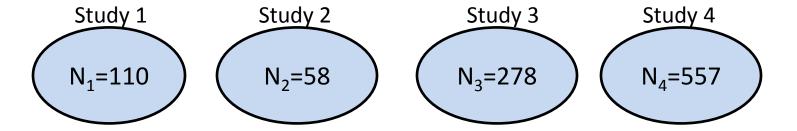
CM Statistics 2016, Seville, Spain, 2016/12/9

Dynamic prediction according to tumour progression and genetic factors

: Meta-analysis with a joint frailty-copula (Meta-analytic data = Clustered survival data)



Takeshi Emura

Graduate Institute of Statistics,
National Central University, Taiwan
Joint work with
Masahiro Nakatochi, Shigeyuki Matsui,
Hirofumi Michimae, Virginie Rondeau

Outline

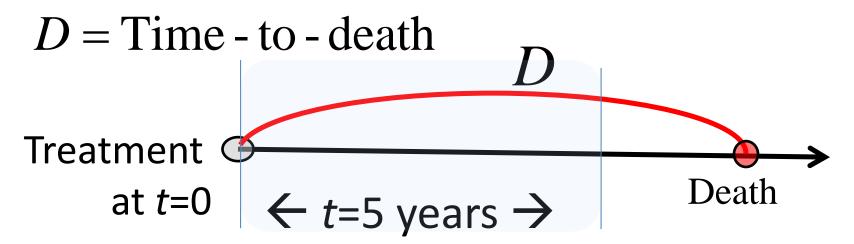
Review

- * Dynamic Prediction
- * Copula and survival model
- * High-dimensional problem

Proposed method

- * Tukey's compound covariate
- * Proposed dynamic prediction formula
- * Ovarian cancer data analysis

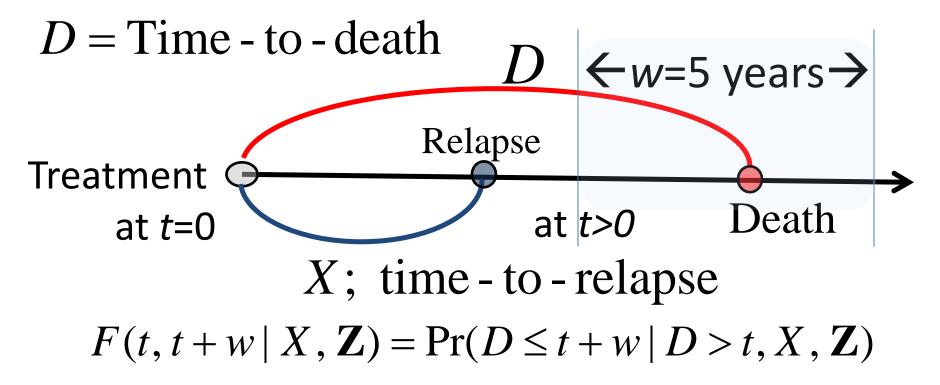
Classical Survival Prediction



- Predict vital status (death or alive) after 5 years
- t-year survival: $S(t \mid \mathbf{Z}) = \Pr(D > t \mid \mathbf{Z})$ $\mathbf{Z} = \text{(age, sex, stage, tumour size)}$ Graf et al. (1999); Gerts and Schumacher (2006)
- Cox proportional hazards model (Cox, 1972)

