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What is competing risk ?
Death=Event 1
Dropout =Event 2

Treatment
i.“- .

Death time is unobserved due to dropout
=» Dropout is a competing risk for death

Y Dropout



Competing risks

e X : timeto “Event 1”

e Y : time to “Event 2”

* T=min( X,Y ) :observed eventtime
o=I1(T=X) : observed event type

Marginal hazard functions

A(t)=Pr(t< X <t+dt|X >t)/dt,
A(t)=Pr(t<Y <t+dt|Y >t)/dt,

*Marginal distributions are non-identifiable from
observed quantities (T, &)
(Tsiatis 1975)



Non-identifiability

* Different models = Same dist. for observations

e Sensitivity analysis (e.g., Chen 2010; Lo and Wilke 2010):
- try several values of &
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To avoid nonidentifiability...

e Cause-specific hazard (kalbfleish & prentice 2002 Book)

A (1) =Pr(t<T <t+dt, 6 =1|T >t)/ dt

e Sub-distribution hazard (rine & Gray 1999 1asa)

AP(t)=Pr(t<T <t+dt,s =1|{T 2t}u{T <t,6=0})/dt

Problem:
How they are related to the marginal hazard ?

A (t)=Pr(t<X <t+dt|X >t)/dt
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Example: Independent risks
X 1Y

* Marginal hazard = Cause-specific hazard

A (1) =47 ()
* Subhazard < Marginal hazard

/HSUb(t)://ll(t) exp{_Al(t)_AZ(t)}

1- [ 24 (s)exp{~A,(s)~ A, () Jdx

fio(t)  _ fu(t)
1-F™(t)  S(1)

A1) = =A4(t)



3 goals of this paper

1. Establish a mathematical relationship:

Marginal vs. Subhazard
2. Compare Cox-type models

Marginal vs. Subhazard

Comparative studies were not possible
previously (non-indentifiability)

To appear within a few weeks...
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Survival copula model
PI’(X > X, Y > y) :CQ{Sl( X)1 Sz( y)}

The Clayton copula:

C,(u,v)=(u’+v’-1)*  6>0,

The Gumbel copula:

1
C,(u,v)=exp| —{(—-logu)’*+(—logv)’* 3}t |  6>0,

The Farlie-Gumbel-Morgenstern (FGM) copula:

C,(u,v)=uA{1+6(1-u)(1-v)}, -1<6<1.



Main results (1)

Theorem 1: Under the model

PI’(X > X, Y > Y) :CQ{Sl(X)i Sz( Y)},

the marginal hazard and subhazard are connected through

DI A(1), A, (1)}

A0 (1) = A(t) — -
1- [, A ()DL A(s), Ay (5)1ds

where

D,(5,1) =C,{exp(-9), exp(-0)},  DE(5,1) === D, (5,1)
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Proof of Theorem 1
The sub-distribution function for Event 1 is

FlSub(t):Pr(X St,Y > X):J*_gPr(X >X,Y > Y)
0 OX

dy .

X=Yy

FE () =[ -2 DA, AL(S))

ds= [ 4,(s)DET{A(S), A,(5)Jds:
2 15 (t)=—d log[L— F*(t)]/dt,

DAL (1), Ay(t)}
1- [ 2,($)DFPLAL(5), Ay('5)Jds

DL(1)=4(1)



Example 1 (Clayton copula)

By Theorem 1,

2exp{ OA(t)} 2exp{ OA(1)}-11"""
1+[2exp{OA(t)}-1T1""

A7 (1) =A(t)

Under the Weibull model of A(t) :’uv,

1 2exp(A6t ) 2exp(Aot”) -1y 1o
1+{2exp(A6t")-1}"°

AP ()= Avt

Under the log-logistic (or Pareto type 11) model of A(t):7|09(1+’u),

A 20+ A7 [ 21+ A7 -1}y Vo
+ At 1+[2(1+ A7 -1}V

AT ()=



Example: Clayton copula

sub-distribution hazard

Exponential Log-logistic
(o= o
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Figure 1. The marginal hazard and sub hazard under the Clayton copula.

The exponential model (v =1) for the left, and log-logistic model (y =1) for the right.



Main results (2)
e When 4°(t)=A4(t) hold?

