maximum of )(CV  

is signified as a triangle (in red colour). 

 

5.6 Lung cancer data analysis 

We analyze the survival data on the non-small-cell lung cancer patients of Chen et al. (2007). 

The data analysis was performed previously by Emura and Chen (2016) using the copula-

based methods. Here, we update the analysis based on the data available in the compound.Cox 

R package, providing more detailed explanations than the previous one. In addition, this 

demonstration allows researchers to reproduce all the results easily through R. 

In the lung cancer data, the primary endpoint is overall survival, i.e., time-to-death. 

During the follow-up, 38 patients died and the remaining 87 patients were censored. The 125 

patients were split into either a training set (63 patients) or a testing set (62 patients) in the 

same manner as Chen et al. (2007). 

The Lung object in the compound.Cox R package contains censored survival times it , 

censoring indicators i , training/testing indicators, and gene expressions )...,,( 1
 ipii xxx  for 

the 125 patients. Available are p 97 gene expressions that satisfy P-value<0.20 under the 

usual univariate selection performed on the training set. All the gene expressions were coded 
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as 1, 2, 3, or 4 according to Chen et al. (2007). In the original analysis of Chen et al. (2007), 

univariate selection yielded 16 genes with P-value<0.05. In our analysis, we shall apply the 

copula-based univariate selection to select 16 genes. 

 

5.6.1 Gene selection and prediction  

We applied the copula-based univariate Cox regression to the 63 patients (training set) by 

using the R codes available in Appendix B. Here, we used 5K  cross-validation for 

examining the diagnostic plot of )(CV . The outputs are shown below: 

 

> res 
$beta 
VHL                     IHPK1                  HMMR              CMKOR1           PLAU  
-0.093375981   -0.408433517    0.130353170    0.098116123    0.241605149  

 
$SE 
VHL               IHPK1           HMMR         CMKOR1       PLAU      
0.1769419   0.1686817   0.1635025   0.1913140   0.3552096    

 
$Z 
VHL                   IHPK1               HMMR             CMKOR1         PLAU         
-0.52772110   -2.42132730    0.79725501    0.51285397    0.68017631 

 
$P 
VHL                      IHPK1                  HMMR                CMKOR1            PLAU  
0.5976929269   0.0154639470   0.4253029451   0.6080534771   0.4963928296  

 
$alpha 
[1] 18 
 
$c_index 
[1] 0.6312719 

 

Here, $beta )ˆ(ˆ  j , $SE })ˆ(ˆ{  jSE , $Z })ˆ(ˆ{/)ˆ(ˆ  jj SE , and $P is the P-value for 

each 97...,,1j . Also, $alpha ̂  and $c_index )ˆ(CV . 

Figure 5.2 displays the diagnostic plot of the cross-validated c-index )(CV  calculated on 

the 63 patients (training set). The c-index is maximized at the copula parameter ̂ =18 

(Kendall’s tau = 0.90). This implies a possible gain in prediction accuracy by using the 

Clayton copula for dependent censoring.  
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Figure 5.2 The plot of )(CV  (the cross-validated c-index) based on the lung cancer data. 

The value of )(CV  is maximized at  =18 (Kendall’s tau = 0.90). 

 

We selected the 16 genes among the 97 genes according to the P-values. The outputs are 

shown below: 

 

                     Coef        P.value 
MMP16       0.51        0.0003 
ZNF264        0.51        0.0004 
HGF              0.50        0.0010 
HCK              -0.49       0.0012 
NF1               0.47        0.0016 
ERBB3          0.46        0.0016 
NR2F6          0.57        0.0030 
AXL               0.77        0.0034 
CDC23          0.51        0.0051 
DLG2            0.92        0.0054 
IGF2            -0.34        0.0081 
RBBP6          0.54        0.0082 
COX11         0.51        0.0116 
DUSP6         0.40        0.0122 
ENG            -0.37        0.0140 
IHPK1         -0.41        0.0155 
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The resultant PI is defined as 161611 )ˆ(ˆ)ˆ(ˆPI xx    , where ),,( 161 xx   are gene 

expressions of the 16 genes. Accordingly, 

PI = (0.51MMP16) + (0.51ZNF264) + (0.50HGF) + (-0.49HCK) + (0.47NF1) 

+ (0.46ERBB3) + (0.57NR2F6) + (0.77AXL) + (0.51CDC23) + (0.92DLG2) 

+ (-0.34 IGF2) + (0.54RBBP6) + (0.51COX11) + (0.40DUSP6) + (-0.37ENG) 

+ (-0.41 IHPK1). 

