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• T = True endpoint   

      (difficult to measure) 

        costly;  long duration time  

• S = Surrogate endpoint 

      (easy to measure) 

Example:  Colon cancer meta-analysis 

 (Sargent et al. 2005) 

• T = Overall survival (death due to any cause)   

• S = Time to cancer recurrence  (easy to measure) 

             Surrogate to assess the treatment effect on T. 
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Replace? 
 High association 

Choice of endpoints 



• Linear regression 

 

 

 

• Coefficient of determination 
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• Treatment indicator 

 

 

• Treatment effect on the true endpoint 

 

• Treatment effect on the surrogate endpoint 

 

• Freedman et al. (1992)’s scheme 

    S  is a good surrogate of T   

    if               is explained by          
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Replace? 

Criteria of good surrogate 
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 Statistical validation is difficult  
      without aid of meta-analysis 



• Use meta-analysis or multi-center trials 

     for validating a surrogate 

     Daniels et al. (1997), Albert et al. (1998),  

     Gail et al. (2000), Buyse et al. (2000) 

• Buyse et al. (2000) introduce a meta-analytic definition: 

                 --- trial level 

                      (relatively straightforward to calculate) 

                 --- individual level  

                      (several different ways to define 

                        different setting yield different definitions) 

• The present paper review an information-theoretic 

    definition for          as a unified system 5 

Meta-analytic assessment of surrogate 
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• Power Entropy 

 

Example 1:  

 

Example 2:  

 

Summary:   

Power entropy represent uncertainty about X          
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Represent uncertainty 



• The surrogate (S)  is  a good  surrogate  for the true 
endpoint (T)  if  uncertainty about T is largely reduced 
by S 

 

• S  is useless surrogate  for T  

 

 

• Information theoretic definition of R_squared   
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Example:  Advanced colon cancer meta-analysis (10 trials) 

• T = Overall survival (death due to any cause)   

• S = Time to cancer recurrence  (easy to measure) 

• Z = Treatment (CP only vs. CP & CAP) 

Validation of  trial level surrogacy (Method I): 

Step 1: Fit separate Cox regressions 

 

 

 

(trial-specific effects model on the treatment effect) 

Step 2:                                    are used to estimate 
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Case study 
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Estimation  of  trial level surrogacy (Method II): 

Step 1: Fit shared frailty model 

 

 

(random effects model on the baselines) 

Step 2:                                     

are used to estimate 

 

Estimation of individual level surrogacy 

 

 

 

Using the method of Alonso et al. (2007),                       estimated 
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Case study 
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Summary 
• Information theoretic         is suggested, 
-- interpretable as the dependence between S and T given Z.     

-- estimable irrespective of data type 

• In meta-analysis two types of      exists. 

  1)  Trial level 

        Dependence between S_i and T_i  

  2)  Individual level  

        Dependence between S_ij and T_ij 

   My copula-based approach also try to incorporate 

    “individual-level” dependence via copulas 
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Joint frailty-copula model (Proposed) 
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