Theorem 2:

AP(t)=4(t) vt=0 ifandonlyif Pr(X<Y)=1

A

Y is never observed
* Conclusion: 2™ (t)=4,(t)does not hold

for any real competing risks model
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Proof of Theorem 2
We first rewrite the condition £*°(t)=A4(t) Vt>0 as f*°(t)S,(t)=f(t){1-F*(t)}Vvt=0.

The right-hand-side of this equation can be written

X>Y)}
SP()IS,(1)+ f(1)Pr(X <t, X >Y).

(E{L-R* (1)} = f(O){S,(1)+Pr
= flsUb(t)Sl(t)-l-{ f

Hence, L*°(t)=A(t) Vt>0 isequivalentto

{f(t)—f2°(1)IS,(t)+ f(t)Pr( X <t, X >Y)=0 Wt. 9)

Since S,(t) is non-increasing in t, 3t" €[0,0] such that S,(t)=0 for Vt>t". Note that S,(t)=0

implies f,(t)=0. Hence Equation (9) holds for Vt>t". ther hand, for Vt<t", we have a

positive value S (t)>0. Thus, a necessary condition for Eq 9) is {f(t)-f*(t)}=0Vvt<t"

This is also a sufficient condition for Equation (9) since

%Pr(XSt,X>Y):fl(t)—ff'“b(t):o Vt<t® iff Pr(X <t,X>Y)=0 Vt<t".

Hence, £"°(t)=A(t) Vt=0 isequivalentto Pr(X <t, X >Y )=0 Vt<t"\e proof complete since

Pr(X <t, X >Y)=0 Vt<t* iff Pr(X>Y)=0 iff Pr(X<Y)=1. [] .



Example of Theorem 2

A2 (t)=A(t) hold if
(i) Fréchet-Hoeffding upper bound copula
Pr(X >xY >y)=C_{3,(x),S,(y)}

=min{S,(x),5,(y)}
(ii) Stochastic ordering:

S,(t)<S,(t) vt>0

} Yis never observed

By Theorem 2, Pr( X <Y ) =1



How covariates affect hazards ?

Assume a marginal Cox model for Cause 1:

At Z) = A, () exp(B,2)

By Theorem 1,

DI A (t)exp(BiZ), Ay(t)}

I (H1Z) = At exp(BiZ)— -
1- [ o5 )exp(BZ DI Ay (5 )exp(BiZ ), A, (5) Jds

A non-proportional sub-distribution hazard in Z

= The proportional sub-distribution model (Fine and Gray 1999)

(1] Z) = A" (t)exp( B;°Z) does not hold !.
0 1
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Indirect influence of covariates

The case of P, =0; 1.e., no marginal effect on Event 1.

DI A (t), Ay (1] Z) 3

> L (HZ) =4, (1)— .
L[, 0 ($)DE M Ay (5), A,(5]Z) }ds

“Indirect influence” of covariates on Even 1

Possibility of
“Non-sinificant for marginal, but significant for subhazard”
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Statistical Inference

® X. :timetoEventl

® Y.:timetoEvent?2

® C,:independent censoring time

® /, :covariates

Observed data: (T, &,;,0,;,Z;), J=L2,..,n

T,=min( X;,Y;,C;), o, =(T,=X;), 6,;=I(T; =Y;)

IR



Semiparametric Regression
The Cox model on the sub hazards (Fine and Gray 1999)

Ay (E1Z5) = 2" () exp( B Z; )

ﬁf“b = the cmprsk R package (Gray 2014)

The Cox model on the marginal hazards (Chen 2010)
ﬂlj(tlzj):}‘lo(t)exp(ﬁizj ) ﬂzj(t|Zj)=Zzo(t)eXp(ﬁ'ZZj )
Pr(xj >X’Yj >ylzj):Ce[exp{_Alj(Xlzj)}! exp{_AZj(ylzj)}]1

(B, B, Ay, A,y) = asemi-parametric MLE (Chen 2010).

@ must be pre-specified (assumed) to avoid nonidentifiability



Graphical model diagnostic tools

Estimate under
marginal Cox model

!

