國立中央大學

統計研究所 强士論文

餘震序列RJ模型之貝氏分析

指導教授:陳玉英博士

研究生:劉雯琪

中華民國九十二年一月

國立中央大學圖書館 碩博士論文授權書

(91年5月最新修正版)

本授權書所授權之論文全文與電子檔,爲本人於國立中央大學,撰寫 之碩/博士學位論文。(以下請擇一勾選)

(✓) <u>同意</u> (立即開放)
() <u>同意</u> (一年後開放),原因是:
() <u>同意</u> (二年後開放),原因是:
() <u>不同意</u> ,原因是:
以非專屬、無償授權國立中央大學圖書館與國家圖書館,基於推動讀
者間「資源共享、互惠合作」之理念,於回饋社會與學術研究之目的,
得不限地域、時間與次數,以紙本、光碟、網路或其它各種方法收錄、
重製、與發行,或再授權他人以各種方法重製與利用。以提供讀者基
於個人非營利性質之線上檢索、閱覽、下載或列印。
研究生簽名: _ 劉雯琪
論文名稱: 餘震序列 RJ 模型之貝氏分析
指導教授姓名: 陳玉英 博士
系所 :
學號:89225009
日期:民國 <u>92</u> 年 <u>1</u> 月 <u>15</u> 日
備註:

- 1. 本授權書請填寫並親筆簽名後,裝訂於各紙本論文封面後之次頁(全文電 子檔內之授權書簽名,可用電腦打字代替)。
- 2. 請加印一份單張之授權書,填寫並親筆簽名後,於辦理離校時交圖書館(以 統一代轉寄給國家圖書館)。
- 3. 讀者基於個人非營利性質之線上檢索、閱覽、下載或列印上列論文,應依 著作權法相關規定辦理。

摘要

本文根據 Reasenberg 和 Jones (1989)提出的時間-規模頻率模型 (RJ 模型),當作點過程中的條件強度函數 (conditional intensity function),並利用台灣過去 (集集主震發生之前)十筆餘震序列當作早期地震資料,決定模型參數之先驗分配 (prior distribution),然後針對集集餘震序列,使用馬可夫鏈蒙地卡羅 (Markov Chain Monte Carlo)方法衍生近似的聯合後驗分配,進行經驗貝氏分析 (empirical bayes analysis),藉以評估集集餘震時間風險。最後,利用空間格點 (spatial-grid)法,在每一個距離 20 公里的格點上,利用此一經驗貝氏分析計算對應的餘震發生機率,藉以探討集集餘震的時空風險。

誌 謝 辭

很感謝這兩年多來指導老師 陳玉英教授在專業知識上的悉心 指導,讓我受益良多,也很感謝 樊采虹教授在貝氏統計方法上的指 導,同時口試委員 余貴坤教授給予本篇論文寶貴意見,使得本篇論 文得以順利完成。

在研究所的兩年期間,謝謝所上所有老師、學長姊以及親愛的同學,你們都是我的良師益友,在學習上不斷地給我鼓勵與扶持,也謝 謝地科系信強同學提供的餘震序列資料,感激不盡。

實習這半年來,謝謝俐君、長佳、曉娟、清景、饒老師,以及朝 昱老師的體諒與包容,在我情緒低落時,不斷地給我支持。

謹將本文獻給一路陪伴著我、始終支持我的博傑,和我最深愛的家人,以及每一位關心我的朋友,因為你們的包容與關懷,讓我能專心地撰寫論文,無後顧之憂;因為你們的傾聽與鼓勵,讓我可以順利地走完這段艱辛的研究所生活,由衷地謝謝您們。

劉雯琪 謹識 于國立中央大學統計研究所 中華民國九十二年一月

目 錄

第	1	章	緒論	1
	1.1		地震相關知識與方法回顧	1
	1.2		研究方法	4
第	2	章	地震模型與參數之最大概似估計	7
	2.1		時間-頻率模型	7
	2.2		規模-頻率模型	10
	2.3		時間-規模頻率模型	11
第	3	章	餘震序列經驗貝氏分析	15
	3.1		先驗分配	15
	3.2		後驗分配	19
第	4	章	餘震風險之評估	21
	4.1		餘震之時間-規模分布	21
	4.2		餘震風險空間分布	24
第	5	章	結語與未來研究方向	25
參	考	文獻	ξ	27
附	錄	1	圖表	30

表目錄

表 3.1:台灣早期資料(1978~1998)十筆餘震序列之主震震源參數
30
表 3.2:台灣早期資料(1978~1998)十筆餘震序列配適 RJ 模型,其
参數之最大概似估計30
表 3.3: RJ 模型各参數的近似先驗分配樣本之平均值31
表 3.4: RJ 模型各參數的先驗分配中所需指定之值及對應之超參數值
31
表 3.5:近似後驗樣本之平均值、標準差與近期資料之最大概似估計
標準差32
表 4.1: 貝氏估計方法與最大概似估計方法之預測餘震個數均方誤差
32
表 4.2: 在時段(t,t+s) 發生規模 5.0 以上餘震之機率33
表 4.3:集集主震之後 100 天內規模 5.0 以上的地震資料34

圖 目 錄

圖	3.1:台灣早期資料(1978~1998)十筆餘震序列之空間分布36
圖	3.2:台灣早期資料(1978~1998)十筆餘震序列之時間-頻率、規
	模-頻率圖形40
圖	3.3:(a) 集集主震之後 2 天內發生規模 2.0 以上的地震分布,方
	框為近期資料的空間範圍(b)集集主震之後40天內發生規模
	4.0 以上的地震分布41
圖	3.4:集集主震之後(a)10天內(b)20天內(c)30天內(d)40
	天內,所有地震規模大於或等於2.0之規模-頻率圖形42
圖	3.5:台灣早期資料(1978~1998)十筆餘震序列 RJ 模型中各參數
	之散佈圖43
圖	3.6: RJ 模型中參數 k 之先驗分配和後驗邊際密度函數圖44
圖	3.7: RJ 模型中參數 c 之先驗分配和後驗邊際密度函數圖45
邑	3.8: RJ 模型中參數 b 之先驗分配和後驗邊際密度函數圖46
邑	4.1:根據集集主震發生後 t 天內的餘震資料配適 RJ 模型之適合
	度,其中t分別為(a)10天(b)20天(c)30天(d)40天,(-)
	為貝氏估計()為最大概似估計;根據配適模型求得未來7天
	規模 M ≥ 4.0 的餘震之期望個數(···)與實際發生規模 M ≥ 4.0
	的餘震個數 (o)47
圖	4.2:逐期預測未來 (a) 3 天 (b) 7 天 (c) 10 天時發生規模 4.0

	以上集集餘震之對數條件強度函數	49
圖	4.3:預測發生規模 4.0 以上集集餘震之對數條件強度函數	
	$(\log \hat{\lambda}_{B_2}(t,M))$ 與實際發生地震規模之對照	50
圖	4.4:根據集集主震發生後 t 天內的餘震資料配適 RJ 模型,系	頁測未
	來7天內發生規模5.0以上餘震的機率之空間分布,其中1	分別
	為(a)10天(b)20天(c)30天(d)40天;上圖為利用	月貝氏
	估計方法,下圖為利用最大概似估計方法	54

第1章 緒論

1.1 地震相關知識與方法回顧

台灣位於環太平洋地震帶上,有菲律賓海板塊與歐亞大陸板塊在 台灣東部花東縱谷交接,由於菲律賓海板塊每年以穩定的速度向西北 移動,造成台灣兩個隱沒帶,一個在台灣東北部,另一個則在台灣南 端。北端在花蓮、宜蘭外海一帶向北隱沒至歐亞大陸板塊底下,南部 則約在巴士海峽有一個向東隱沒的地震帶,因此造成台灣每年地震頻 繁,並且經常有強烈的地震發生。依據中央氣象局過去九十年的觀測 資料顯示,台灣地區每年平均約發生上萬次地震,其中多數為無感地 震(unfelt earthquake),有感地震(felt earthquake)每年平均約為214 次,並且根據以往的紀錄,災害性地震,每年平均可能發生一次。

觀察近年來發生在台灣的地震,就可以瞭解地震帶來的嚴重危害。西元 1998 年 7 月 17 日下午 12 時 51 分,在阿里山西方 14.2 公里,即東經 120.7 度、北緯 23.5 度且震源深度為 3 公里的位置,發生規模 6.2 的嘉義瑞里地震,造成瑞里飯店嚴重受損,阿里山區多處公路、鐵路坍方中斷,5 人死亡、18 棟房屋全毀,且多處房屋毀損;西元 1999 年 9 月 21 日凌晨 1 時 47 分,在日月潭西方 9 公里集集,即東經 120.8 度、北緯 23.9 度且震源深度為 8 公里的位置,發生規模

7.3 的強烈地震,是二十世紀以來發生在台灣島內規模最大的地震,也是近百年以來死傷人數最多、財產損失最為慘重的一次地震,造成車籠埔斷層錯動長達 80 公里,尤以南投、臺中縣災情最為慘重,共2413 人死亡、10002 人受到輕重傷,幾萬棟房屋倒塌;西元 2002 年3 月31 日下午 14 時 52 分,在花蓮秀林地震站東方 44.3 公里,即東經122.1 度、北緯 24.2 度且震源深度為 9.6 公里的位置,發生規模 6.8 的花蓮外海地震,造成 5 人死亡、中横公路落石、蘇花公路坍方。雖然台灣東部的地震活動相當頻繁,但因為其多發生在外海,所以造成的災害相對地較小;反之,台灣西部的地震活動雖不如台灣東部地區頻繁,但因其震源較淺,且多發生在陸地,加以人口密集,所以較可能造成嚴重災害。

地震不僅造成地層錯動,引發山崩、地盤隆起、井水變化等地質改變或鬆動現象,而房屋、公路、橋樑等建築物也因受到地震的劇烈搖晃而倒塌,繼而威脅到人民的生命財產安全,損失往往非常嚴重。因此,長久以來各領域學者們不斷地從事地震及其有關現象的研究。現今地震活動上的定量研究資料有發震時間(time)、震央位置(epicenter)、地震規模(magnitude)和震源深度(focal depth)。同一系列之地震包括前震(foreshock)、主震(mainshock)和餘震(aftershock),其中所謂同一系列之地震,係指發生位置鄰近,時間

上相近之所有地震。同一系列之地震中,在主震發生前所觀測的較小規模地震,稱為前震,前震曾被視為發生大地震的前兆,故其重要性早被提及,且記載上也有少數前震的例子。近年來地震觀測技術雖然有長足的進步,但顯著前震的例子並不多見。同一系列之地震中規模最大者稱為主震。同一系列之地震中,主震發生之後,緊隨著會發生一連串規模較小的地震活動,這些規模較小的地震稱為餘震。一般而言,前震較不易察覺且不顯著,而餘震之次數及規模均隨著時間而減小,其發生狀況較有規則且較為明顯。

在地震資料中,餘震佔了絕大部分,也因此傳統上常利用統計學上的點過程(point process)模型,分析某區域的餘震活動情形。在地震研究的文獻中,經常以 Gutenberg-Richter(1954)關係式探討地震的規模分布,也經常根據修正 Omori 法則(Utsu,1961)描述餘震的時間分布。Reasenberg 和 Jones(1989)則結合了地震規模與發生時間,探討某一種規模以上的餘震之發生率,並且進一步估算在主震之後某一時段內發生大規模餘震的機率。此外,Ogata(1988,1989)利用自我激發過程(self-exciting process)的概念(Hawked,1971),選擇流病模型(epidemic-type model)為點過程中的條件強度函數(conditional intensity function),當作建構模型的基礎,並由觀測到的地震規模與發生時間,建構地震之點過程模型。