$$S(t \mid \mathbf{Z}) = S(t \mid \mathbf{0})^{\exp(\beta'\mathbf{Z})}$$

Dynamic Prediction of Death

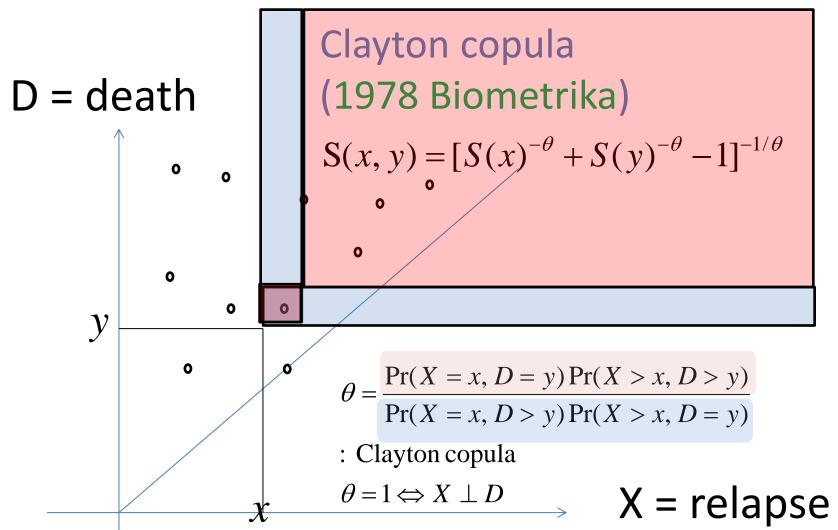


- Predict death probability within a time window (5 years) at a certain moment t>0: (van Houwelingen and Putter 2013)
- Accurate prediction achieved using a joint frailty model between X and D (Mauguen et al., 2013, 2015)

Copulas in survival model

$$Pr(X > x, D > y) = C[Pr(X > x), Pr(D > y)]$$

$$\Leftrightarrow S(x, y) = C[S_X(x), S_D(y)]$$



Genetic factors

•
$$S(t | \mathbf{Z}) = \Pr(D > t | \mathbf{Z})$$
;
 $\mathbf{Z} = (Z_1, ..., Z_p)$: Clinical & Genetic factors
 p can be large $(p > n)$

Genes are informative for survival prediction in

- Breast cancer (Jenssen et al. 2002; Sabatier et al. 2011)
- Diffuse large-B-cell lymphoma (Lossos et al. 2004; Binder and Schumacher 2008; Alizadeh 2011)
- Lung cancer
 (Beer et al. 2002; Chen et al. 2007; Shedden et al. 2008)
- Ovarian cancer
 (Popple et al. 2012, Ganzfried et al. 2013; Waldron et al 2014)

Objective

(Genetic factors) + (Dynamic prediction)

= Personalized dynamic prediction

$$F(t, t + w | X, \mathbf{Z}) = \Pr(D < t + w | D > t, X, \mathbf{Z})$$

X: time - to - tumour progressionZ: clinical & genomic factors

- Landmark approach (van Houwelingen and Putter 2013)
 - X Conditional model: $(D \mid X, \mathbf{Z})$

Chap 12: Dynamic prediction when ${\bf Z}$ is high-dimension

- Ours: Joint model approach
 - X joint model: $(D, X \mid \mathbf{Z})$

Dynamic prediction via joint models

	Response	Souse of Dependence	Meta- analysis
Rizopoulos (2011, Biometrics) Taylor et al. (2013, SMMR) Sène et al. (2014, SMMR) Proust-Lima (2014, SMMR)	Longitudinal measurements + Time-to-events	Frailty	No
Mauguen et al. (2013, 2015) Król et al. (2016, Biometrics) Mazroui et al. (2015 LTDA)	Recurrent events + Time-to-death	Frailty	No
This research: Dynamic prediction using genetic factors	Time-to-event + Time-to-death	Copula → Subject-level Frailty → Study-level	Yes → frailty

- Existing dynamic predictions do not adapt to "metaanalysis", requiring two sources of dependence (Subject-level dependence and Study-level dependence)
- Existing dynamic predictions do not adapt to "highdimensional factors"

Motivating example (Ganzfried et al., 2013)

A meta-analytic data combining the four independent studies of ovarian cancer patients

Cample size		The number of observed events (event rates)		The number	
	Sample size	Relapse	Death	Censoring	of genes
Study 1	$N_1 = 84$	59 (70%)	38 (45%)	46 (55%)	18,548
Study 2	$N_2 = 58$	48 (83%)	36 (62%)	22 (38%)	18,524
Study 3	$N_3 = 260$	185 (71%)	113 (43%)	147 (57%)	18,524
Study 4	$N_4 = 510$	252 (49%)	278 (55%)	232 (45%)	12,211
Total	$\sum_{i=1}^{4} N_i = 912$	544 (60%)	465 (51%)	447 (49%)	Common=11,756

Notes: The data are extracted from R Bioconductor *curatedOvarianData* package Subject-level

Cluster effect (frailty)

Dependence (copula)

High-dimensionality (compound covariate)

Data structure

$$X_{ii} = \text{TTP}$$
 (Time to tumour progression, e.g., relapse)

$$D_{ii}$$
 = time - to - death

$$C_{ii}$$
 = independent censoring time (e.g., study end)

$$\mathbf{Z}_{ii}$$
 = clinical ovariates (e.g., age, cancer stage)

