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Abstract: Truncation often occurs in lifetime data analysis, where samples are collected under certain time constraints. We consider parametric inference 

when random samples  are subject to double-truncation, i.e., both left- and right-truncations. In particular, we consider the proposal of Efron and Petrosian 

(1999)2, which is based on special exponential family (SEF). We develop computational algorithms for Newton-Raphson and fixed point iteration techniques 

to obtain maximum likelihood estimator (MLE) of the parameters, and then compare the performance of these two methods by simulations. We observe that 

the Newton-Raphson method has faster rate of convergence than the fixed point iteration for moderate sample sizes. Also, we study the asymptotic properties 

of the MLE based on the asymptotic theory of independent but not identical random variables. Real data are used for illustration. 

 

 1. Introduction 

Double-truncation of survival data occurs when only those 

individuals whose event time lies within a certain follow-up 

period are observed. For our example of life expectancy data 

of Hyde (1980)3 , the lifetime of the Channing House residents 

suffer from doubly truncated. (Figure below) 

 Statistical inference for doubly truncated data have been 

popular research with a variety of applications.2,5,6 
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3. Method  

Efron and Tibshirani (1996)1 first introduced the special 

exponential family (SEF). The idea of the SEF combined two 

methods. In order to estimates the probability density, we can 

use maximum likelihood fitting within some parametric family or 

nonparametric methods. Combining these two methods are the 

specially exponential family. 

 The density of SEF is 
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We introduce the likelihood function with the doubly truncated 

data proposed by Efron and Petrosian (1999)2 . 

Let                       be the interval, where       is the left-truncation 

limit and      is the right-truncation limit. We consider estimation of 

density          when the random samples                        are 

subject to the constraints            . Then the following chart is how 

to obtain the maximum likelihood estimators.    
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4. Theory 
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Finding the maximum likelihood estimator, we can directly 

calculated. But, sometimes even for common densities, it is 

difficult to find maximum likelihood estimator. Here, we do it by 

using numerical method. One is Newton-Raphson method. 

Another is fixed-point iteration. 

Newton-Raphson method 

Step 1: Choose the initial value       . 

Step 2: Consider the recursive process 
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Step 3: The iteration procedure then continuous until 

convergence, i.e., until                                 . 4)()1( 10||   kk
ηη

Fixed-point iteration method  

To solve the score function                                            , we 

rewrite                                     . 
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Step 1: Choose the initial value       . 

Step 2: Consider the recursive process 
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Step 3: The iteration procedure then continuous until 

convergence, i.e., until                                 . 

)0(
η

 The advantage of the fixed-point iteration is that it does 

not require the second derivatives of the log-likelihood which 

are often complicated. The disadvantage is that the choice of  

is not unique. 

g

Our model is not iid case, only independent but  not identical, 

we need to consider more assumptions to prove consistency. 
Assumption (A)  There exists an open subset       of      containing the 

true parameter point                                  . 
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Assumption (B)  There exists a            positive definite matrix    33
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Assumption (C)  Suppose that there exists a measurable function  

such that  
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Assumption (D)  Suppose that there exists a measurable function  

such that  
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Theorem:  If Assumptions (A)-(D) holds, then        is 

consistent for estimating      . 
jn̂
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We compare the performance of the Newton-Raphson method 

and Fixed-point iteration via simulation. Data are generated 

from the special exponential family. Also, we consider that all 

the simulations are conducted under                                  . 5.0)(  VYUP

 We report the MLE results in terms of the average of 

100 Monte Carlo replications. The notation of the table defined 

as following : 
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② AI=Average number of iteration. 

Initial value method AI 

FPI 3.093683 0.2314271 12.73 

NR 3.093673 0.2314795 4.49 

FPI 3.093723 0.2314482 12.28 

NR 3.093673 0.2314795 4.29 

FPI 3.038339 0.09521812 12.06 

NR 3.038342 0.09525377 4.24 

FPI 3.038394 0.09523499 11.9 

NR 3.038342 0.09525377 4.19 
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Simulation results under one-parameter special exponential family with parameter  0

Initial value method AI 

FPI -3.036629 029635 13.07 

NR -3.036605 0.29641 4.51 

FPI -3.036634 0.29635 12.16 

NR -3.036605 0.29641 4.34 

FPI -3.002451 0.10555 12.23 

NR -3.002436 0.10559 4.25 

FPI -3.002467 0.10556 11.63 

NR -3.002436 0.10559 4.18 
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Simulation results under one-parameter special exponential family with parameter  0

True  Initial value method AI 

(30,-0.5) FPI 30.61147 -0.51085 61.09232 0.01697 36.14 

NR 30.61134 -0.51085 61.09615 0.01695 5.23 

FPI 30.61163 -0.51086 61.09445 0.016974 38.89 

NR 30.61134 -0.51085 61.09615 0.01695 6.21 

(30,-0.5) FPI 31.3292 -0.52253 31.86291 0.00885 30.99 

NR 31.32923 -0.52253 31.86499 0.00885 4.93 

FPI 31.32947 -0.52253 31.86498 0.00885 35.12 

NR 31.32923 -0.52253 31.86499 0.00885 6.07 
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Simulation results under normal distribution with parameter              which correspond to 
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We revisit the Channing House data from Hyde (1980)3.This 

dataset contains 462 elderly residents form the Channing 

House retirement center in Palo Alto, California. The data are 

collected from 31 January 1964 to 1 July 1975 and hence, the 

length of the observed period is 11 years and 5 months 

(                    months). For individual , let     be the age of death 

and let    be the age of the individual at January 31, 1964. Thus, 

the observed data satisfy                      , for                       Hence, 

the lifetime    is doubly truncation by          where                 . We         

concentrate on the subset of 167 cases who died during the 

study period by ignoring individuals who survived at the study 

end.  
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We select the suitable model by the criterion AIC. The 

preferred model is the one with minimum AIC value.  

kLAIC 2log2  , where      is the number of unknown 
parameters in the model and    is the maximized value of the 

likelihood function. We also choose the goodness of fit test 

for continuous data, Kolmogorov-Smirnov (K-S) test statistic. 

k

L

AIC K-S statistic 

Model 1 0.00090671 0 0 -817.8168 1637.634 0.1022534 

Model 2 -0.0003247 0 0 -819.7299 1641.46 0.1000025 

Model 3 0.09459514 0 -817.1781 1638.356 0.07243756 

Model 4 -0.8972449 -814.5028 1635.006 0.06077817 

5107424.4 

410436624.9 
710288192.3 

1̂ 2̂ 3̂ Llog

Model 1 is one-parameter special exponential family (          ), Model 2 

is one-parameter special exponential family (        ), Model 3 is two-

parameter special exponential family, Model 4 is cubic special 

exponential family. We also give the survival function for each model. 
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01 

(1) We propose use Newton-Raphson method to obtain MLE.  

(2) For estimating the lifetime data, we propose to use cubic special 

exponential family. This is similar to the skew-normal distribution 

mentioned in Robertson and Allison (2011)4.  
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If we ignore double-truncation, it will introduces a systematic 

bias in estimation. 
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