由於地質和建物結構在主震發生時已造成破壞,餘震的發生則將 進一步地破壞相關結構和威脅到人民的生命財產安全,因此如何有效 評估餘震風險始終是一個重要的課題。

1.2 研究方法

本文根據 Reasenberg 和 Jones (1989)提出的時間-規模頻率模型 (RJ模型),當作點過程中的條件強度函數,分別利用最大概似估計 (MLE)方法和經驗貝氏(Empirical Bayes)方法評估集集餘震風險。

本文分析中央氣象局地震測報中心收錄發生於西元 1978 年 1 月 1 日至西元 1999 年 12 月 31 日台灣地區的地震資料。其中經驗貝氏分析中以西元 1978 年 1 月 1 日至西元 1998 年 12 月 31 日,發生在東經 119 度至 123 度、北緯 21 度至 26 度地區,其主震規模大於 5.5、震源深度小於 40 公里,且具完整的餘震序列當作早期資料,然後以西元 1999 年 9 月 21 日至西元 1999 年 10 月 31 日,發生在東經 120.36度至 121.76 度、北緯 23.15 度至 24.55 度地區之集集餘震序列當作近期資料。

早期資料共有十筆餘震序列,每筆餘震時間與空間範圍的選取是以主震震央為圓心,取適當半徑涵蓋餘震範圍,視在此圓形內的餘震呈穩定時間衰退狀態為止,惟在此不考慮強餘震所引發的第二次餘震

序列 (secondary aftershock sequence)。利用此一方法同時選取餘震可能發生的時間及空間範圍,藉以初步篩選出每一筆餘震序列。此資料由國立中央大學地球科學系提供。本文觀察這十筆餘震序列的規模-頻率圖形,決定每一筆完整餘震序列的規模下界,並且修正餘震序列資料的時空範圍,進一步得到較為完整的十筆餘震序列。近期資料則根據集集主震發生之後兩天內,所有地震規模大於或等於 2.0 的分布範圍,當作近期資料的空間範圍,並在此空間範圍內,分別觀察主震發生之後 10 天、20 天、30 天及 40 天這四個時間點內所有地震規模大於或等於 2.0 之規模-頻率圖形,最後選擇規模 4.0 以上的地震作為集集餘震序列並加以分析。

在經驗貝氏方法中,我們利用早期資料決定時間-規模頻率模型中參數的先驗分配(prior distribution),再配合近期資料估計出各參數的聯合後驗分配(joint posterior distribution)。在計算過程中,我們利用馬可夫鏈蒙地卡羅法(Markov Chain Monte Carlo,簡稱 MCMC)演算法,配合早期資料建立的先驗分配,再依據近期資料衍生出後驗分配之近似樣本。然後再利用這些樣本對參數及時間-規模頻率模型進行貝氏推論。最後評估餘震風險並藉由資料檢驗其預測能力。

本文第二章中,我們將對時間-頻率模型、規模-頻率模型、時間 -規模頻率模型作詳細的描述。第三章則使用時間-規模頻率模型,對 集集餘震序列進行經驗貝氏分析。第四章將利用經驗貝氏分析結果, 評估集集餘震風險。最後在第五章結語並討論未來研究方向。

第2章 地震模型與參數之最大概似估計

2.1 時間-頻率模型 (Omori's 模型)

餘震發生率的時間分布可由 Utsu (1961) 所提出之修正 Omori's 法則 (modified Omori law) 加以描述:

$$\lambda(t) = \frac{k}{(t+c)^p} \quad \circ \tag{2.1}$$

其中 $\lambda(t)$ 為主震(t=0)發生後 t 天時餘震之發生率,k、c、p 皆為大於 0 的常數。一般而言,參數 k 與餘震序列總次數、主震規模及餘震規模下界 M。有關。參數 c 則反映餘震序列最初期的活動,它的主要功能是修正在餘震序列的最初幾分鐘或一兩個小時內,發生頻率並不服從一般的遞減衰退率,而是似乎有遞增的現象。參數 p 則代表餘震之衰退率,就規模 M。以上之餘震而言,p 值越大表示該餘震序列衰退越快,即餘震在未來期間發生的相對可能性較小。不論研究中之最小規模為何,一般 p 值的範圍介於 0.9 到 1.8 之間。此外,p 值大小與地熱(crustal heat flow)有關,溫度越高(低)者其 p 值越大(小)(Mogi,1962;Kisslinger and Jones,1991)。p 值也與斷層的摩擦熱(frictional heat)有關,摩擦熱越高之地區,其相對應之 p 值亦越高(Wiemer and Katsumata,1999)。

若將餘震之發生視為一個發生率為 $\lambda(t)$ 非均質之卜瓦松過程 (non-stationary Poisson process),則在時間 t 和 $t+\Delta t$ 之間,餘震發生 的機率為

$$Prob\{\dot{a}(t,t+\Delta t)$$
發生一個餘震 $\}=\lambda(t) imes\Delta t+o(\Delta t)$,
其中當 $\Delta t \to 0$ 時, $o(\Delta t)/\Delta t \to 0$,亦即
$$\lambda(t)=\lim_{\Delta t\to 0}Prob\{\dot{a}(t,t+\Delta t)$$
發生一個餘震 $\}/\Delta t$,

由卜瓦松過程(Poisson Process)得知,在互斥區間(disjoint interval) 內餘震之發生是獨立的。所以已知在時間點 t_{i-1} 發生餘震條件下,在時間點 t_i 發生餘震之條件機率密度函數(conditional probability density function)可寫成

$$f\left(t_{i} \mid t_{i-1}\right) = \lambda\left(t\right) \times \exp\left\{-\int_{t_{i-1}}^{t_{i}} \lambda\left(s\right) ds\right\},\,$$

其 中 $\lambda(t)$ 即 為 在 $(t_i,t_i+\Delta t)$ 瞬 間 發 生 餘 震 的 可 能 性 , $\exp\left\{-\int_{t_{i-1}}^{t_i}\lambda(s)\,ds\right\}$ 則 為 在 (t_{i-1},t_i) 沒有發生餘震(或餘震次數為 0)的 機率。因此,在獲知 N 個餘震發生時間 $\mathbf{t}=(t_1,t_1,\cdots,t_N)$ 之後,其概 似函數(likelihood function)為

$$L\left(\theta \mid \mathbf{t}\right) = \left\{\prod_{i=1}^{N} \lambda\left(t_{i}\right)\right\} \times \exp\left\{-\int_{0}^{t_{N}} \lambda\left(t\right) dt\right\},$$

其中 $\theta = (k, c, p)$, 其對數概似函數 (log-likelihood function) 為

$$\ln L(\theta \mid \mathbf{t}) = \sum_{i=1}^{N} \ln \lambda(t_i) - \int_{0}^{t_N} \lambda(t) dt$$

$$= N \times \ln K - p \sum_{i=1}^{N} \ln(t_i + c) - k \times A(c, p),$$

其中

$$A(c, p) = \begin{cases} \left\{ \left(t_{N} + c\right)^{1-p} - c^{1-p} \right\} \middle/ (1-p) & , & \text{if } p \neq 1 \\ \ln(t_{N} + c) - \ln c & , & \text{if } p = 1 \end{cases}$$

令 $\hat{\theta} = (\hat{k}, \hat{c}, \hat{p})$ 為 $\theta = (k, c, p)$ 的 最 大 概 似 估 計 量 (Maximum

Likelihood Estimator,MLE),則可藉由求下述方程式之聯合解得到 $\hat{\theta}$:

$$\begin{split} \partial \ln L \left(\theta \mid \mathbf{t} \right) \! / \! \partial k &= N/k - A \left(c, p \right) = 0 \\ \partial \ln L \left(\theta \mid \mathbf{t} \right) \! / \! \partial c &= -p \! \sum_{i=1}^{N} \left(t_{i} + c \right)^{-1} - k \left\{ \! \left(t_{N} + c \right)^{-p} - c^{-p} \right\} = 0 \\ \partial \ln L \left(\theta \mid \mathbf{t} \right) \! / \! \partial p &= - \! \sum_{i=1}^{N} \ln \left(t_{i} + c \right) - k \left\{ \! \left(t_{N} + c \right)^{1-p} - c^{1-p} \right\} \! / \! \left(1 - p \right)^{2} + k \left\{ \! \left(t_{N} + c \right)^{1-p} \ln \left(t_{N} + c \right) - c^{1-p} \! \ln c \right\} \! / \! \left(1 - p \right) \\ &= 0 \end{split}$$

令

$$I(\theta) = \int_{0}^{t_{N}} \frac{1}{\lambda(t;\theta)} \frac{\partial \lambda(t;\theta)}{\partial \theta'} \frac{\partial \lambda(t;\theta)}{\partial \theta} dt$$

$$= \int_{0}^{t_{N}} \begin{bmatrix} k^{-1}(t+c)^{-p} & -p(t+c)^{-p-1} & -(t+c)^{-p} \ln(t+c) \\ * & kp^{2}(t+c)^{-p-2} & kp(t+c)^{-p-1} \ln(t+c) \\ * & k(t+c)^{-p} \left\{ \ln(t+c) \right\}^{2} \end{bmatrix} dt$$

則 $I(\theta)$ 稱為情報矩陣 (information matrix)。根據最大概似估計式之

漸進分布性質得知, $(\hat{\theta} - \theta)$ 之近似分布為平均值為 $\mathbf{0} = (0,0,0)$, 共變異數矩陣為 $\mathbf{I}^{-1}(\theta)$ 之三維常態分布,其中 $\mathbf{I}^{-1}(\theta)$ 即為 $\mathbf{I}(\theta)$ 之反矩陣 (inverse matrix)。令 $\mathbf{I}(\hat{\theta})$ 為觀察之情報矩陣,則 $\mathbf{I}^{-1}(\hat{\theta})$ 矩陣中的對角線之方根可估計 $\hat{\mathbf{k}}$ 、 $\hat{\mathbf{c}}$ 和 $\hat{\mathbf{p}}$ 之標準差 (standard deviation)。

2.2 規模-頻率模型(GR模型)

餘震的規模-頻率分布,可由 Gutenberg-Richter (1954) 關係式加以描述:

$$\log_{10} N(M) = a - bM \quad \circ \tag{2.2}$$

其中 a、b 皆為大於 0 的常數, N(M) 為規模大於或等於 M 之餘震個數。此一規模-頻率模型中的參數 b 是反應強餘震發生的相對危險性 (Bender, 1983), 亦即較小的 b 值表示主震發生之後,發生較大規模餘震的可能性或風險較大。一般 b 值的範圍介於 0.4 到 1.8 之間。

假設地震規模服從參數為(b×ln10)的指數分布,即

$$M_1, M_2, \dots, M_N \stackrel{\text{iid}}{\sim} f(M; \lambda) = \lambda \times \exp\{-\lambda (M - M_c)\}$$

其中 $\lambda = b \times \ln 10$, M_c 為研究資料中地震規模的下界。因此得其概似函數為

$$L\left(b\mid\boldsymbol{M}\right) = \left(b\times\ln10\right)^{N}\,exp\left\{-\left(b\times\ln10\right)\sum_{i=1}^{N}\left(\boldsymbol{M}_{i}-\boldsymbol{M}_{c}\right)\right\}\,,$$