 

5.6.2 Assessing prediction performance 

To validate the ability of the PI for predicting overall survival, we separate the 62 testing 

patients into two groups of equal sizes: 31 good prognosis patients with low PIs and 31 poor 

prognosis patients with high PIs. We then calculate the two survival curves for each group 

(Figure 5.3). 

 

Figure 5.3 The survival curves for the good and poor prognosis groups. The good (or poor) 

group is determined by the low (or high) values of the PI. Censored patients are indicated as 

the mark “＋”. 

 

The prediction performance of the PI can be measured by the difference between the two 

survival curves in Figure 5.3. The two survival curves were calculated by the copula-graphic 

estimator (Rivest and Wells 2001) that adjusts for the effect of dependent censoring with the 
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Clayton copula at ̂ =18 (Kendall’s tau = 0.90). This approach may be better than the 

conventional log-rank test to measure the difference between two Kaplan-Meier estimators 

that are biased under dependent censoring. 

   Under the Clayton copula model, the copula-graphic (CG) estimator (Chapter 4) is defined 

as 
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

n

j iji ttn
1

)(I  is the number at-risk at time it . We computed the CG estimator by 

using the compound.Cox R package (Emura et al. 2018). 

The separation of the two curves in Figure 5.3 is measured by the average vertical 

difference between the survival curves over the study period. This statistic is considered as a 

scaled version of the area between the two survival curves. It is also equivalent to a special 

case of the weighted Kaplan-Meier statistics (Pepe and Fleming 1989). When using this 

statistic, the choice of the study period strongly influences the test results. The common 

choice is the period where at least one survivor exists in both groups (Chapter 2; Klein and 

Moeschberger 2003). The study period is depicted in Figure 5.3. 

The P-value for testing the difference between the two groups is obtained using the 

permutation test (Frankel et al. 2007). In each permutation, good prognosis group (n=31) and 

poor prognosis group (n=31) are randomly allocated from the 62 testing samples, and then, 

the CG estimator is computed for each group. For each permutation, the study period is 

determined and the average vertical difference between the two CG estimators is calculated. 

The P-value is computed as the proportion of 10,000 permuted test statistics exceeding the 

original test statistic. 

 The two curves are significantly separated between the good and poor prognoses 

(Average difference = 0.224; P-value = 0.021). This result justifies the predictive ability of 

the PI derived by using the copula-based approach. 

 

5.7 Discussions 

We have introduced copula-based approaches for selecting genes and making survival 

prediction in the presence of dependent censoring. The method can be flexibly applied to 

accommodate different copulas, such as the Clayton, Gumbel, and FGM copulas. Due to its 

mathematical simplicity, we prefer the Clayton copula to other copulas in modeling 
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dependence structure between survival time and censoring time. However, the effect of 

dependent censoring on estimates can be remarkably different between different copulas 

(Chapter 3). Rivest and Wells (2001) theoretically explored the sensitivity of using different 

copulas on estimating a marginal survival function.  

Due to the inherent problem of the nonidentifiability of competing risks data (Tsiatis 

1975), it is not easy to identify the degree of dependence (i.e., the true copula parameter) 

between survival and censoring times. The problem is due to the fact that the likelihood 

function contains little information to identify the true copula parameter. Alternatively, we 

choose the copula parameter by using a cross-validated c-index, a predictive measure free 

from the likelihood criterion. This method exhibited sound numerical performances in our 

numerical analyses. Unfortunately, we do not have a theoretical justification of the method, 

such as consistency. Recently, Emura and Michimae (2017) proposed a goodness-of-fit 

procedure to test the assumption of the correct copula under competing risks. According to 

their simulation results, their approaches have certain ability to identify the correct copula 

under a large number of samples. However, their approaches have not been extended to 

include covariates. 

After relevant genes are selected, researchers often use them to stratify patients between 

good and poor prognosis groups in validation samples. This is a common strategy to assess 

prediction performance of the selected genes. Researchers typically use the log-rank test to 

see how well the Kaplan-Meier survival curves are separated between the good and poor 

groups. Note that these commonly used validation strategies may give biased results if 

dependent censoring exists in validation samples. Copulas are useful to adjust for this bias by 

replacing the Kaplan-Meier estimator by the copula-graphic estimator. Since the log-rank test 

is no longer valid in the presence of dependent censoring, we apply the permutation test based 

on the average vertical difference between the copula-graphic estimators. For purpose of 

constructing survival forests, Moradian et al. (2017) also suggested the copula-graphic 

estimator to measure the difference between two groups under dependent censoring. 