Under semicompeting risks (Fine et al., 2001):

*First occuring event time

$$T_{ij} = \min(X_{ij}, D_{ij}, C_{ij}), \qquad \delta_{ij} = \mathbf{I}(T_{ij} = X_{ij})$$

*Terminal event time

Indicator of death

$$T_{ij}^* = \min(D_{ij}, C_{ij}), \qquad \delta_{ij}^* = \mathbf{I}(T_{ij}^* = D_{ij})$$

$$(T_{ii}, T_{ii}, \delta_{ii}, \delta_{ii}, \delta_{ii}, \mathbf{Z}_{ii}), i = 1, 2, ..., G, j = 1, 2, ..., N_i$$

(e.g.,
$$G = 4$$
; $N_1 = 84$, $N_2 = 58$, $N_3 = 260$, $N_4 = 510$)

Cluster (study) characterized by a frailty

Study 1 Study 2 Study 3 Study 4

$$N_1=110$$
 $N_2=58$ $N_3=278$ $N_4=557$
 U_1 U_2 U_3 U_4

Gamma frailty: $u_i \sim f_\eta(u_i) = \frac{1}{\Gamma(1/\eta)\eta^{1/\eta}} u^{\frac{1}{\eta}-1} \exp\left(-\frac{u}{\eta}\right), \begin{cases} E[u_i] = 1 \\ Var[u_i] = \eta \end{cases}$

Joint frailty - copula model (Emura et al., 2015 SMMR)

$$\begin{cases} r_{ij}(t | u_i) = u_i r_0(t) \exp(\boldsymbol{\beta}_1' \mathbf{Z}_{1,ij}) & \text{(hazard for } X_{ij} \text{)} \\ \lambda_{ij}(t | u_i) = u_i^{\alpha} \lambda_0(t) \exp(\boldsymbol{\beta}_2' \mathbf{Z}_{2,ij}) & \text{(hazard for } D_{ij} \text{)} \\ \Pr(X_{ij} > x, D_{ij} > y | u_i) = C_{\theta}[R_{ij}(x | u_i), \Lambda_{ij}(y | u_i)] & \text{Copula} \end{cases}$$

$$\beta_1$$
 = Effect on time - to - progression X_{ij}

$$\beta_2$$
 = Effect on time-to-death D_{ij}

$$\alpha$$
 = Intra - study dependence

$$\theta$$
 = Intra - subject dependence

Outline

Review

- * Dynamic Prediction
- * Copula and survival model
- * High-dimensional problem

Proposed method

- * Tukey's compound covariate (CC)
- * Proposed dynamic prediction formula
- * Ovarian cancer data analysis

High-dimensional genetic factors

• Step 1: Select genetic factors

$$\begin{cases} \mathbf{V}_{ij} = (V_{ij,1}, \dots, V_{ij,q_1}) & \text{: associated with tumour progression } X_{ij} \\ \mathbf{W}_{ij} = (W_{ij,1}, \dots, W_{ij,q_2}) & \text{: associated with death } D_{ij} \end{cases}$$

Univariate Cox regressions:

$$\begin{cases} r_{ij}(t) = r_0(t) \exp(b_k V_{ij,k}), & q_1 : \text{the number of genes (P-value} < 0.001) \\ \lambda_{ij}(t) = \lambda_0(t) \exp(c_k W_{ij,k}), & q_2 : \text{the number of genes (P-value} < 0.001) \end{cases}$$

P=0.001: due to Simon (2003)

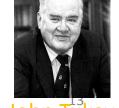
Step 2: Tukey's compound covariate (CC)

$$\begin{bmatrix} CC_{1,ij} = \hat{b_1}V_{ij,1} + \dots + \hat{b_q}_1V_{ij,q_1} : \text{associated with tumour progression } X_{ij} \\ CC_{2,ij} = \hat{c_1}W_{ij,1} + \dots + \hat{c_q}_2W_{ij,q_2} : \text{associated with death } D_{ij} \end{bmatrix}$$

$$CC_{2,ij} = \hat{c}_1 W_{ij,1} + \dots + \hat{c}_{q_2} W_{ij,q_2}$$
 : associated with death D_{ij}

coefficients from univariate Cox models

CC: Tukey (1993 Controlled Clinical Trial), Matsui (2006, BMC Bioinfomatics), Simon et al (2011 Boinfo), Matsui etal (2012 Clin Can Res), Emura et al (2012), just name a few