對數概似函數則為

$$\ln L \left(b \mid \mathbf{M} \right) = N \times \ln \left(b \times \ln 10 \right) - \left(b \times \ln 10 \right) \sum_{i=1}^{N} \left(M_{i} - M_{c} \right),$$

由

$$\partial \ln L \left(b \mid \mathbf{M} \right) / \partial b = N/b - \ln 10 \sum_{i=1}^{N} \left(M_i - M_c \right) = 0$$

得到 b 的最大概似估計量 \hat{b} 及其近似標準差 $s(\hat{b})$ 分別為

$$\hat{b} = \frac{N}{\ln 10 \times \sum_{i=1}^{N} (M_i - M_c)}$$

$$s(\hat{b}) \approx \frac{\hat{b}}{\sqrt{N}}$$

2.3 時間-規模頻率模型 (RJ 模型)

Lomnitz 與 Nava (1982,1983) 認為地震規模不會影響地震發生的時間,即表示地震發生的時間與規模是互相獨立的。在此假設之下,若將模型 (2.1) 和 (2.2) 合併,則描述餘震發生率的時間-規模分布為

$$\begin{split} \lambda \left(t \; , \; M \right) &= \lim_{\Delta t \to 0} P_r \left\{ t \le T < t + \Delta t \; , \; Mag \ge M \; | \; T \ge t \; , \; Mag \ge M_c \right\} \\ &= \lim_{\Delta t \to 0} P_r \left\{ t \le T < t + \Delta t \; | \; T \ge t \right\} P_r \left\{ Mag \ge M \; | \; Mag \ge M_c \right\} \\ &= \lambda \left(t \right) \times \frac{N \left(M \right)}{N \left(M_c \right)} \\ &= \frac{k}{\left(t + c \right)^p} \times \frac{10^a 10^{-bM}}{10^a 10^{-bM_c}} \end{split}$$

$$=\frac{k}{\left(t+c\right)^{p}}\times10^{-b(M-M_{c})} \quad \circ \tag{2.3}$$

其中 M_c 是地震資料中地震規模的下界, $\lambda(t,M)$ 則表示在主震發生後t天時,發生規模大於或等於M的餘震之發生率。令

$$a = \log_{10} k - b(M_m - M_c) ,$$

則此一發生率又可表示為

$$\lambda(t, M) = 10^{a+b(M_m-M)} \times \frac{1}{(t+c)^p}$$
 (2.4)

其中 M_m 代表主震規模,(a,c,b,p)為參數且(c,b,p)皆大於零。事實上,(2.4) 式由 Reasenberg and Jones (1989) 提出,可以用來評估強主震發生後,發生規模大於或等於M的餘震之風險。

本文採用(2.3)式,即RJ模型,當作點過程中的條件強度函數,分析餘震序列。所以已知在時間點 t_{i-1} 發生餘震條件下,在時間點 t_{i} 發生至少規模為M的餘震之條件機率密度函數可寫成

$$f\left(t_{i} \mid t_{i-1}\right) = \lambda\left(t, M\right) \times exp\left\{-\int_{t_{i-1}}^{t_{i}} \lambda\left(s, M\right) ds\right\} \circ$$

若觀察之發震時間為 $\left\{t_i\right\}_{i=1}^N$,其對應的地震規模為 $\left\{M_i\right\}_{i=1}^N$,則其概似函數 (likelihood function) 為

$$L\!\left(\eta,\theta\,|\left\{\!\left(t_{_{i}},\!M_{_{i}}\right)\!\right\}\!\right)\!=\prod_{_{i=1}^{N}}^{N}f_{_{i}}\!\left(M_{_{i}}\,|\,M^{(^{i\text{-}1})};\eta\right)\!\prod_{_{i=1}^{N}}^{N}g_{_{i}}\!\left(t_{_{i}}\,|\,M^{(^{i\text{-}1})},\!t^{(^{i\text{-}1})};\theta\right)\;\text{,}$$

其中
$$t^{(i\text{-}1)} = (t_1, \dots, t_{_{i\text{-}1}})$$
, $M^{(i\text{-}1)} = (M_1, \dots, M_{_{i\text{-}1}})$, $i=1,\dots,N$ 。

而參數向量 η 和 θ 沒有共同項。本文只針對時間部分做討論,因此考

慮的條件概似函數(conditional likelihood function)為

$$L(\eta, \theta | \{(t_i, M_i)\}) = \prod_{i=1}^{N} g_i(t_i | M^{(i-1)}, t^{(i-1)}; \theta)$$
 (2.5)

因此,獲知N個餘震發生時間與其對應的規模 $\left(t_i,M_i\right)$, $i=1,\cdots,N$,由 (2.5) 式得知其條件概似函數為

$$L\left(\theta \mid \left\{\left(t_{i}, M_{i}\right)\right\}\right) = \prod_{i=1}^{N} \left\{\lambda\left(t_{i}, M_{i}\right) \times \exp\left\{-\int_{t_{i-1}}^{t_{i}} \lambda\left(t, M_{i}\right) dt\right\}\right\}$$

$$= \left\{\prod_{i=1}^{N} \lambda\left(t_{i}, M_{i}\right)\right\} \times \exp\left\{-\sum_{i=1}^{N} \int_{t_{i-1}}^{t_{i}} \lambda\left(t, M_{i}\right) dt\right\} \circ$$

其中 $\theta = (k, c, b, p)$,其條件對數概似函數 (conditional log-likelihood function) 為

$$\begin{split} &\ln L\left(\theta \mid \left\{ \left(t_{i}, M_{i}\right)\right\} \right) \\ &= \sum_{i=1}^{N} \ln \lambda \left(t_{i}, M_{i}\right) - \sum_{i=1}^{N} \int_{t_{i-1}}^{t_{i}} \lambda \left(t, M_{i}\right) dt \\ &= \sum_{i=1}^{N} \ln \left\{ \frac{k}{\left(t_{i} + c\right)^{p}} \times 10^{-b(M_{i} - M_{c})} \right\} - \sum_{i=1}^{N} \int_{t_{i-1}}^{t_{i}} \frac{k}{\left(t + c\right)^{p}} \times 10^{-b(M_{i} - M_{c})} dt \\ &= N \times \ln k - p \sum_{i=1}^{N} \ln \left(t_{i} + c\right) - b \times \ln 10 \sum_{i=1}^{N} \left(M_{i} - M_{c}\right) - k \times A \left(b, c, p\right) \circ \end{split}$$

其中

$$\begin{split} &A\left(b,c,p\right) \\ &= \begin{cases} \left\{\sum_{i=1}^{N} 10^{-b\left(M_{i}-M_{c}\right)} \left\{\left(t_{i}+c\right)^{l-p}-\left(t_{i-1}+c\right)^{l-p}\right\}\right\} \middle/ \left(1-p\right) &, \quad \text{$\stackrel{\ \ \, }{\cong}$ $p\neq 1$} \\ &\sum_{i=1}^{N} 10^{-b\left(M_{i}-M_{c}\right)} \left\{ln\left(t_{i}+c\right)-ln\left(t_{i-1}+c\right)\right\} &, \quad \text{$\stackrel{\ \ \, }{\cong}$ $p=1$} \end{cases} \end{split}$$

令 $\hat{\theta}=(\hat{k},\hat{c},\hat{b},\hat{p})$ 為 $\theta=(k,c,b,p)$ 的最大概似估計量,則可藉由求下述四式之聯合解得到 $\hat{\theta}$:

第3章 餘震序列經驗貝氏分析

本章將利用 RJ 模型對集集餘震進行經驗貝氏分析。早期資料部分共有十筆餘震序列,如圖 3.1 所示,其時間-頻率圖形、規模-頻率圖形分別列於圖 3.2,詳細資料內容列於表 3.1、表 3.2。近期資料是依據集集主震發生之後兩天內,所有地震規模大於或等於 2.0 的分布決定其空間範圍,最後以東經 120.36 度至 121.76 度、北緯 23.15 度至 24.55 度之地區為近期資料的範圍,如圖 3.3 (a) 所示。在此空間範圍內,分別觀察主震發生之後 10 天內、20 天內、30 天內及 40 天內所有地震規模大於或等於 2.0 之規模-頻率圖形,如圖 3.4 所示。因為集集主震後 10 天內所發生的地震其定位尚未完整,因此我們考慮根據規模大於或等於 4.0 的地震資料分析集集餘震風險。另外,我們將集集主震後 40 天內發生規模 4.0 以上的地震之分布示於圖 3.3(b)。

3.1 先驗分配

在經驗貝氏分析中,可以由先驗資訊決定先驗分配。(2.3) 式表示在主震之後 t 天時,發生規模大於或等於 M 的餘震之發生率。根據早期資料的十筆餘震序列,其 RJ 模型中參數之散佈圖,如圖 3.5 所示,並無明顯的相關,因此假設(k,c,b,p)相互獨立。所以,(k,c,b,p)

的聯合先驗分配可以寫成

$$f(\mathbf{k}, \mathbf{c}, \mathbf{b}, \mathbf{p}) = f(\mathbf{k}) f(\mathbf{c}) f(\mathbf{b}) f(\mathbf{p})$$

假設 k 的邊際分配服從 $\operatorname{Gamma}(\alpha_{k}, \lambda_{k})$,即

$$f(\mathbf{k}) = \frac{\lambda_{\mathbf{k}}^{\alpha_{\mathbf{k}}}}{\Gamma(\alpha_{\mathbf{k}})} \mathbf{k}^{\alpha_{\mathbf{k}}-1} e^{-\lambda_{\mathbf{k}}\mathbf{k}} , \mathbf{k} > 0 ,$$

同樣地,假設 c 和 b 的邊際分配分別服從 $Gamma(\alpha_c, \lambda_c)$ 及 $Gamma(\alpha_b, \lambda_b)$,其中 α_k 、 λ_k 、 α_c 、 λ_c 、 α_b 、 λ_b 均為超參數,其值皆大於零。根據一般經驗,(2.3) 式中的 p 值通常不會太大,因此考慮 p 的先驗分配為 uniform(0,3)。至於先驗分配中超參數的決定,我們可以根據 k、c、b 的先驗資訊加以決定。若已知 k 的先驗密度函數的平均值為 m_k ,且 k 在區間 (L_k, U_k) 的機率為 P_k ,即

則超參數 (α_k, λ_k) 可以唯一決定。同樣地,若給定

$$E(c) = m_c \not \exists \sigma P(L_c < c < U_c) = P_c , \qquad (3.2)$$

則超參數 (α_c, λ_c) 可以唯一決定;若給定

$$E(b) = m_b \neq P(L_b < b < U_b) = P_b$$
, (3.3)

則超參數 (α_b, λ_b) 亦可以唯一決定。我們根據早期的十筆餘震序列資料決定先驗訊息,即決定(3.1)、(3.2)、(3.3) 式中各個需要指定的值,進而估計出各參數之超參數。

在統計計算過程當中,經常會遇到複雜的密度函數,而 Metropolis-Hasting(Metropolis et al. 1953;Hastings 1970)演算法是 一種不需要利用密度函數,但利用馬可夫鏈(Markov Chain)的基本 性質,進而疊代衍生出近似樣本的過程,此一過程亦稱為馬可夫鏈蒙 地卡羅方法(Markov Chain Monte Carlo method,簡稱 MCMC)。本 文探討的先驗分配與後驗分配,其密度函數都非常地複雜,因此我們 將利用此一演算方法衍生後驗分配的近似樣本。

