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Summary

In this paper we find a clags of umbrella alternatives for which the Mack-WoLFE (1981} peak
known test is optimal in the sense of Pitman efficiency. The asymptotic null distribution of the
Cuen-WoLrE (1989) statistic for the peak-unknown umbrella alternatives problem is obtained.
Some percentiles of the asymptotic distribution computed by simulation are presented.
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1. Introduction

Suppose that X, ..., Xy, 1=1, ..., k, are k independent random samples from

populations with continuous distribution functions Fy(z)=F (x—7), t=1, ..., k.
In this paper we consider the problem of testing the null hypothesis Hy: [9#1=...
=] against the class of alternatives H : [ =...=8p=... =, for some p, with
at least one strict inequality]. Since the location parameters, §’s, have an up-
down ordering, H 4 is referred to as an umbrella alternative (see, for example,
Mack and WoLrk 1981). The point p which separates the location parameters into
the two different ordering groups is called the peak or point of the umbrella.

In a drug study, for instance, the investigator is usually interested in testing the
equality of the effects of increasing dosage levels. Suppose the investigator believes
that if the treatment effects are not identical, then, in general, the higher the dose
of the drug applied, the better will be the resulting treatment effect. However, he
is also aware that the subject may actually succumb to toxic effects at high doses,
thereby decreasing the treatment effects. In this case, the prior information about
the umbrella pattern treatment effects is available and then such umbrella alter-
natives are appropriate.

A variety of nonparametric tests have been developed for umbrella alterna-
tives in the k-sample setting. See CHEN and WoLFE (1989) for more detailed refer-
ences. When the peak of the umbrella is known, Mack and WoLrE (1981) genera-
lized the JONCRHEERE (1954)—TERPSTRA (1952) test for ordered alternatives and
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provided a solution to this problem. HETTMANSPERGER and NORTON (1987) sug-
gested a linear rank test which has maximum Pitman efficacy when the peak-
known umbrella alternative specifies equal spacings. In this article, the MAcK-
WoLrE (1981) peak known test is proved to have Pitman efficiency 1 relative to a
class of linear rank tests for umbrella alternatives. We, therefore, find a class of
umbrella alternatives for which the Mack-WoLFE (1981) peak known test is opti-
mal. This also provides insight into the comparison of the HETTMANSPERGER-
NorToN (1987) test and the Mack-WoLFE (1981) test for umbrella alternatives
with peak known.

CHEN and WoOLFE (1989) proposed an extension of the Mack-WoOLFE (1981) peak
known test to theunkown peak setting. However, no properties of the test were
given. In this paper, to use the CHEN-WoLFE (1989) statistic when sample sizes are
large, the asymptotic null distribution of the statistic is derived and the corre-
sponding percentiles computed by simulation are presented.

2. Description of Previous Tests

L

Let Ry; be the rank of X;; among the N = 2 n; observations and let B;= Y, Ry/n;
=1

be the average rank of the ith sample. Se’o Ani=niy/N,1=1, ..., k. For testing an

arbitrary peak-known (p) umbrella alternative H,, MAck and WoLre (1981)
proposed to reject Hy for large values of

-1 2 k-1
(2.1) d,=2 2 Uy+2 2 Ujs ,
t=1 =141 t=p J=t+1

where Uy is the usual Mann-Whitney statistic corresponding to the number of
observations in sample j that exceed observations in sample ¢, while HETTMANS-
PERGER and NORTON (1987) suggested to reject Hy for large values of the statistic

(2.2) Vp—zllNi ?/—Gw Rz-l- Z Ane ( zp—%—cw) Ri;

i=1 =p+1

where

)
=Z AN+ Z (2p—1) ANy -

i=p+1

ﬂ

If the peak of the umbrella is unknown, CHEEN and WOLFE (1989) viewed the
alternative H 4 as a union of £ individual umbrella alternatives with the peak at
groups 1, ..., k, respectively, and obtained a natural extension of the Mack-
Wolfe test based on 45 (2.1) to the unknown peak setting. This natural extension
corresponds to rejecting Hj for large values of

(2.3) Ar. =max (4F, ..., AF)
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where A4 =[A;,— Eo(A4:)]/[Vars (4:)]"/2 and

k
Eo(4,) = [Nf +(N =N,y )2~ 2l —nf]/4
i=1

and
Varg (Ac):{2[Nf+(N—Nz—1)3]+3 [N;+ (N —Ny)2]
X
— 3 n? (2ni+3)—nZ (2n,+ 3) + 120NV,
=1
X (N—Ng_l)h 1272?N}/72 R
t
with N;= > n;, are the mean and variance, respectively, of 4,,¢(=1, ..., k.