One potential drawback of the proposed gene selection method is that it needs to impose a 

proportional hazards model for the censoring distribution in Equation (5.3). On the other hand, 

the traditional univariate Cox regression does not require any model assumption on the 

censoring distribution. This elimination of the model assumption is the consequence of the 

independent censoring assumption. Once the independent censoring assumption is relaxed, 

certain model specifications for the censoring distribution appear to be mandatory (e.g., 

Siannis et al. 2005; Chen 2010). If the research interest lies in the effect of genes on both 
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survival time and censoring time, the proportional hazards model for the censoring 

distribution may provide useful information. For instance, researchers may be interested in 

selecting genes associated with both disease-specific survival and time-to-death due to other 

causes as in the competing risks setting (Escarela and Carrière 2003). 
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 Chapter 6: Future developments 

 

This final chapter introduces two open problems for future research. This might help find 

research topics for students and researchers. 

 

Keywords: copula-graphic estimator, dependent truncation, left-truncation, log-rank test 

 

6.1 Log-rank test under dependent censoring 

The three most important statistical methods in survival analysis would be the Kaplan-Meier 

estimator, the log-rank test, and Cox regression. These three methods adopt simple ways to 

deal with censoring. However, these methods critically rely on the validity of the independent 

censoring assumption (Chapter 2). 

   The copula-graphic estimator (Zheng and Klein 1995; Rivest and Wells 2001) is a natural 

generalization of the Kaplan-Meier estimator in the presence of dependent censoring. Also, 

the semi-parametric maximum likelihood estimator of Chen (2010) is a natural generalization 

of Cox regression (Chapter 4). These methods for dependent censoring utilize copulas to 

adjust for the effect of dependent censoring and they reduce to the original methods under the 

independence copula. However, the copula-based generalization of the log-rank test under 

dependent censoring has not been considered in the literature.  

Researchers often wish to separate patients between good and poor prognosis groups, and 

then use the log-rank test to see how well the Kaplan-Meier survival curves are separated 

between the good and poor groups. This strategy may give biased results if dependent 

censoring exists in the samples (Emura and Chen 2016; Moradian et al. 2017). In Chapter 5, 

we apply a permutation test based on the difference between the two survival curves 

calculated by the copula-graphic estimator. While this approach can account for the effect of 

dependent censoring, it is not regarded as the log-rank test. The log-rank test should compare 

the hazard rates between two groups rather than the survival curves. 

Hence, it is interesting to develop an alternative two-sample test, similar to the log-rank 

test, under dependent censoring. In general, two copulas are necessary for two groups (e.g., 

good and poor prognosis groups). A starting point may be the assumption that the copula is 

the same in the two groups, as we have assumed in Chapter 5. While deriving a generalized 

log-rank test under an assumed copula, it is relevant to study the robustness or sensitivity of 

the test against copula misspecification as in Rivest and Wells (2001). Based on the 
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sensitivity analysis of Chapter 3, we conjecture that the log-rank test is robust against the 

effect of dependent censoring modeled via the Gumbel copula. 

 

6.2 Dependent left-truncation 

Left-truncation often occurs if survival time is measured from birth. In this case, survival 

analysis may be based on the age-specific hazard function and left-truncation time 

corresponds to entry age (should not be treated as covariates). This book does not discuss the 

problem of left-truncation since the theme is focused on censoring. Meanwhile, it is of great 

interest to design aging research under left-truncation (e.g., Rodríguez-Girondo et al. 2016), 

where the issue of dependent left-truncation may arise in addition to the issue of dependent 

censoring. 

Traditional analyses for left-truncated survival data rely on the independent truncation 

assumption (p.126 of Klein and Moeschberger 2003). For instance, in survival analysis of 

elderly residents, the age at entry to a retirement centre is assumed to be independent of age at 

death (Hyde 1980). Several different tests for checking the assumption of independent 

truncation were developed (Emura and Wang 2010). The effect of dependent truncation in 

competing risks analysis was studied by Bakoyannis and Touloumi (2017). To fit survival 

data with dependent left-truncation, a copula model between event time and left-truncation 

time has been considered (Chaieb et al. 2006; Emura and Wang 2012; Emura and Murotani 

2015; Emura and Pan 2017). However, these methods cannot be directly applied to the case 

where event time is subject to both dependent censoring and dependent truncation. In this case, 

one may consider two copulas, one for dependent truncation and the other for dependent 

censoring. One may also consider a copula for dependence between truncation time and 

censoring time. 
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Appendix A: Spline basis functions 

This appendix defines the spline basis functions used in 
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where the range of integral is ],( 31  . Then, the penalization term is explicitly computed as  
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All the expressions mentioned above were derived in the supplementary material of 

Emura et al. (2017). The computational programs of the M- and I-spline basis functions are 

available in the joint.Cox R package (Emura 2018). These basis functions were derived from 

the general definition of M-spline basis functions given by Ramsay (1988). Below, we shall 

explain the details about the derivations. 