令後驗分配為 $\pi(\theta|\{(t_i,M_i)\})$,固定轉換核(transition kernel) $t(\theta,\theta^*)$ 為 θ 已知時, θ^* 之密度函數,從中可衍生隨機亂數,經過一連串的疊代過程衍生出近似的後驗分配樣本,然後進一步估計各參數之超參數。

根據 2.3 節中討論的條件概似函數包含四個參數(k,c,b,p),且四個參數皆為正數。首先我們取 p 的分配為 Uniform(0,3),對於 (k,c,b) 我們選擇互相獨立的多維對數常態分布(multivariate log-normal distribution),當作 Metropolis-Hastings 演算法中的轉換核,即

$$t(\theta,\theta^*) = \frac{1}{\theta^* \sigma \sqrt{2\pi}} \exp\left(-\frac{\left(\ln \theta^* - \ln \theta\right)^2}{2\sigma^2}\right),$$

進一步根據下述步驟,衍生 500 組後驗分配 $\piig(heta\,|\{(t_i,M_i)\}ig)$ 的近似樣

本,其方法如下:

步驟一:給定 θ 的初始值 (initial value) 為 $\theta^{(0)}$,令i=0。

<u>步驟二</u>:給定 $\theta = \theta^{(i)}$,由 $t(\theta, \theta^*)$ 衍生 θ^* 。

步驟三:令

 $w(\theta,\theta^*)$

$$= \begin{cases} \min \left\{ \frac{\pi \left(\theta \mid \left\{ \left(\mathbf{t}_{i}, \mathbf{M}_{i}\right) \right\} \right) t\left(\theta^{*}, \theta\right)}{\pi \left(\theta \mid \left\{ \left(\mathbf{t}_{i}, \mathbf{M}_{i}\right) \right\} \right) t\left(\theta, \theta^{*}\right)}, 1 \right\} &, \text{ if } \pi \left(\theta \mid \left\{ \left(\mathbf{t}_{i}, \mathbf{M}_{i}\right) \right\} \right) t\left(\theta, \theta^{*}\right) > 0 \\ 1 &, \text{ otherwise } \circ \end{cases} \end{cases}$$

步驟四:由均勻分布 uniform(0,1) 中隨機產生一個變數 u,

步驟五:令i=i+1,重複步驟二到步驟五,直到此過程達到收斂。

本節考慮(2.3)式 RJ 模型當作點過程中之條件強度函數,並利用早期的十筆餘震序列資料決定(3.1)、(3.2)、(3.3) 式中各個需要指定的數值,進而估計出各參數分配之超參數,即決定參數的先驗分配。雖然早期的十筆餘震序列資料其特性可能與近期資料不同,但是一筆餘震序列中,其地震之規模與發生頻率均會隨著距離主震的時間越長而遞減,因此,這些早期資料仍然提供一些重要的資訊。根據概似原理(Likelihood Principle; Berger, 1985),得知概似函數本身即提供資料對參數的所有訊息,早期資料有十筆餘震序列,可以作為先

驗資訊估計先驗分配。利用這十筆餘震序列所建立的概似函數型式為

$$L\left(\theta\right) = L\left(\theta \mid \left\{\left(t_{i}, M_{i}\right)\right\}_{i=1}^{N}\right) = \prod_{k=1}^{10} L_{k}\left(\theta \mid \left\{\left(t_{j}, M_{j}\right)\right\}_{j=1}^{N_{k}}\right),$$

其中 $N=\sum_{i=1}^{10}N_k$,而 N_k 是第k 筆餘震序列之餘震總個數。我們將概似函數產生的訊息具體化,藉以得到關於參數的一些具體訊息。因此在無資訊先驗(non-informative prior)分配 $\pi^*\left(\theta\right)\equiv 1$ 之下,其後驗分配為

$$\pi\left(\theta \mid \left\{\left(t_{i}, M_{i}\right)\right\}\right) = \frac{L\left(\theta\right)\pi^{*}\left(\theta\right)}{\int L\left(\theta\right)\pi^{*}\left(\theta\right)d\theta} \propto L\left(\theta\right) \times \pi^{*}\left(\theta\right) = L\left(\theta\right),$$

即後驗分配與概似函數成比例,我們可以應用 MCMC 方法得到近似後驗分配的樣本,以估計參數之超參數,進而決定先驗分配。在此我們以各近似樣本的樣本平均數估計各參數之平均數,結果列於表3.3;在(3.1)、(3.2)、(3.3)式中,給定機率為 $P_k = P_c = P_b = 0.9$ 時,先驗分配中各個需要指定的值(各參數之平均值、L和U兩邊界值)及各超參數之估計值,列於表3.4。

3.2 後驗分配

給定近期地震資料 $\left\{\left(\mathbf{t}_{\mathbf{i}},\mathbf{M}_{\mathbf{i}}\right)\right\}_{\mathbf{i}=\mathbf{1}}^{\mathbf{N}}$ 時,則 θ 的後驗分配為

$$\pi\left(\theta\mid\left\{\left(t_{i},M_{i}\right)\right\}\right)\propto\ L\left(\theta\right)\times\pi\left(\theta\right)$$
 °

其中 $\pi(\theta) = f(k,c,b,p) = f(k)f(c)f(b)f(p)$,即 3.1 節中所

決定的先驗分配, $\{(t_i, M_i)\}$ 則為近期地震資料。在近期資料方面,我們選擇集集主震之後,在東經 120.36 度至 121.76 度、北緯 23.15 度至 24.55 度地區內發生規模 4.0 以上的地震資料,並分成集集主震之後 10 天內、20 天內、30 天內及 40 天內等四個時間範圍來研究,其地震個數依次為 406 個、446 個、466 個及 496 個,分別對這四個時間點的近期資料進行分析。根據 3.1 節中求得之先驗分配,再分別配合這四個時間點的近期資料,以 MCMC 方法衍生出 500 組後驗分配的近似樣本,以估計 $\theta=(k,c,b,p)$ 之聯合後驗分配。表 3.5 為分別根據集集主震後 10 天內、20 天內、30 天內及 40 天內的近期資料所估計之近似後驗樣本之平均值、標準差與近期資料之最大概似估計量、標準差。圖 3.6 至圖 3.8 為根據這 500 組樣本所得到的各參數之近似邊際後驗分配(marginal posterior distribution)。

第4章 餘震風險之評估

4.1 餘震之時間-規模分布

在估計主震之後 t 天,發生規模大於或等於 M 的餘震之發生率 $\lambda(t,M)$ 時,我們可以用最大概似方法估計 θ ,得到 $\lambda(t,M)$ 的 MLE 點估計,記作 $\hat{\lambda}_L(t,M)$ 。我們也可以將 500 組 θ 的近似後驗樣本點

$$\theta_{1} = (k_{1}, c_{1}, b_{1}, p_{1})$$

$$\theta_{2} = (k_{2}, c_{2}, b_{2}, p_{2})$$

$$\vdots$$

$$\theta_{500} = (k_{500}, c_{500}, b_{500}, p_{500})$$

,分別代入在主震之後 t 天時之 $\lambda(t,M)$ 中,得到 $\lambda(t,M)$ 的近似後驗分配,然後求得 $\lambda(t,M)$ 的貝氏估計,即 $\lambda(t,M)$ 的近似後驗平均值

$$\hat{\lambda}_{B_1}(t, M) = \sum_{i=1}^{500} \lambda_i(t, M) / 500 \circ$$

如此,不僅能得到 $\lambda(t,M)$ 的貝氏估計,也能求得其可信域(credible set)。當然,也可以依照 Peruggin 和 Santner(1996)的建議,將 θ 的 近似後驗分配樣本平均值 $\sum_{i=1}^{500} \theta \bigg/ 500$ 代入 $\lambda(t,M)$ 中,得到 $\lambda(t,M)$ 的 點估計,記作 $\hat{\lambda}_{B_2}(t,M)$ 。

根據主震發生後t天內的地震資料配適RJ模型,可以求得未來 Δt 天發生規模 4.0 以上餘震之期望個數。在此,我們利用貝氏分析方法 與最大概似估計方法配適 RJ 模型,分別求得ÂB, (t, M)及 $\hat{\lambda}_{L}(t,M)$,其中t分別為 10天、20天、30天及 40天, Δt 分別為 3天、7天、10天。利用預測均方誤差,即 $\sum_{i=1}^{\Delta t} (o_i - p_i)^2 / \Delta t$,其中 o_i 為 未來 Δt 天實際發生規模 4.0 以上餘震之個數, p_i 則為未來 Δt 天發生規 模 4.0 以上餘震之期望個數,此即為平均每日實際發生餘震個數與期 望發生餘震個數之平方差異。分別利用 $\hat{\lambda}_{B_2}(t,M)$ 與 $\hat{\lambda}_L(t,M)$ 預測未 來 3 天、7 天及 10 天發生規模 4.0 以上餘震之期望個數,並與實際發 生規模 4.0 以上餘震個數比較,其均方差異列於表 4.1。在此僅將 Δt 為 7天的配適結果示於圖 4.1。表 4.1 與圖 4.1 顯示貝氏分析方法與最大 概似估計方法在短期時間內都有不錯的配適結果,即可以預測短期內 餘震發生個數。另外,值得注意的是根據主震後30天內的地震資料 配適 RJ 模型,不論在預測未來 3 天、7 天或 10 天餘震發生個數時, 其預測均方誤差均較大,而觀察研究範圍內主震後 31 天左右的地震 資料,有兩次規模 6.0 以上的地震發生,且在此時段內餘震發生頻率 升高,因此在預測未來3天、7天及10天,發生規模4.0以上餘震之 期望個數均較實際發生規模 4.0 以上餘震個數為少。

時間-規模頻率模型亦可以提供我們計算主震之後某一時段(t,t+s)天內,發生至少一件餘震規模大於或等於 M 之機率,其求法如下

$$P = 1 - \exp\left\{-\int_{t}^{t+s} \lambda(u, M) du\right\} \circ$$

在此提供下列各時段(t,t+s)發生餘震規模 5.0 以上之機率,如表 4.2 所示。由表 4.2 得知在研究範圍內其未來 10 天內發生規模 5.0 以上的餘震之可能性,仍然很高。

在即時監測餘震風險方面,我們以逐天代入資料方法,估計未來某一時間時發生至少規模為 M 的餘震之發生率,也就是只考慮使用主震之後 t 天內的餘震資料 (近期資料),估計在時間 t + Δ t 天時發生至少規模為 M 的餘震之發生率 λ (t + Δ t, M)。我們探討當 Δ t 為 3 天、7 天、10 天時,發生規模至少為 4.0 的餘震之發生率,將 $\ln \hat{\lambda}_{B_1}$ (t + Δ t, M)、 $\ln \hat{\lambda}_{B_2}$ (t + Δ t, M)及 $\ln \hat{\lambda}_L$ (t + Δ t, M)對 t 的圖形示於圖 4.2。觀察圖 4.2,我們發現 $\ln \hat{\lambda}_{B_1}$ (t + Δ t, M)及 $\ln \hat{\lambda}_{B_2}$ (t + Δ t, M)與 $\ln \hat{\lambda}_{B_2}$ (t + Δ t, M)相差不大,但與 $\ln \hat{\lambda}_L$ (t + Δ t, M)比較,則差異較大。