=1

3. A Class of Umbrella Alternatives for which the Mack-Wolfe Peak Known Test
is Optimal

Foreachi=1, ..., k, let X;1, ..., Xmi be a random sample from a population with an

absolutely continuous distribution function Fy(z) and associated density fi(z).
Assume that N -~ in such a way that Ay; >4, with 0<A;<1, ¢=1, ..., k In this
gection, we consider testing the null hypothesis

Ho . [/1(:5) =... :fk(x)]
against the Pitman sequence of alternatives
Han: [f{(x) =f (x—'ﬁg/V.Z_V), for H=... é'ﬂp =..z=
with at least one strict inequality] ,

where f is the density function with finite Figher information; that is,

1= | = [%] fz) do<oe

Denote a sequence of score functions by an(i), t=1, ..., N, where ay (1 +[ulN])—~
1 1
p(u), 0<u<1, as N ~c, with 0< [ (p(u)—§)? du <o, §= [ ¢(u) du and [v] being
0 0

the greatest integer equal to or less than v. Let L be a class of linear rank statistics

k 7y
(3.1) T=N-1/2 Z ONi Z aN(R“) s
i=1 j=1

where 6 y1=... =dnp =... =0 nx. Following the results in section 7.2.1 of HAJEK and
SIDAK (1967), an asymptotically efficient test of Hy versus H 4y among tests of the
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form (3.1) is obtained by setting d yi=a®;+b, a>0, and

d log (f(x_))
dzx

Furthermore, if §y; —6; as N —e, the Pitman efficiency of a test of the form (3.1)
relative to the asymptotically efficient test (AET) is given by

z (5i—5) <m—a>]

p(u)=qp(u)=

x=F-1(u)

ARE (T, AET) = _
2 (9e—D)

=1

[ [ (¢ —r) dur

Of (p(u)—§)? du f ps(u)—@r)? du

Z (6:—3)2
i=1

% k
where 8=, 1;0;, 3= L and ¢@;= f Pr(uw) du. Tt was noted in FarrrLey and
i=1 i-1 0

FrLiGNER (1987) that the optimal test among tests of the form (3.1) can be obtained
by setting dn;=ad,+b, with >0, i=1, ..., k, even though it may not be the
asymptotically efficient test.

We consider in this section the subclass of L corresponding to ay(i)=1i/N,
i=1, ..., N. The associated test statistics are

k
(3-2) Tp=N"”2Z AMCSMRt .
i=1

where dny1=...=0yp=... =0 ;. Noted that when /() is the density of a logistic
distribution, the optimal test of the form (3.2) is also the asymptotically efficient
test in the larger class L.

It can be seen that the HETTMANSPERGER-NORTON (1987) test for a peak
known umbrella alternative based on ¥, (2.2) is of the form (3.2) and is optimal for
equally spaced alternatives since

=1 t=p+1

N-llep N- 1/2{2 A-Nt z—ow R,,-l— 2 }uw 2p—z—cw)R}

k
=N-1/2 Z AniOnily,
i=1

where dyxi=(1—Cy), t=1,...,p, and dyi=(2p—1—23Cuw), t=p+1, ..., k. The MaCxk-
WorrE (1981) test based on the statistic 4y (2.1) is not of the form (3.2). However,
from the results of KozioL and REID (1977), we see that the statistic N-3/2 A, has
the same Pitman efficiency as does the statistic

T;,ZJV”“2 > 2 Anidni (By— R)+ 2 2 Awikny (Ri—R))

-1 k-1 k
i=1 j=i+1 t=p j=i+1 ]
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=N—l/z{ > Ani Z AnyRy— Z AniRy Z lm]