Proposed model with high-dimensional genetic factors

Joint frailty-copula model

$$\begin{cases} r_{ij}(t | u_i) = u_i r_0(t) \exp(\beta_1' \mathbf{Z}_{1,ij} + \gamma_1 \text{CC}_{1,ij}) & \text{for } X_{ij} \\ \lambda_{ij}(t | u_i) = u_i^{\alpha} \lambda_0(t) \exp(\beta_2' \mathbf{Z}_{2,ij} + \gamma_2 \text{CC}_{2,ij}) & \text{for } D_{ij} \\ \Pr(X_{ij} > x, D_{ij} > y | u_i) = C_{\theta}[S_X(x | u_i), S_D(y | u_i)] \end{cases}$$

 Penalized maximum likelihood estimation under the Clayton copula

$$C_{\theta}(v, w) = (v^{-\theta} + w^{-\theta} - 1)^{-1/\theta}, \quad \theta \ge 0$$

Estimator
$$(\hat{\theta}, \hat{\eta}, \hat{\beta}_1, \hat{\beta}_2, \hat{\gamma}_1, \hat{\gamma}_2, \hat{r}_0, \hat{\lambda}_0)$$

→ R package joint.Cox (Emura, 2016 on CRAN)

Proposed dynamic prediction

Goal: Predicting the probability of death for a new patient (not in the data)

i) The patient's covariates measured at time 0

$$\mathbf{Z} = (\mathbf{Z}_1, \mathbf{Z}_2, \mathbf{CC}_1, \mathbf{CC}_2)$$

ii) Tumour progression history at time t>0

$$= \begin{cases} X \le t, X = x & \text{; tumour progression occurred at } x < t, \\ X > t & \text{; tumour progression did not occurre before } t. \end{cases}$$

The patient's prob. of death between t and t+w

$$F(t, t + w | H(t, x), \mathbf{Z}) = \Pr(D \le t + w | D > t, H(t, x), \mathbf{Z})$$

Prediction formulas under joint frailty-copula model

Tumour progression does not occur before t,

$$F(t,t+w|X>t,\mathbf{Z}) = \Pr(D \le t+w|D>t,X>t,\mathbf{Z})$$

$$= \frac{\int_0^\infty \left(C_\theta[S_X(t|u),S_D(t|u)] - C_\theta[S_X(t|u),S_D(t+w|u)]\right) f_\eta(u) du}{(\hat{\theta},\hat{\eta},\hat{\beta}_1,\hat{\beta}_2,\hat{\gamma}_1,\hat{\gamma}_2,\hat{r}_0,\hat{\lambda}_0)} \int_0^\infty C_\theta[S_X(t|u),S_D(t|u)] f_\eta(u) du}$$
• Tumour progression occurs before t ,

$$\frac{\bigwedge_{F}(t,t+w \mid X=x,\mathbf{Z}) = \Pr(D \leq t+w \mid D > t, X=x,\mathbf{Z})}{\int_{0}^{\infty} \left(C_{\theta}^{[1,0]} [S_{X}(x \mid u), S_{D}(t \mid u)] - C_{\theta}^{[1,0]} [S_{X}(x \mid u), S_{D}(t + w \mid u)] \right) u S_{X}(x \mid u) f_{\eta}(u) du}}{\int_{0}^{\infty} C_{\theta}^{[1,0]} [S_{X}(x \mid u), S_{D}(t \mid u)] u S_{X}(x \mid u) f_{\eta}(u) du}$$

where $C_{\theta}^{[1,0]}(v,w) = \partial C_{\theta}(v,w)/\partial v$

Assessing Prediction Error

Brier score (Graf et al. 1999, Stat. Med.)

$$Err(t, t + w)$$

$$= E[\{ \mathbf{I}(D > t + w) - \hat{S}(t, t + w | H(t, X), \mathbf{Z}) \}^{2} | D > t]$$
where
$$\hat{S}(t, t + w | X, \mathbf{Z}) = 1 - \hat{F}(t, t + w | X, \mathbf{Z})$$

$$S(t, t + w \mid X, \mathbf{Z}) = 1 - F(t, t + w \mid X, \mathbf{Z})$$
$$= \hat{P}r(D > t + w \mid D > t, X, \mathbf{Z})$$

- MSE of predicting dichotomous event (death or alive) in [t, t+w].
- E[] is over the new patient (D, X, Z).
- \hat{S} is given: randomness of \hat{S} is not accounted in E[].