我們考慮當規模 M 為 4.0, Δt 為 3 天、7 天、10 天時, $\ln \hat{\lambda}_{B_2} \left(t + \Delta t, M\right)$ 對 t 的圖形,並與實際發生餘震之規模相對應,如 圖 4.3 所示,並將集集主震之後 100 天內發生規模 5.0 以上的地震資料列於表 4.3,發現強震之後,餘震之發生率會上升。

4.2 餘震風險空間分布

本節利用空間格點 (spatial-grid), 在研究範圍內 (即東經 120.36 度至 121.76 度、北緯 23.15 度至 24.55 度之地區), 橫軸每 20 公里為 一單位,縱軸每20公里為一單位,以格子點為中心點,取最近的100 個餘震資料配適 RJ 模型,並利用移動視窗方法探討不同空間中,在 主震之後(t,t+7)天內,發生至少一件餘震規模大於或等於 5.0 的 機率,其中t分別為主震後 10 天、20 天、30 天及 40 天,如圖 4.4 所 示。除集集主震該點外,其餘為主震之後(t,t+7)天內實際發生餘 震規模大於或等於 5.0 的位置點。觀察圖 4.4,當 t 為 30、40 天時, 因未來 7 天內實際發生規模 5.0 以上餘震之位置點附近,其近期地震 資料極少,因此無法正確評估此位置點附近的餘震風險。圖 4.4 顯示 集集主震附近區域在未來 7 天內發生規模 5.0 以上餘震的機率並不 高,而集集主震以東的區域則有較高的值,表示集集主震以東的區域 在未來7天內發生大規模餘震的風險較高。

第5章 結語與未來研究方向

本文主要根據 Reasenberg 和 Jones (1989)提出的 RJ模型,當作點過程中的條件強度函數,分別用最大概似估計方法和經驗貝氏方法估計台灣餘震風險。在經驗貝氏方法中,我們先蒐集台灣過去十筆餘震序列(1978~1998),並利用這些資料決定參數之先驗分配,進而估計後驗分配,配適 RJ模型,探討集集餘震之風險。如果選擇的先驗分配愈接近實際分配,則其預測結果應會有所改善。而在 3.1 節中,根據台灣過去的十筆餘震序列,其 RJ模型中的參數,彼此之間的關係並不明顯,因此,本文假設此模型參數彼此之間相互獨立,考慮較簡單的參數之聯合密度函數。日後可以探討此模型參數間的關係,修正參數先驗密度函數之假設,改進先驗分配結果。

另外,觀察 RJ 模型,我們探討在主震發生後 t 天時,發生規模大於或等於 M 的餘震之發生率,此模型並沒有考慮到主震後 t 天內所有的餘震,其規模大小與發生時間點是否影響到主震之後 t 天時發生規模大於或等於 M 的餘震之發生率。Hawkes(1971)以一個自我激發過程(self-exciting process),考慮在發震時間為 $\{t_i\}_{i=1}^N$ 與其對應的地震規模為 $\{M_i\}_{i=1}^N$ 的觀測地震資料下,在時間 t 時的條件強度函數為

 $\lambda \left(t;\theta \right) = \mu + \sum_{t,< t} g \left(t - t_i \right) c \left(M_i \right) ,$

 $g(t-t_i)$ 為時間影響部分、 $c(M_i)$ 為地震規模影響部分,這就是基準發生率為 μ 的流病模型。此流病模型中考慮到累積過去時間中,已發生地震規模大於或等於 M_c (研究中地震資料的最小規模下界),在時間 t 時引發餘震之發生率。因此,可以考慮以流病模型為點過程中的條件強度函數,當作建構模型的基礎,評估餘震之風險,這些都是有待探討的課題。

參考文獻

- [1] Bender, B. (1983) "Maximum likelihood estimation of *b* values for magnitude grouped data," *Bulletin of the Seismological of America*, 73, 831-851.
- [2] Gutenberg, B., and C. F. Richter (1954): Seismicity of the Earth, 2nd ed., Princeton University, Princeton, New Jersey.
- [3] Hastings, W. K. (1970) "Monte Carlo sampling methods using Markov chains and their applications," *Biometrika*, 57, 97-109.
- [4] Hawkes, A. G. (1971) "Point spectra of some mutually exciting point processes," *Journal of the Royal Statistical Society*. Ser. B, 33, 438-443.
- [5] Kisslinger, C., and Jones, L. M. (1991) "Properties of Aftershock Sequences in Southern California," *Journal of Geophysical Research*, 96, B7, 11,947-11,958.
- [6] Lomnitz, C., and Nava, F. A. (1983) "The predictive value of seismic gaps." *Bulletin of the Seismological Society of America*, 73,1815-1824.
- [7] Metropolis, N., Rosenbluth, A. W., Teller, A. H., and Teller, E. (1953) "Equation of state calculations by fast computing machines.," *Journal of Chemical Physics*, 21, 1087-1091.
- [8] Mogi, K., (1962) "Magnitude-frequency relation for elastic shocks Accompanying fractures of various materials and some related problems in earthquakes," *Bull. Earthquake Res. Inst., Univ. Tokyo*, 40, 831-853.
- [9] Ogata, Y. (1983) "Estimation of the parameters in the modified Omori formula for aftershock frequencies by the maximum

- likelihood procedure, " *Journal of Physics of the earthquake*, 31, 115-124.
- [10] Ogata, Y. (1988) "Statistical models for earthquake occurrence and Residuals analysis for point processes," *Journal of the American Statistical Association*, 83, 9-27.
- [11] Ogata, Y. (1989) "Statistical model for standard seismicity and detection of Anomalies by residual analysis," *Tectonophysics*, 169, 159-174.
- [12] Peruggia, M. and Santner, T. (1996) "Bayesian analysis of time evolution of earthquakes," *Journal of the American Statistical Association*, 91, 1209-1218.
- [13] Rabinowitz, N. and Steinberg, D. M. (1998) "Aftershock Decay of three recent strong earthquakes in the Levant," *Bulletin of the Seismological of America*, 88, 1580-1587.
- [14] Reasenberg, P. A., and Jones, L. M.(1989) "Earthquake hazard after a mainshock in California," *Science*, 243, 1173-1176.
- [15] Reasenberg, P. A., and Jones, L. M. (1990) "California aftershock model uncertainties," *Science*, 247, 343-345.
- [16] Reasenberg, P. A., and Jones, L. M. (1990) "California aftershock hazard forecasts," *Science*, 247, 345-346.
- [17] Reasenberg, P. A., and Jones, L. M. (1994) "Earthquake Aftershocks: Update," *Science*, 265, 1251-1252.
- [18] Stefan, W. and Katsumata, K. (1999) "Spatial variability of seismicity parameters in aftershock zones," *Journal of Geophysical Research*, 104, 13,135-13,151.
- [19] Utsu, T. (1961) "A statistical study on the occurrence of aftershocks," *The Geophysical Magazine*, 30, 4, 521-605.

- [20] Wiemer, S., and Katsumata, K. (1999) "Spatial Variability of Seismicity Parameters in Aftershock Zones," *Journal of Geophysical Research*, 104, B6, 13,135-13,151.
- [21] Wiemer, S. (2000) "Introducing probabilistic aftershock hazard mapping," *Geophys. Res. Lett.*, 27, 3405-3408.
- [22] 林志勳(1999): 花蓮地區地震資料之經驗貝氏分析。國立中央大學統計研究所碩士論文。
- [23] 林秋萍(2001):最大餘震發生時間之統計分析。國立中央大學統計研究所碩士論文。
- [24] 郭盈男(2001):台灣地區地震資料之經驗貝氏分析。國立中央大學統計研究所碩士論文。
- [25] 陳春樹(2001):最大餘震規模之統計分析。國立中央大學統計研究所碩士論文。
- [26] 盧裕鵬(2000):集集餘震之統計研究。國立中央大學統計研究 所碩士論文。

附錄 1 圖表

表 3.1:台灣早期資料 (1978~1998) 十筆餘震序列之主震震源參數

編號	年	月	日	時	分	秒	經度	緯度	深度	規模
1	1978	07	23	14	42	38.18	121.33	22.35	6.10	7.40
2	1983	05	10	00	15	03.77	121.51	24.46	1.23	6.00
3	1986	07	30	11	31	47.53	121.79	24.63	1.55	5.82
4	1986	11	14	21	20	04.52	121.83	23.99	15.00	6.80
5	1991	03	12	06	04	06.14	120.07	23.25	12.26	5.67
6	1993	12	15	21	49	43.10	120.52	23.21	12.50	5.70
7	1994	06	05	01	09	30.09	121.84	24.46	5.30	6.20
8	1995	06	25	06	59	07.09	121.67	24.61	39.88	6.50
9	1996	09	05	23	42	07.88	121.37	22.00	14.76	7.07
10	1998	07	17	04	51	14.09	120.66	23.50	2.80	6.20

表 3.2:台灣早期資料 (1978~1998) 十筆餘震序列配適 RJ 模型,其 參數之最大概似估計

	主震	規模		RJ ħ	莫式		餘震	時間
編號	規模 (Mm)	下界 (Mc)	ĥ	ĉ	ĥ	ĝ	個數 (N)	範圍 (day)
1	7.40	3.91	43.44	0.362	1.12	1.26	152	60
2	6.00	2.50	30.91	0.034	1.30	1.16	217	25
3	5.82	2.33	17.31	0.038	1.17	1.08	118	15
4	6.80	3.31	331.69	1.068	1.06	1.16	965	100
5	5.67	3.30	16.43	0.101	1.02	0.89	90	25
6	5.70	2.20	15.30	0.005	1.02	1.04	115	20
7	6.20	2.70	100.55	0.051	0.96	1.01	751	65
8	6.50	3.00	10.34	0.003	0.99	0.95	98	80
9	7.07	3.58	33.45	0.041	1.19	1.07	198	55
10	6.20	2.70	10.61	0.006	1.16	1.03	77	50

表 3.3: RJ 模型各參數的近似先驗分配樣本之平均值

參數	k	С	b	p
平均值	97.031	0.113	0.935	0.993
標準差	23.749	0.061	0.156	0.109

表 3.4: RJ 模型各參數的先驗分配中所需指定之值及對應之超參數值

參數		指定值		超參數		
多 ·致	m	L	U	α	λ	
k	97.031	63.127	144.015	16.257	0.168	
c	0.113	0.040	0.231	3.887	34.485	
b	0.935	0.672	1.178	36.427	38.941	

表 3.5:近似後驗樣本之平均值、標準差與近期資料之最大概似估計、標準差

集集主震後	參數	k	c	b	p
	後驗平均值	100.1480	0.0916	0.6426	1.2655
10 天	標準差	22.1743	0.0258	0.1397	0.2029
10 ×	MLE	81.3375	0.0954	0.7062	1.1463
	標準差	27.5490	0.0300	0.0854	0.0721
	後驗平均值	98.7161	0.0929	0.6595	1.1643
20 天	標準差	22.0091	0.0232	0.1384	0.1742
20 X	MLE	81.6611	0.0913	0.7274	1.1371
	標準差	26.7786	0.0265	0.0831	0.0548
	後驗平均值	102.1617	0.0892	0.5469	1.1570
30 天	標準差	17.5722	0.0185	0.0998	0.1278
30 人	MLE	81.0339	0.0936	0.7233	1.1428
	標準差	26.0093	0.0245	0.0812	0.0490
	後驗平均值	97.8584	0.0758	0.5588	1.0791
40 天	標準差	17.0010	0.0152	0.0975	0.1205
70 人	MLE	79.1450	0.0779	0.7232	1.0866
	標準差	24.0797	0.0004	0.0060	0.0017