=1 J=1+1 ={+1

-1k k-1 x ~
+| 2 AniBe 2 Ang— 2 Ang 2, ZNJRj]}

i=p J=t+1 i=p j—i+1

-1 p-1
=N-1/2{ Z AnsR, Z Ani— 2, AniRy Z /’»Nj]

=1 J=t+1

[kjlzmm S Ay S AN,RjE‘, zm]}

i=p J=t+1 F=p+1 =
_ p-1 —
= N-1/2 [,zm (Anvt+24x0—Anp) B+ 2, Ane (Anvi+ 24N -1y — Awp) By
i=2

k
+Anp (1=Anp) Bp+ 2 Any(1 —Ans— 24 ng-1)+ AN@p-1) Ri],
F=p+1

where Ayo=0and Axy;=2Anx1+4...+An¢, 2=1, ..., k. Therefore, we have the follow-
ing theorem and corollary.

Theorem 3.1: Suppose that An; ~1; as N e, with 0<A;<1, i=1, ..., k. Then,
among tests of the form (3.2), the Mack-Wolfe procedure based on 4, ( 2. 1) is opti-
mal for testing the sequence of alternatives H,y with 4;=cdy,+d,i=1, ..., k,
where ¢>0 and

Avi+24ng-1y—Anp; i 1=isp-—1
%=1 1—2wi; i i=p
1—Ani—24Ne-1y+ ANe-1y; U p+1=i=k.

Corollary 3.2: Suppose that Ay; ~1/kas N -, 1=1, ..., k. Then, among tests of
the form (8.2), the test based on A, ig optimal for the alternatives H, y with
z%:cd;—kd, 1=1, ..., k, where ¢>=0 and

2t—p—1; if 1=1=p—-1
6;=[k—1; if t=p
k+p—2i; if p41=i=k

Note that the results obtained in this section are in agreement with the findings of
the Monte Carlo power comparison between 4, and ¥V, as discussed in CHEN and
WoLre (1989).

4. Asymptotic Null Distribution of the Chen-Wolfe statistic

Note that the rank-based statistic 4;,,(2.3) proposed by CEEN and WOLFE (1989)
is distribution-free under Hy. Therefore, the null distribution of the statistic can
be computed by evaluating the statistic for every possible arrangement of the
ranks. Since each of these arrangements is equally likely under Hy, to compute the
null distribution one only needs to count the number of arrangements which lead
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to each value of the statistic. However, the number of arrangements becomes pro-
hibitively large very rapidly as each of the sample sizes 7y, ..., ny gets large. To use
the Chen-Wolfe test basedon 4, (2.3) when the sample sizes are large, the asymp-
totic null distribution is needed.

Theorem 4.1: Suppose that Ax; ~4; a8 N —o0, with 0<Ay<1,i=1, 2, ..., k. Then,
under Hj, the limiting (N —<) distribution of the random vector

Ai=(45, .., 47)
is a (k—1)-variate normal distribution with zero mean vector.

Proof: Following the results of ARcHAMBAULT, MACK and Worre (1977) and
Mack (1977), we obtain that, under Hy, any linear combination of the compo-
nents of the random vector 4;_; has a limiting (¥ —ec) univariate normal distri-
bution. It implies that 4;_, has a limiting (£ — 1)-variate normal distribution with
zero mean vector.

Theorem 4.2: Suppose that Ay; —A; a8 N -, with 0<A;<1,i=1, ..., k. Then,

under Hy, the limits (N —o) of the elements of the covariance matrix, >, corre-
sponding to the random vector Ay_; = (4%, ..., 4}) are given by

lim Vare (47)=1, t=2,..,k,

N-—+w
and
Ilvim Covo (A}, AF)=3axr(s, t) [br(s) be(t)]"12, 2=s=t=k,
where
8 k-1 1
ar(s, t)= 2 My A+ Z /11 (1 —-/h) (1 —A.j_l)— Z MAi1A44
1=2 j=t =5
+ A1 (At—As—l)
and

8 k
be(8) = A3+ (1= A 3= 22— 2B+ 64sds-1 (1—44)
j=8

=1

v
with 4o=0and A,= 2, 2w, v=1, ..., k.
u=1
This theorem is obtained by deriving the relevant covariances and then finding

their limiting values. For a proof, see the Appendix.