The M-spline basis functions are defined on an interval [L, U] which is subdivided by a 

knot sequence 1 qL U     . We set another knot sequence 1 2 n kt t t    such that 

1 kt t L    and 1n n kt t U    . Then, the M-spline bases of degree 1k   are 

recursively defined as:
 

For 1k   

 

. 

For 1k  , 

. 

The cubic spline bases corresponds to 4k  , giving cubic polynomials in t . Our derivations 

are based on 1 4 1t t    , 5 2t  , and 6 9 3t t     with the equally spaced mesh 

2312   . In the following, we provide the detailed derivations of some functions. 
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We derive  in knot intervals of [ ]. Then, the M-spline basis functions are 

recursively computed as 
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We shall derive  in the interval [ ] and interval [ ], separately. 

First, we derive  in [ ]. By the definition, 
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Note that  and . So  and  are derived as  and 

 respectively. Then, one can obtain  in [ ] as follows. 

 

Next, we derive  in [ ]. It follows that 
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So one can obtain  in [ ] as 

 

Combining the two cases for , one can obtain the desired result as 
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The derivatives of the M-spline basis functions are 
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. 

By integrating  on the interval ( ], 

 

. 

By integrating  on the interval ( ], 

 

The product of  and  is equal to 0. Hence, 
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Appendix B: R codes for the lung cancer data analysis 

 
library(compound.Cox) 
data(Lung) # read the data 
temp=Lung[,"train"] # indicators for training/testing samples # 
t.vec=Lung[temp,"t.vec"] # death or censoring times for 63 training samples # 
d.vec=Lung[temp,"d.vec"] # censoring indicators for 63 training samples # 
X.mat=as.matrix( Lung[temp,-c(1,2,3)] ) # a matrix of gene expressions (63 by 97 elements) # 
 
res=dependCox.reg.CV(t.vec,d.vec,X.mat,K=5,G=20) # fit Cox regression models 
res 
 
Beta=res$beta 
P=res$P 
###### Outputs sorted by P-values ####### 
cbind(Coef=round(Beta[order(P)],2),P.value=round(sort(P),4)) 
 
####### Prediction accuracy for testing data ####### 
alpha=res$alpha 
temp_te=Lung[,"train"]==FALSE 
t.vec=Lung[temp_te,"t.vec"] 
d.vec=Lung[temp_te,"d.vec"] 
X.mat=Lung[temp_te,-c(1,2,3)] 
n=nrow(X.mat) 
 
temp_P=P<=sort(P)[16]  ## Top 16 genes ## 
PI=as.matrix(X.mat[,temp_P])%*%Beta[temp_P] 
t.oeta=t.vec[order(PI)] 
d.oeta=d.vec[order(PI)] 
 
###### Plot the CG estimators ##### 
temp=1:floor(n/2) 
t.good=t.oeta[temp] 
d.good=d.oeta[temp] 
S.good=CG.Clayton(t.good,d.good,alpha,S.plot=TRUE,S.col="blue")$surv 
 
t.poor=t.oeta[-temp] 
d.poor=d.oeta[-temp] 
S.poor=CG.Clayton(t.poor,d.poor,alpha,S.plot=TRUE,S.col="red")$surv 
 
plot(c(0,sort(t.good)),c(1,S.good),type="s",lwd=3,xlim=c(0,55),ylim=c(0.2,1), 
     col="blue",ylab="Survival probability",xlab="Months") 
points(sort(t.good[d.good==0]),S.good[d.good[order(t.good)]==0],pch=3,cex=2,col="blue") 
points(c(0,sort(t.poor)),c(1,S.poor),type="s",lwd=3,col="red") 
points(sort(t.poor[d.poor==0]),S.poor[d.poor[order(t.poor)]==0],pch=3,cex=2,col="red") 
 

 

The codes need 30 minutes to an hour to finish the computation. 
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