表 4.1: 貝氏估計方法與最大概似估計方法之預測餘震個數均方誤差

集集主震後	方法	Δt					
术术工	7/14	3	7	10			
10 天	最大概似估計	3.379	1.201	11.533			
10 %	貝氏估計	1.325	4.798	8.346			
20 天	最大概似估計	0.597	20.156	4.3984			
20 人	貝氏估計	1.481	23.997	6.3639			
30 天	最大概似估計	27.269	50.205	41.225			
30 X	貝氏估計	46.713	35.379	43.856			
40 夭	最大概似估計	4.331	21.286	8.746			
70 X	貝氏估計	4.404	21.881	9.224			

表 4.2:在時段(t,t+s)發生規模 5.0以上餘震之機率

(a) 最大概似估計方法

+		S	
	3	7	10
10	0.95	0.99	1.00
20	0.75	0.95	0.98
30	0.59	0.86	0.93
40	0.54	0.82	0.91

(b) 貝氏分析方法

+		S	
ι	3	7	10
10	0.96	1.00	1.00
20	0.84	0.99	0.99
30	0.69	0.96	0.97
40	0.57	0.86	0.92

表 4.3:集集主震之後 100 天內規模 5.0 以上的地震資料

年	月	日	時	分	秒	緯度	經度	深度	規模	時間
1999	9	20	17	49	40.07	23.98	120.83	19.74	6.07	0.0017
1999	9	20	17	51	35.38	24.09	121.04	6.16	5.97	0.0030
1999	9	20	17	55	23.08	24.24	121.33	10.63	5.30	0.0056
1999	9	20	17	57	15.58	23.91	121.04	7.68	6.44	0.0069
1999	9	20	17	58	55.13	23.91	121.06	6.97	5.71	0.0081
1999	9	20	17	59	28.81	24.29	120.91	24.74	5.48	0.0085
1999	9	20	18	2	19.81	24.23	121.13	7.10	5.41	0.0105
1999	9	20	18	3	41.57	23.80	120.86	9.75	6.60	0.0114
1999	9	20	18	5	54.01	23.95	120.77	13.04	5.24	0.0129
1999	9	20	18	11	27.86	23.95	121.00	17.78	5.13	0.0168
1999	9	20	18	11	54.21	23.86	121.07	12.49	6.70	0.0171
1999	9	20	18	15	42.59	23.72	120.97	9.45	5.29	0.0198
1999	9	20	18	16	17.95	23.86	121.04	12.53	6.66	0.0202
1999	9	20	18	21	28.74	23.96	121.10	25.63	5.22	0.0238
1999	9	20	18	26	10.88	23.86	120.91	12.58	5.20	0.0270
1999	9	20	18	28	2.50	23.84	121.03	9.04	5.20	0.0283
1999	9	20	18	32	55.21	23.82	121.02	12.36	5.07	0.0317
1999	9	20	19	28	43.36	23.90	120.97	8.51	5.06	0.0705
1999	9	20	19	40	32.73	23.54	120.92	8.99	5.28	0.0787
1999	9	20	19	43	2.48	23.92	121.12	7.00	5.07	0.0804
1999	9	20	19	57	52.82	24.02	120.85	10.40	5.19	0.0907
1999	9	20	20	2	16.30	23.97	120.78	5.25	5.35	0.0938
1999	9	20	20	21	59.68	24.10	121.02	6.67	5.22	0.1075
1999	9	20	20	40	3.82	23.96	121.34	5.15	5.12	0.1200
1999	9	20	20	43	48.75	23.76	121.33	8.77	5.21	0.1226
1999	9	20	21	15	25.05	23.77	121.34	9.87	5.10	0.1446
1999	9	20	21	24	34.67	23.97	121.04	10.41	5.11	0.1509
1999	9	20	21	41	22.91	23.61	120.58	13.72	5.15	0.1626
1999	9	20	21	46	38.11	23.58	120.86	8.57	6.59	0.1662
1999	9	20	21	54	47.40	23.62	120.82	4.83	5.33	0.1719
1999	9	20	22	22	46.46	23.56	120.87	9.42	5.15	0.1913
1999	9	20	23	18	13.21	23.45	120.91	9.57	5.10	0.2298
1999	9	21	0	45	40.93	23.87	120.99	9.07	5.12	0.2906
1999	9	21	3	31	49.08	23.99	121.02	7.60	5.18	0.4059
1999	9	21	7	6	2.61	23.83	121.39	12.86	5.24	0.5547
1999	9	21	11	7	42.20	23.67	120.84	8.37	5.11	0.7225
1999	9	21	15	28	10.39	23.61	120.84	8.38	5.15	0.9034
1999	9	21	17	38	35.57	23.84	121.31	17.67	5.21	0.9940
1999	9	21	18	18	37.57	24.20	121.02	10.00	5.23	1.0218
1999	9	21	22	17	1.52	23.93	121.38	11.67	5.19	1.1873
1999	9	22	0	14	40.77	23.83	121.05	15.59	6.80	1.2690

表 4.3 (續): 集集主震之後 100 天內規模 5.0 以上的地震資料

4-	n	п	nt	A)	A1.	14 -	仁古	炉点	10 1++	n+ 88
年 1000	<u>月</u>	日 22	時の	<u>分</u>	秒 42.42	緯度	經度	深度	規模	時間
1999	9	22	0	25	43.42	23.74	120.99	6.77	5.09	1.2767
1999	9	22	0	49	42.88	23.76	121.02	8.95	6.29	1.2934
1999	9	22	0	49	43.45	23.76	121.03	17.38	6.20	1.2934
1999	9	22	0	51	9.69	23.73	121.03	23.52	5.30	1.2944
1999	9	22	1	28	47.99	23.76	121.01	24.36	5.00	1.3205
1999	9	22	2	19	29.61	23.79	121.39	11.97	5.40	1.3557
1999	9	22	12	17	20.96	23.74	120.98	24.02	6.00	1.7709
1999	9	22	12	17	21.08	23.73	120.99	23.48	6.01	1.7709
1999	9	23	0	46	2.98	24.22	121.21	1.82	5.20	2.2908
1999	9	23	5	42	49.69	23.96	121.00	9.32	5.39	2.4969
1999	9	23	12	44	33.69	23.91	121.08	6.47	5.74	2.7898
1999	9	23	18	50	37.58	23.62	120.81	2.00	5.08	3.0440
1999	9	23	21	39	0.10	24.00	121.34	1.37	5.36	3.1609
1999	9	24	3	38	24.75	24.15	120.98	1.03	5.23	3.4105
1999	9	25	4	19	12.38	24.28	121.25	10.81	5.18	4.4388
1999	9	25	8	43	29.25	23.68	120.96	6.86	5.85	4.6224
1999	9	25	21	54	5.52	23.61	120.83	3.18	5.12	5.1714
1999	9	25	23	52	49.63	23.85	121.00	12.06	6.80	5.2539
1999	9	27	4	3	22.39	24.25	121.22	0.86	5.29	6.4279
1999	9	27	4	11	46.06	24.28	121.20	6.16	5.18	6.4337
1999	9	27	7	0	40.74	24.16	121.25	4.48	5.16	6.5510
1999	9	27	7	28	19.69	24.15	121.26	4.28	5.23	6.5702
1999	9	27	11	55	4.21	23.74	121.33	6.76	5.61	6.7554
1999	9	27	18	9	57.85	23.80	121.33	6.85	5.04	7.0158
1999	9	28	5	53	49.56	23.98	120.67	10.88	5.08	7.5046
1999	9	30	1	3	59.80	24.26	121.08	3.02	5.33	9.3033
1999	9	30	9	52	39.02	23.29	120.64	1.46	5.03	9.6704
1999	9	30	19	1	58.46	23.96	120.96	6.38	5.00	10.0519
1999	10	1	12	54	10.28	23.69	120.91	5.21	5.12	10.7965
1999	10	4	12	26	15.39	23.79	120.93	8.31	5.05	13.7771
1999	10	5	12	18	17.37	23.84	121.00	9.92	5.01	14.7715
1999	10	13	1	39	46.88	23.96	121.34	1.92	5.04	22.3281
1999	10	18	15	31	26.87	23.95	121.33	4.31	5.05	27.9057
1999	10	18	16	0	45.89	23.70	121.03	23.77	5.15	27.9260
1999	10	22	2	18	56.90	23.52	120.42	16.59	6.40	31.3553
1999	10	22	3	10	17.46	23.53	120.43	16.74	6.00	31.3910
1999	10	23	17	8	3.04	23.50	120.46	12.41	5.08	32.9728
1999	10	30	8	27	49.50	24.02	121.32	14.36	5.15	39.6115
1999	11	1	17	53	2.25	23.36	121.73	31.33	6.90	42.0040
1999	11	15	7	25	21.97	23.50	120.51	7.03	5.06	55.5681
1999	11	17	7	35	9.95	24.02	120.64	9.55	5.29	57.5749
1999	11	28	21	25	50.24	23.33	120.93	2.47	5.06	69.1518
1999	11	28	21	25	50.24	23.33	120.93	2.47	5.06	09.1518

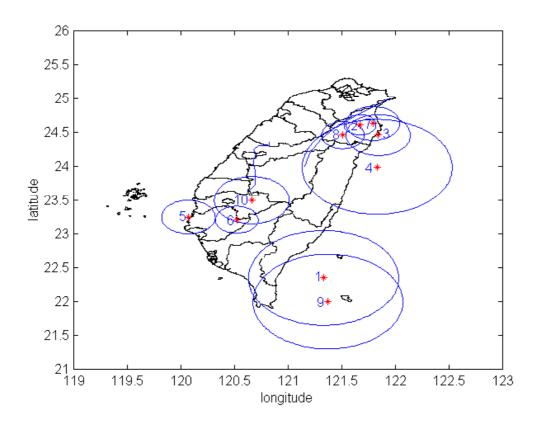
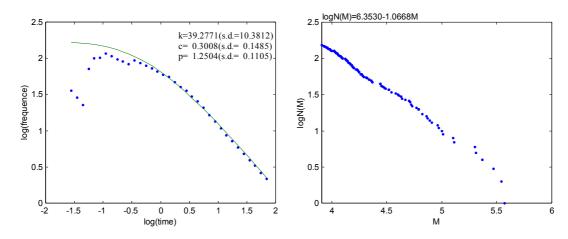
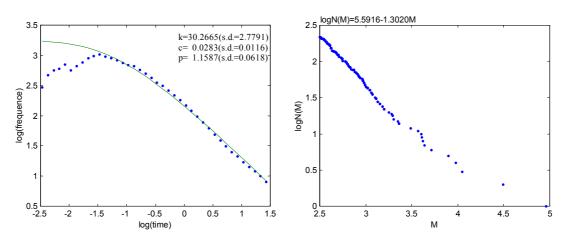


圖 3.1:台灣早期資料 (1978~1998) 十筆餘震序列之空間分布

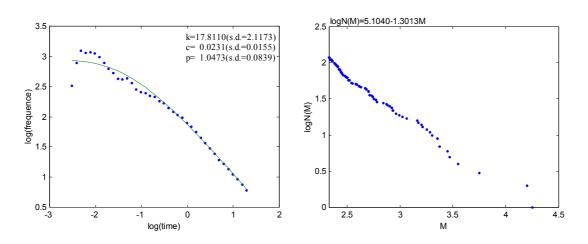
(1) 1978/07/23 (規模=7.40, 東經 121.33 度, 北緯 22.35 度)