Assessing Prediction Error

Estimate of Brier score

$$\hat{E}rr(t,t+w) = \frac{1}{Y(t)} \sum_{ij} \mathbf{I}(T_{ij}^* > t) \hat{w}_{ij}(t,t+w) \{ \mathbf{I}(T_{ij}^* > t+w) - \hat{S}(t,t+w | H(t,T_{ij}), \mathbf{Z}_{ij}) \}^2$$

where
$$\hat{w}_{ij}(t, t + w) = \frac{\delta_{ij}^* \hat{G}(t)}{\hat{G}(T_{ii}^*)} \mathbf{I}(T_{ij}^* \le t + w) + \frac{\hat{G}(t)}{\hat{G}(t + w)} \mathbf{I}(T_{ij}^* > t + w)$$

IPCW: Graf et al. (1999); Gerts and Schumacher (2006)

Optimism bias: evaluated by cross-validation

$$Err(t,t+w) = \hat{E}rr(t,t+w) + op > \hat{E}rr(t,t+w)$$
 due to overfitting

Variability: evaluated by the bootstrap 95% CI:

$$\hat{E}rr^{(b)}(t,t+w) = \frac{1}{Y^{(b)}(t)} \sum_{ij} \mathbf{I}(T_{ij}^{*(b)} > t) \hat{w}_{ij}(t,t+w) \{ \mathbf{I}(T_{ij}^{*(b)} > t+w) - \hat{S}(t,t+w | H(t,T_{ij}^{(b)}), \mathbf{Z}_{ij}^{(b)}) \}^{2}$$

Random sampling with replacement

$$(T_{ij}, T_{ij}^*, \delta_{ij}, \delta_{ij}^*, \mathbf{Z}_{ij}), \quad T_{ij}^* > t \Longrightarrow (T_{ij}^{(b)}, T_{ij}^{*(b)}, \delta_{ij}^{(b)}, \delta_{ij}^{*(b)}, \delta_{ij}^{*(b)}, \mathbf{Z}_{ij}^{(b)}), \quad T_{ij}^{*(b)} > t: \quad b = 1, \dots, 1,000$$

Data analysis (Ganzfried et al., 2013)

A meta-analytic data combining the four independent studies of ovarian cancer patients

	Comple size	The number of observed events (event rates)			The number
Sample size	Relapse	Death	Censoring	of genes	
Study 1	$N_1 = 84$	59 (70%)	38 (45%)	46 (55%)	18,548
Study 2	$N_2 = 58$	48 (83%)	36 (62%)	22 (38%)	18,524
Study 3	$N_3 = 260$	185 (71%)	113 (43%)	147 (57%)	18,524
Study 4	$N_4 = 510$	252 (49%)	278 (55%)	232 (45%)	12,211
Total	$\sum_{i=1}^{4} N_i = 912$	544 (60%)	465 (51%)	447 (49%)	Common=11,756

Notes: The data are extracted from R Bioconductor *curatedOvarianData* package

Data Analysis: model fitting

Joint frailty-copula model (after variable selection)

$$\begin{cases} r_{ij}(t | u_i) = u_i r_0(t) \exp(\gamma_1 CC_{1,ij}) & \text{(for time to relapse } X_{ij}) \\ \lambda_{ij}(t | u_i) = \lambda_0(t) \exp(\beta_2 Z_{2,ij} + \gamma_2 CC_{2,ij}) & \text{(for time to death } D_{ij}) \end{cases}$$

Clinical covariate:

 $\mathbf{Z}_{2,ij}$ =the residual tumour size at surgery (<1cm vs. \geq 1cm)

Compound covariate (CC):

- $CC_{1,ij} = (0.249*CXCL12)+(0.235*TIMP2)+(0.222*PDPN)+\cdots+(-0.152*MMP12),$ involving 158 genes (P-value < 0.001 for time-to-relapse)
- $CC_{2,ij} = (0.237*NCOA3) + (0.223*TEAD1) + (0.263*YWHAB) + \cdots + (-0.157*KCNH4),$ invloving 128 genes (P-value < 0.001 for time-to-death).