Sub-distribution function:
Fo°(t|Z)=Pr(T <t,6=1|2)

]

Estimate under
Subhazard Cox model

Sub-distribution

Z=1

| — Event

| === Bvent? (Mar-Cox

--- Event 2 (Sub-Cox

- === Event 2 (Nonpara

— FEvent1
1

(
(
(Mar-Cox
(Sub-Cox
(

— Event 1 (Nonpara

)
)
)
)
)
)




Estimators of F>*°(t]|Z)=Pr(T <t,6=1|2)

® Under the marginal Cox model (New estimator)

F3%(t1Z2)= 3 S A (T | Z)DI Y AT 1Z), A(T;1Z)},

JiTyst
® Under the subhazard Cox model

F3°(t|Z) =1-exp[-AM*(t| 2)], At [Z A, tb ) egp@"

® The nonparametric (model-free) estimator

. . S
RY(t1Z)= ) S(T,-IZ)ni,

JTJSI,ZJZZ J,Z

where S(t]|Z)= {1-(6,+68,;,)/n,} and n,= DT, =2T,).

JTJSt,ZJZZ i:Zi:Z



Choice of copula parameter &

* Cramér-von Mises (CvM) distance:

CvM =)

Zel

Estimator under
marginal Cox model

> -

kzl

k.Z j:Z

Z SAFS(T12)-F"¥(T,12)¥

S

Nonparametric
Estimator

* Proposed estimator: & =argminCvM

0

Very weakly consistent
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Data: 125 lung cancer patients (chen et i 2007)

® X. =time-to-death (Cause 1)

® Y, =time-to-dropout (Cause 2)

® Covariate = gene expression of ZNF264

The sub hazard model for Cause 1 (death)

SP(t) = A" (t)exp( B> x ZNF 264, ),

]

The sub hazard model for Cause 2 (dropout) Fitted by cmprsk
(Gray 2017)

() = Ay (t)exp( B,° x ZNF 264, ).

J

The Cox model on the marginal hazards for Cause 1 and Cause 2 are specified as

24,(t) = Ao (t) exp( 3, x ZNF 264 )
2y (£) = Aoy () XP( B, x ZNF 264 )
Pr(X; > X, Y; > y) =[exp{ OA,;(x) }+ exp{ O\, (y) }-11

Fitted by compound.Cox
where we specified =0, 0.5,2,0r8 (r=0,0.2,0.5, or 0.8) (Emura et al. 2019)



Table 1. Regression coefficients obtained by fitting the lung cancer data.

Model

Event 1 (death)

N

B, (95%Cl)

Event 2 (censoring)

B, (95%CI)

Subhazard

Marginal (6 =0.00;
Marginal (€ =0.22;
Marginal (€ =0.50;
Marginal (6 =0.86;
Marginal (6 =1.33;
Marginal (6 =2.00;
Marginal (6 =3.00;
Marginal (60 =4.67;
Marginal (6 =8.00;
Marginal (6 =18.0;

7=0.0)
7=0.1)
7=0.2)
7=0.3)
7=0.4)
7=0.5)
7=0.6)
7=0.7)
7=0.8)
7=0.9)

0.425 (0.044, 0.807)
0.548 (0.144, 0.952)
0.560 (0.154, 0.965)
0.570 (0.162, 0.979)
0.578 (0.169, 0.988)
0.585 (0.178, 0.991)
0.593 (0.198, 0.987)
0.599 (0.229, 0.969)
0.591 (0.251, 0.932)
0.561 (0.251, 0.872)
0.508 (0.227, 0.788)

-0.222 (-0.586, 0.143)
0.259 (-0.176, 0.694)
0.272 (-0.158, 0.702)
0.280 (-0.143, 0.704)
0.290 (-0.129, 0.710)
0.311 (-0.103, 0.725)
0.349 (-0.051, 0.749)
0.394 (0.026, 0.762)
0.432 (0.101, 0.762)
0.453 (0.156, 0.751)
0.455 (0.187, 0.723)

Chosen by CvM >

Fitted by compound.Cox (Emur



Model diagnostic : lung cancer data

--- Event 2 (Mar-Cox

=== Event 2 (Sub-Cox

— Event 1 (Mar-Cox
— FEvent1

(
(
--- Event 2 (Nonpara
(
(
— Event 1 (Nonpara

Z=4

Sub-Cox

Sub-distribution

Mar-Cox
Sub-Cox

Event 1 ( )
Event 1 ( )
Event 1 (Nonpara)
Event 2 (Mar-Cox)
Event 2 (Sub-Cox)
Event 2 (Nonpara)

Sub-distribution




Conclusions from data analysis

» Marginal and subhazard models fit equally well
* Regression coefficients are different
(estimating different quantities)
B, =0454 B3 =_0.222
* CvM is smaller for the marginal model