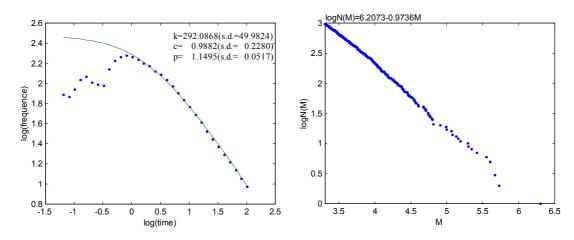
(2) 1983/05/10 (規模=6.00,東經 121.51 度,北緯 24.46 度)



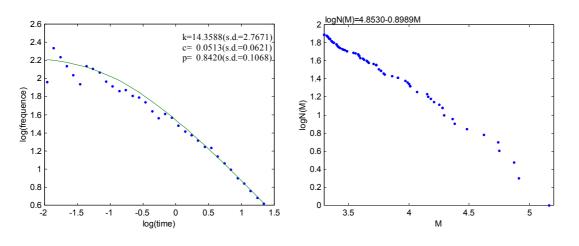
(3) 1986/07/30 (規模=5.82,東經 121.79度,北緯 24.63度)



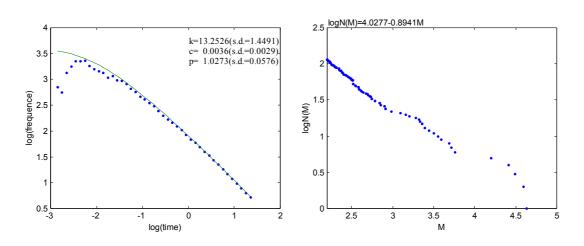
(4) 1986/11/14 (規模=6.80,東經 121.83度,北緯 23.99度)



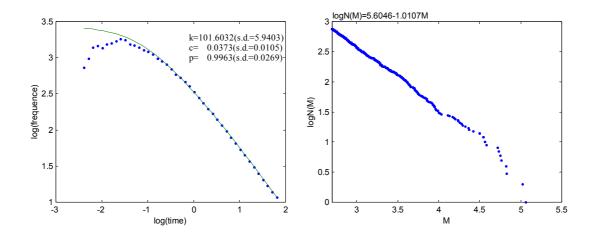
(5) 1991/03/12 (規模=5.67,東經 120.07度,北緯 23.25度)



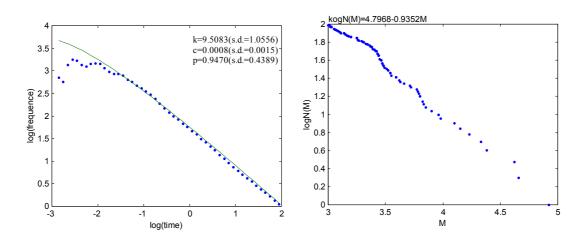
(6) 1993/12/15 (規模=5.70,東經 120.52度,北緯 23.21度)



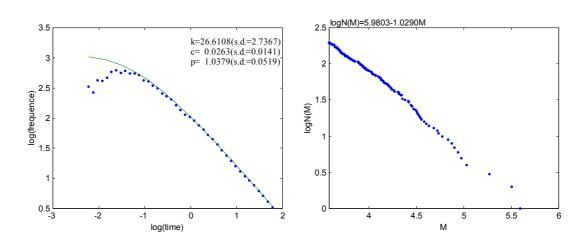
(7) 1994/06/05 (規模=6.20,東經 121.84度,北緯 24.46度)



(8) 1995/06/25 (規模=6.50,東經 121.67度,北緯 24.61度)



(9) 1996/09/05 (規模=7.07, 東經 121.37 度, 北緯 22.00 度)



(10) 1998/07/17 (規模=6.20,東經 120.66度,北緯 23.50度)

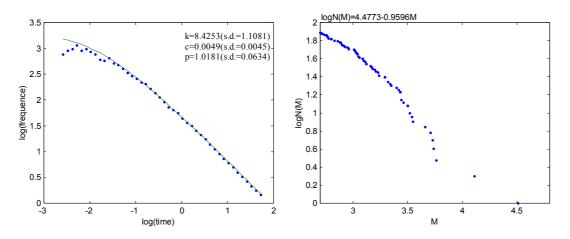
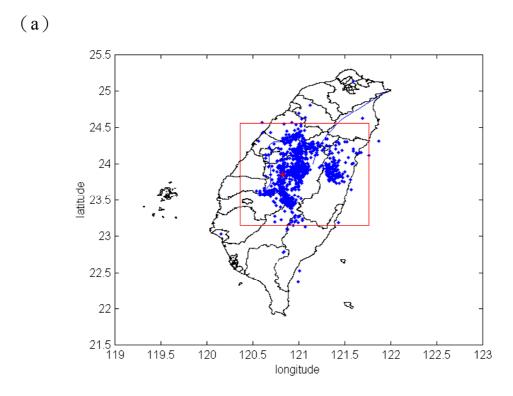


圖 3.2:台灣早期資料 (1978~1998) 十筆餘震序列之時間-頻率、規模-頻率圖形



(b)

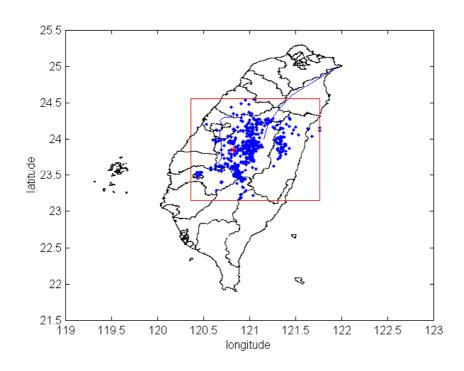


圖 3.3:(a) 集集主震之後 2 天內發生規模 2.0 以上的地震分布,方框為近期資料的空間範圍(b) 集集主震之後 40 天內發生規模 4.0 以上的地震分布

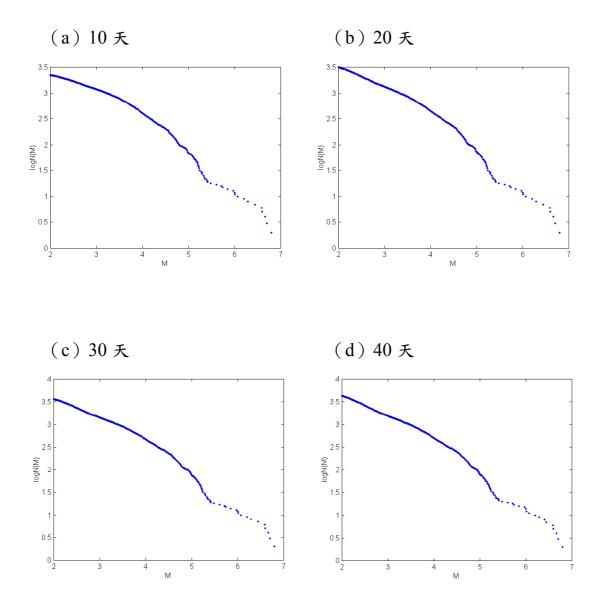


圖 3.4: 集集主震之後 (a) 10 天內 (b) 20 天內 (c) 30 天內 (d) 40 天內, 所有地震規模大於或等於 2.0 之規模-頻率圖形

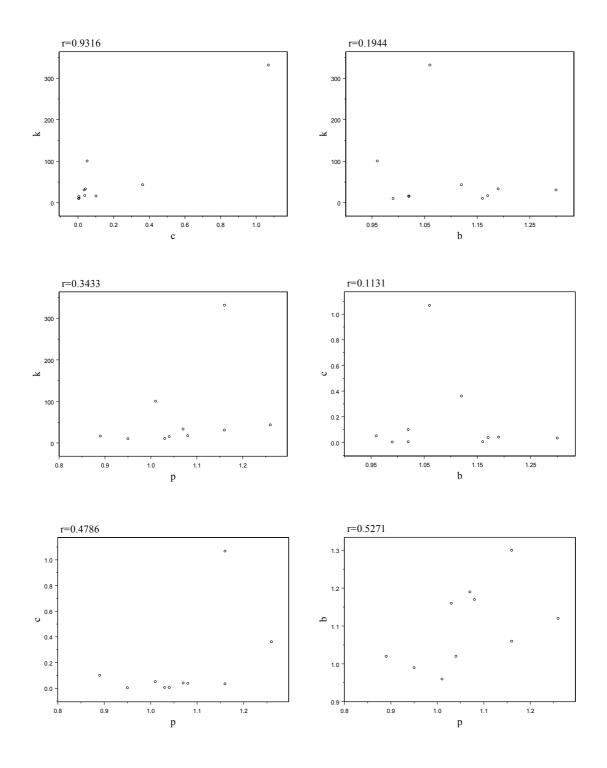
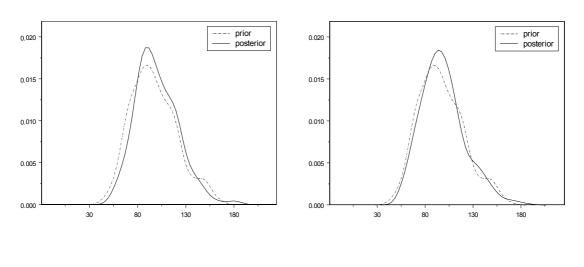


圖 3.5:台灣早期資料 (1978~1998) 十筆餘震序列 RJ 模型中各參數 之散佈圖

(a) 10 天 (b) 20 天



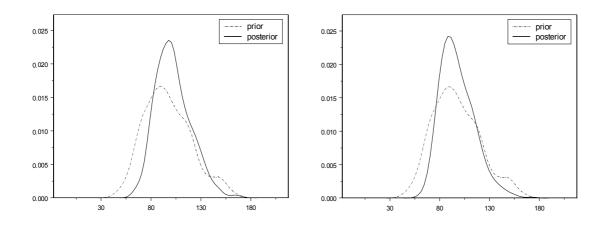
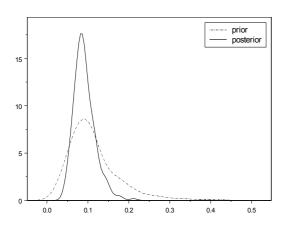
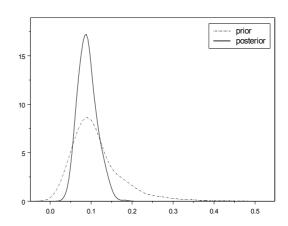


圖 3.6: RJ 模型中參數 k 之先驗分配和後驗邊際密度函數圖

(a) 10 天

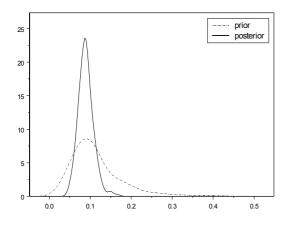
(b) 20天





(c) 30 天

(d) 40 天



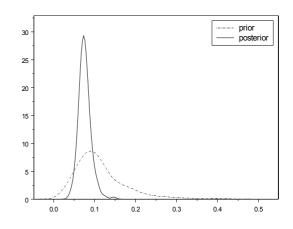
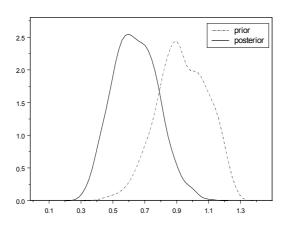
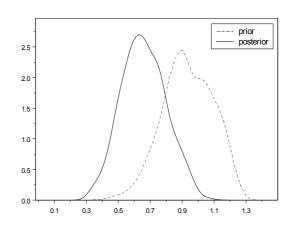