Data Analysis: model fitting

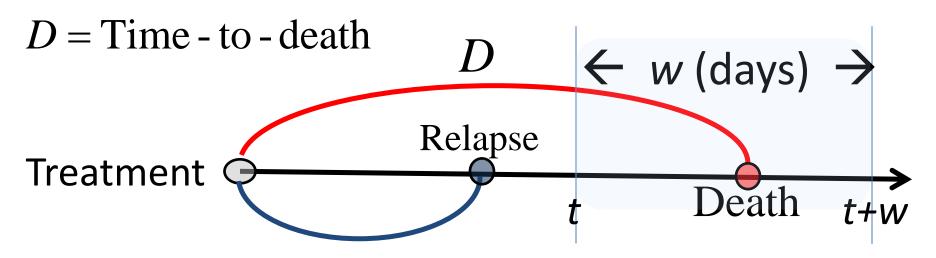
$$\begin{cases} r_{ij}(t | u_i) = u_i r_0(t) \exp(\gamma_1 CC_{1,ij}) & \text{(for time to relapse } X_{ij}) \\ \lambda_{ij}(t | u_i) = u_i^{\alpha} \lambda_0(t) \exp(\beta_2 Z_{2,ij} + \gamma_2 CC_{2,ij}) & \text{(for time to death } D_{ij}) \end{cases}$$

$$Pr(X_{ij} > x, D_{ij} > y | u_i) = C_{\theta}[S_X(x | u_i), S_D(y | u_i)]$$

Results obtained from R joint.Cox package (Emura, 2016 on CRAN)

	Parameter	Estimate	95% CI
Relapse	$\exp(\gamma_1)$	1.48	1.37-1.59
Death	$\exp(\beta_2)$	1.18	1.03-1.35
	$\exp(\gamma_2)$	1.56	1.44-1.70
Copula	θ	1.90	1.49-2.42
	$\tau = \theta / (\theta + 2)$	0.49	0.32-0.65

Prediction settings



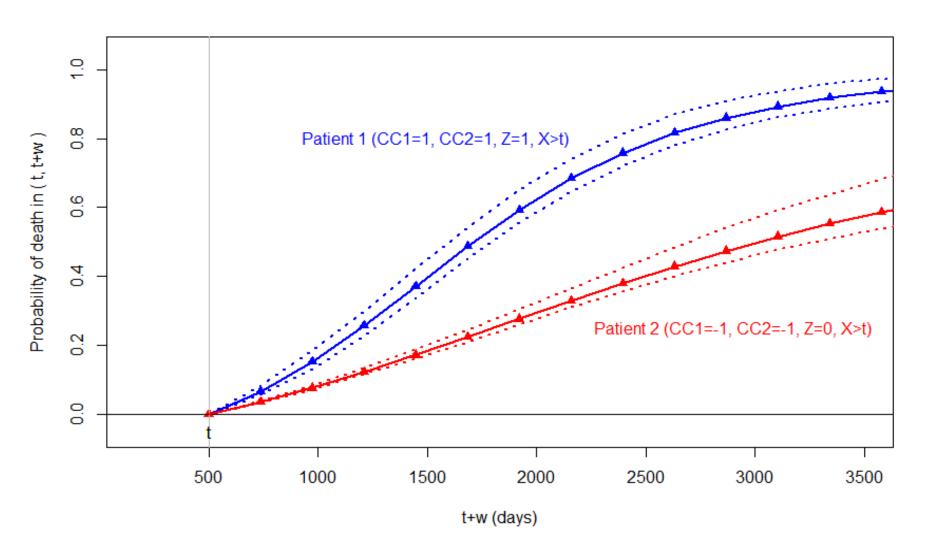
$$F(t, t + w | H(t), \mathbf{Z}) = \Pr(D \le t + w | D > t, H(t), \mathbf{Z})$$

 $H(t)$; relapse history before t

- t=500 days (early prediction time)
 500 < t+w < 3500
- t=1000 days (late prediction time)
 1000 < t+w < 3500