(but cannot be used for model selection)
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Conclusions

e Establish a mathematical relationship
between sub-hazard and marginal hazard
(key: an assumed copula)
 Two Cox models (sub-hazard & marginal hazard)
- The fitted values of B’s are not similar

- The interpretation of B’s are qualitatively different
- Non-significant for marginal, but significant for subhazard

* Selection of O is a concern in marginal hazard model
- CvM distance method (discrete covariate)
- a sensitivity analysis (clustered data)



References

[1] Kalbfleisch JD, Prentice RL (2002). The Statistical Analysis of Failure Time Data, 2nd
Edition, John Wiley and Sons, New York

[2] Fine JP, Gray RJ (1999). A proportional hazards model for the subdistribution of a
competing risk. Journal of the American Statistical Association 94: 548-560.

[3] Jeong JH, Fine J (2006). Direct parametric inference for the cumulative incidence function.
Journal of the Royal Statistical Society: Series C (Applied Statistics), 55(2), 187-200.

[4] Escarela G, Carriere JF (2003). Fitting competing risks with an assumed copula. Statistical
Methods in Medical Research 12: 333-349.
[5] Chen YH (2010). Semiparametric marginal regression analysis for dependent competing
risks under an assumed copula, Journal of the Royal Statistical Society, Ser. B; 72: 235-51.
[6] Lo SM, Wilke RA (2010). A copula model for dependent competing risks. Journal of the
Royal Statistical Society: Series C (Applied Statistics), 59(2), 359-376.

[7] Pintilie M (2006). Competing Risks: A Practical Perspective. John Wiley & Sons

[8] Bakoyannis G, Touloumi G (2012). Practical methods for competing risks data: a review.
Statistical Methods in Medical Research; 21: 257-272.

[9] Ha ID, Jeong JH, Lee Y (2017), Statistical modelling of survival data with random effects:
h-likelihood approach, Springer, Singapore.

[10] Emura T, Chen YH (2018), Analysis of Survival Data with Dependent Censoring,
Copula-Based Approaches, JSS Research Series in Statistics, Springer, Singapore.

[11] Rivest LP, Wells MT (2001). A martingale approach to the copula-graphic estimator for
the survival function under dependent censoring. J Multivariate Analysis 79: 138-55.

[12] Emura T (2019). joint.Cox: joint frailty-copula models for tumour progression and death
in meta-analysis, CRAN, version 3.6.



References (cont.)

[13] Cox DR, Oakes D (1984). Analysis of Survival Data, CRC Press, New York.

[14] de Ufa-A Ivarez J, Veraverbeke N (2013). Generalized copula-graphic estimator. Test,
22(2), 343-360.

[15] Emura T, Chen YH (2016). Gene selection for survival data under dependent censoring, a
copula-based approach, Statistical Methods in Medical Research 25(6): 2840-57.

[16] Tsiatis A (1975). A nonidentifiability aspect of the problem of competing risks. Proc.
Natn. Acad. Sci. USA, 72: 20-22.

[17] Gray RJ (2017). cmprsk: subdistribution analysis of competing risks, CRAN, ver 2.2-7.

[18] Chen HY, Yu SL, Chen CH, Chang GC, et al. (2007). A five-gene signature and clinical
outcome in non—small-cell lung cancer. New England Journal of Medicine, 356(1), 11-20.

[19] Emura T, Nakatochi M, et al. (2017). A joint frailty-copula model between tumour
progression and death for meta-analysis, Statist Methods Med Res 26 (6): 2649-2666.

[20] Ha ID, et al. (2016). Analysis of clustered competing risks data using subdistribution
hazard models with multivariate frailties. Statist Methods Med Res 25(6), 2488-250.

[21] Emura T, Matsui S, Rondeau V (2019), Survival Analysis with Correlated Endpoints,
Joint Frailty-Copula Models, JSS Research Series in Statistics, Springer, Singapore.

[22] Ha ID, Noh M, Kim J, Lee Y (2018) frailtyHL.: frailty models using h-likelihood, ver 2.1.

[23] Sylvester RJ, et al. (2006). Predicting recurrence and progression in individual patients
with stage Ta T1 bladder cancer using EORTC risk tables: a combined analysis of 2596
patients from seven EORTC trials. European Urology 49(3), 466-477.

[24] Emura T, Matsui S, Chen HY (2019), compound.Cox: univariate feature selection and
compound covariate for predicting survival, Comp Meth Programs Biomed 168: 21-37.