圖 3.7: RJ 模型中參數 c 之先驗分配和後驗邊際密度函數圖

(a) 10 天

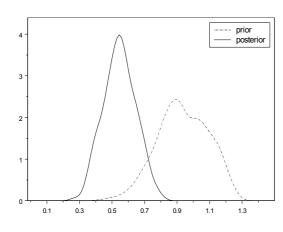
(b) 20天





(c) 30 天

(d) 40 天



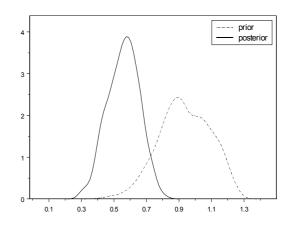


圖 3.8: RJ 模型中參數 b 之先驗分配和後驗邊際密度函數圖

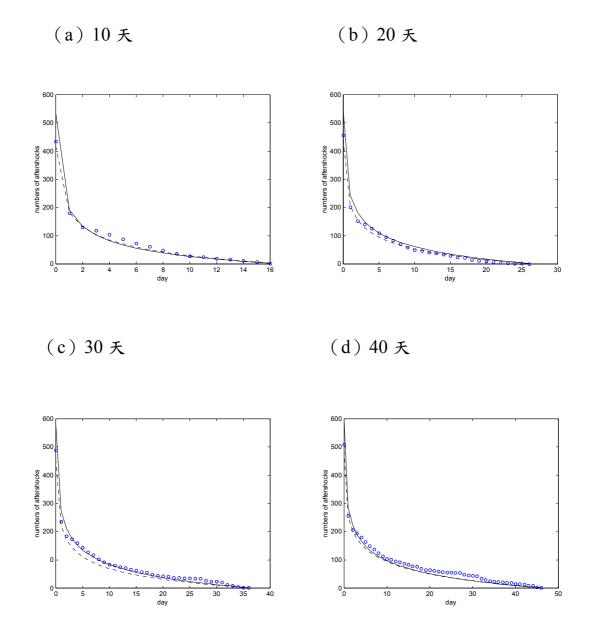
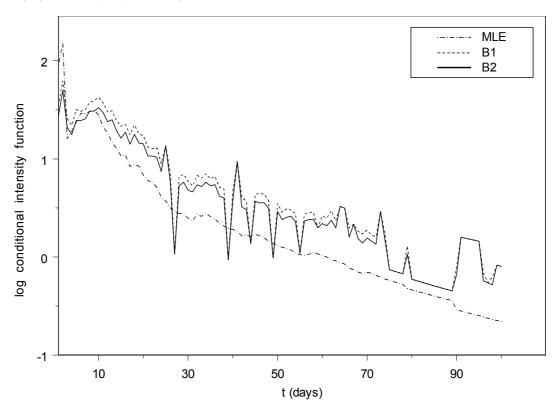
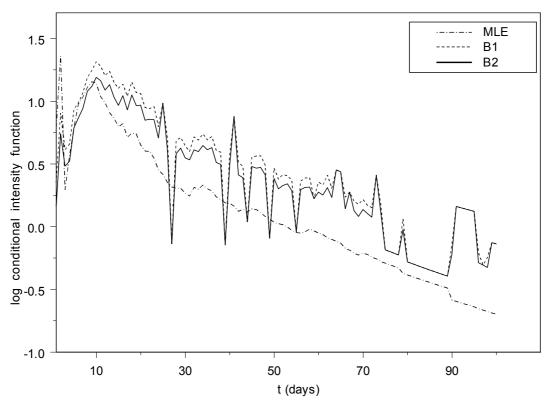


圖 4.1:根據集集主震發生後 t 天內的餘震資料配適 RJ 模型之適合度,其中 t 分別為 (a) 10 天 (b) 20 天 (c) 30 天 (d) 40 天,(-) 為貝氏估計 (--) 為最大概似估計;根據配適模型求得未來 7 天規模 $M \geq 4.0$ 的餘震之期望個數 (\cdots) 與實際發生規模 $M \geq 4.0$ 的餘震 (0)

(a) 預測未來 3 天時



(b) 預測未來7天時



(c) 預測未來 10 天時

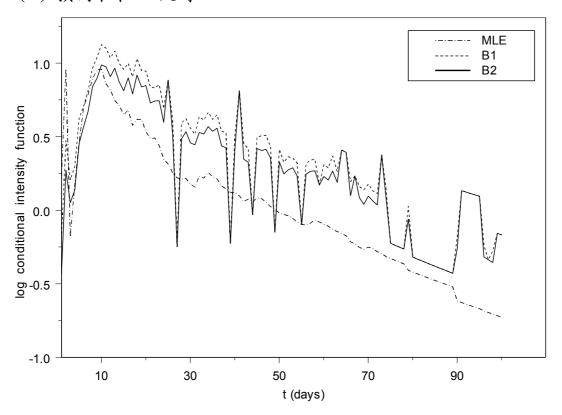


圖 4.2:逐期預測未來 (a) 3 天 (b) 7 天 (c) 10 天時發生規模 4.0 以上集集餘震之對數條件強度函數

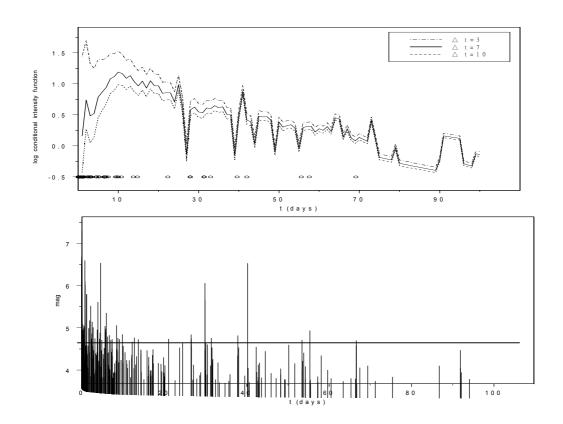
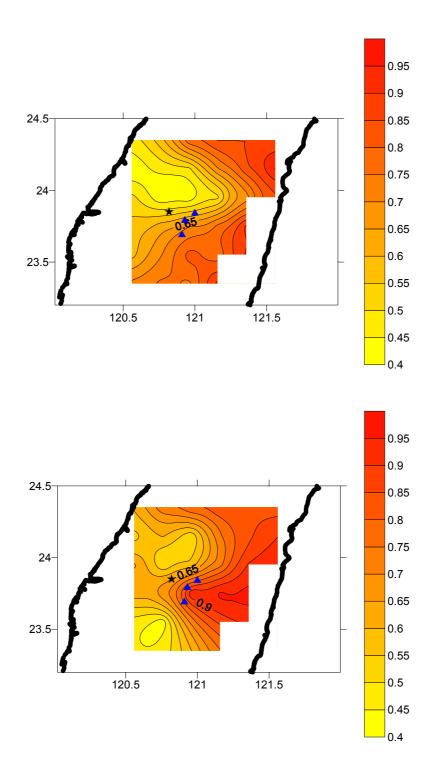
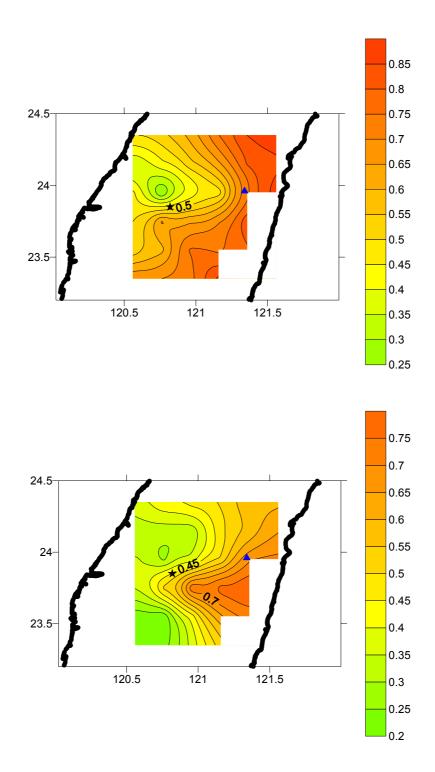


圖 4.3:預測發生規模 4.0 以上集集餘震之對數條件強度函數 $\left(\log \hat{\lambda}_{B_2}\left(t,M\right)\right)$ 與實際發生地震規模之對照

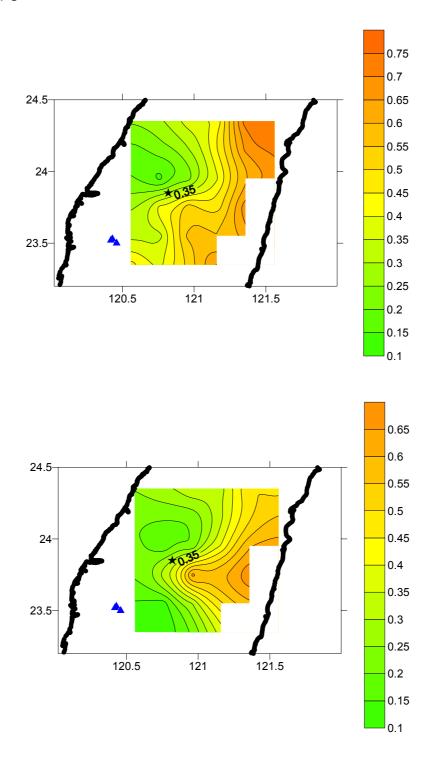
(a) 10 天



(b) 20 天



(c) 30 天



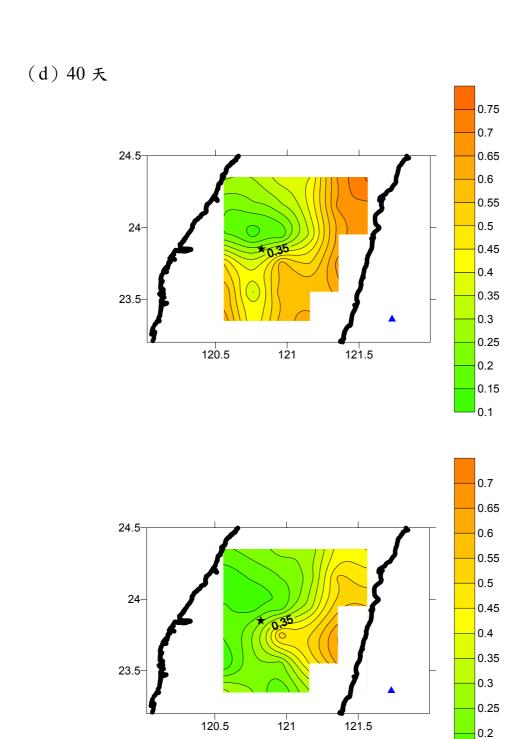


圖 4.4:根據集集主震發生後 t 天內的餘震資料配適 RJ 模型,預測未來7天內發生規模 5.0 以上餘震的機率之空間分布,其中 t 分別為(a) 10 天(b) 20 天(c) 30 天(d) 40 天;上圖為利用貝氏估計方法,下圖為利用最大概似估計方法

0.15