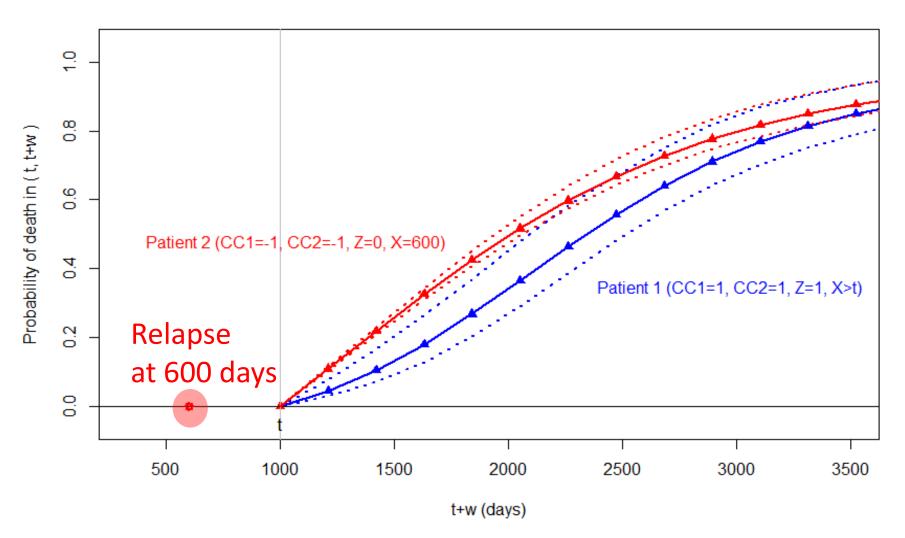
Early prediction time at t = 500 (days)

$$F(t, t+w | H(t,x), \mathbf{Z}) = \Pr(D \le t+w | D > t, H(t,x), \mathbf{Z})$$



Late prediction time at t = 1000 (days)

$$F(t, t+w | H(t,x), \mathbf{Z}) = \Pr(D \le t+w | D > t, H(t,x), \mathbf{Z})$$



Prediction error comparison

1. Null model (Kaplan-Meier estimator)

$$\begin{cases} r_{ij}(t | u_i) = r_0(t) & \text{(for time to relapse } X_{ij}) \\ \lambda_{ij}(t | u_i) = \lambda_0(t) & \text{(for time to death } D_{ij}) \end{cases}$$

2. Simple model (CXCL12 gene alone) considered

in Emura et al. (2015 SMMR)

$$\begin{cases} r_{ij}(t | u_i) = u_i r_0(t) \exp(\gamma_1 \text{CXCL12}_{ij}) & \text{(for time to relapse } X_{ij}) \\ \lambda_{ij}(t | u_i) = \lambda_0(t) \exp(\gamma_2 \text{CXCL12}_{ij}) & \text{(for time to death } D_{ij}) \end{cases}$$

3. Model with high-dimensional genetic factors (proposed)

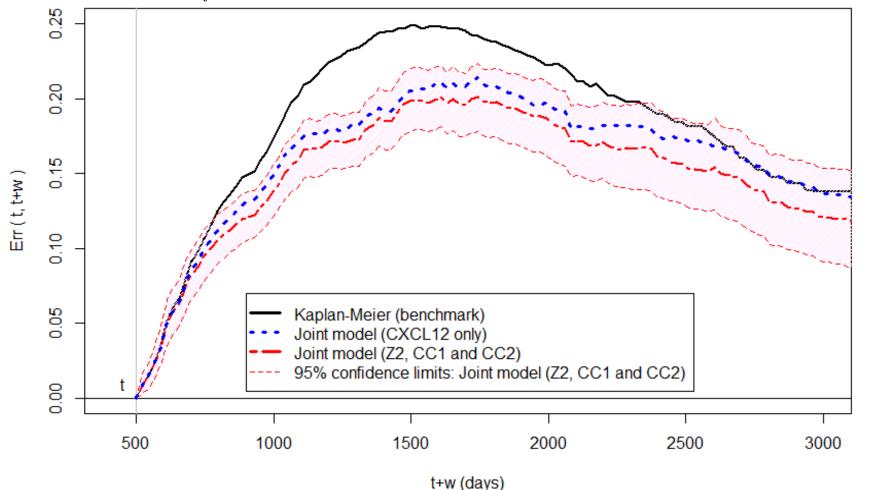
$$\begin{cases} r_{ij}(t | u_i) = u_i r_0(t) \exp(\gamma_1 CC_{1,ij}) & \text{(for time to relapse } X_{ij}) \\ \lambda_{ij}(t | u_i) = \lambda_0(t) \exp(\beta_2' \mathbf{Z}_{2,ij} + \gamma_2 CC_{2,ij}) & \text{(for time to death } D_{ij}) \end{cases}$$

$$CC_{1,ij} = (0.249*CXCL12) + (0.235*TIMP2) + (0.222*PDPN) + \dots + (-0.152*MMP12)$$

$$CC_{2,ij} = (0.237*NCOA3) + (0.223*TEAD1) + (0.263*YWHAB) + \dots + (-0.157*KCNH4)$$

Prediction error at t=500 (days)

$$\hat{E}rr(t,t+w) = \frac{1}{Y(t)} \sum_{ij} \mathbf{I}(T_{ij}^* > t) \hat{w}_{ij}(t,t+w) \{ \mathbf{I}(T_{ij}^* > t+w) - \hat{S}(t,t+w | H(t,T_{ij}), \mathbf{Z}_{ij}) \}^2$$



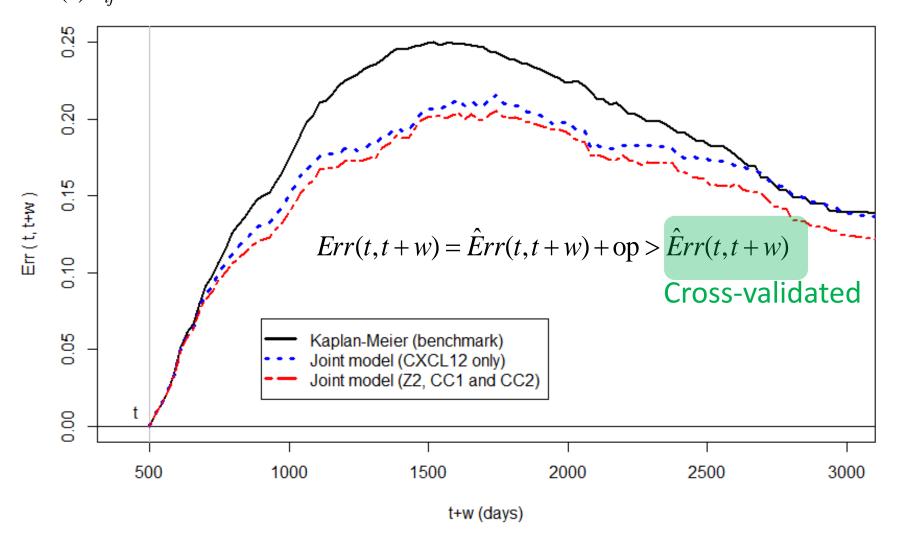
Joint model with both clinical (Z2) and genetic factors (CC1, CC2) has smallest prediction error

Cross-validated Prediction error at t=500 (days)

$$\hat{E}rr(t,t+w) =$$

Leave-one-out: Remove one patient

$$\frac{1}{Y(t)} \sum_{ij} \mathbf{I}(T_{ij}^* > t) \hat{w}_{ij}(t, t + w) \{ \mathbf{I}(T_{ij}^* > t + w) - \hat{S}^{-(i,j)}(t, t + w | H(t, T_{ij}), \mathbf{Z}_{ij}) \}^2$$



Summary: proposed method

- 1) Tukey's compound covariate (CC) followed by univariate selection (P-value<0.001)
 - $CC_{1,ij} = (0.249*CXCL12) + (0.235*TIMP2) + (0.222*PDPN) + \cdots + (-0.152*MMP12),$ involving 158 genes (P-value < 0.001 for time-to-relapse)
 - $CC_{2,ij} = (0.237*NCOA3) + (0.223*TEAD1) + (0.263*YWHAB) + \cdots + (-0.157*KCNH4),$ invloving 128 genes (P-value < 0.001 for time-to-death).
- 2) Dynamic prediction formula for a new patient $F(t, t+w | H(t,x), \mathbf{Z})$

$$= \Pr(D \le t + w \mid D > t, \frac{H(t, x)}{H(t, x)}, \mathbf{Z} = (\mathbf{Z}_1, \mathbf{Z}_2, CC_1, CC_2))$$

$$H(t, x) = \begin{cases} X > t & \text{Tumour progression} \\ X = x, & x \le t \end{cases}$$

3) Optimism bias was small: Effect of "0.001" cut-off

$$Err(t, t + w) = \hat{E}rr(t, t + w) + op > \hat{E}rr(t, t + w)$$

Ridge or Lasso-based approach yield *bigger* optimism bias (our simulations)