Theorem 4.3: Suppose that Ay —>1; a8 N -, with 0<A;<1,i=1, 2, ..., k. Then,
under Hj, the statistic

AL =max (45, A%, ..., Af)
converges in distribution to max (— Wi, Ws, ..., W) as N -, where the random
vector (Wa, ..., Wi) has a (£ — 1)-variate normal distribution with zero mean vector

and covariance matrix, >, given in theorem 4.2.
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Proof: This theorem follows from the fact that A} = — A5 and an application
of the Cramer-Wold theorem (see Macx (1977)).

Corollary 4.4: Suppose that Ay;—24; as N —o, with 0<1;<1,4=1, 2. Then, un-
der Hj, the statistic

Ax =max (4F, A7)

converges in distribution to |W{|, where the random variable W has a standard
normal distribution.

When the limiting sample size proportions are all equal, some critical values for
the test based on 4;;,, were estimated by simulation and are presented in Table 1.
For each value of £, the number of populations, the International Mathematical
and Statistical Libraries (IMSL) routine RNMVN was used to generate appropriate
(k—1)-variate normal random vectors for which the statistic A%, was evaluated.
Proceeding in this fashion, we obtained an empirical cumulative distribution of
Ak, based on a sample of size 10,000 from the corresponding true distribution.
The estimated critical values for the 47,  test then correspond to the appropriate
percentiles of this empirical distribution. When k=4, for example, the estimated
95th percentile for the asymptotic null distribution of 4, is 2.20.

We will now illustrate how to conduct the proposed approximate test based on
Af .« by giving a numerical example. Inin vitro mutagenicity assays experimental
organisms may succumb to toxic effects at high doses of the test agent, thereby
reducing the number of organisms at risk of mutation and causing a downturn in
the dose-response curve (MARGOLIN, KAPLAN and ZEIGER (1981)). The observa-
tions (fictional data is used) given in the following are the numbers of visible
revertant colonies observed on plates, containing Salmonella bacteria of strain
TA 98 and exposed to various doses of Acid Red 114.

Revertant Colonies for Acid Red 114, TA98, Hamster
Liver Activation

Dose (ug/ml)

0 100 333 1000 3333
24 67 78 82 44
22 59 43 b8 33
17 27 98 45 28
19 23 37 50 21
35 54 36 60 30

We begin by calculating the Mack-Wolfe statistics A,’s.
Ar=Un~+Usi+Un+ Usi+Usa+ Uso+ Uss+ Uss + Uss + Usy
=3+04+0+6+94+9+174+94224+25=100,
Az=Uja+ Uss+ Usa+ Usa+ Usz + Usz + Usg
=224+9494174+9+224+25=113,
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and

To obtain the value of A*
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A3=Uyo+Uia+Uss+ Ugs+ Usa+ Uss =22+ 25+ 16 + 9+ 22+ 25 =119,
Ay=Uis+ Uis+ Usg+ Usg+ Uss+ Usg + Usy
=22+25+254+164+16+16+25=145

As=Ujio+ Uz + Ura+ Urs+ Uss+ Usa+ Uss + Uss + Uss + Uss
=224+254+254+194+16+164+8+16+34+0=150.

X x» weneed to find the Eo(4,)’s and Varg (4;)’s.
Eo(A1)=[(5)2+(25)2—5(5)2—(5)2]/4=500/4=125

and
Varg (A1) = {2 [(5)3+ (25)3] + 3 [(5)2 + (25)2] — 5(5)2 (13) — (5)2 (13)
+12(5) (5) (25) — 12(5)2 (25)}/72 = 31500/72=437.5 ,
Eo(A2)=[(10)2+(20)2—5(5)2— (5)2]/4=3850/4=187.5
and
Varg (A2)= {2 [(10)%+( 20)3]+3[(10)2—|—(20)2] 5(5)2 (13)—(5)2(13)
+12(5) (10) (20) — 12(5)2 (25)}/72 = 22050/72 = 306.25 ,
Eo(43)=[(15)2+(15)2—5(5)2—(5)2]/4=300/4="175
and
Varo (4s)= {2 [(15)3+ (15)3]+ 3 [(15)2 + (15)2] — 5(5)% (13) — (5)2 (13)
+12(5) (15) (15)— 12(5)2 (25)}/72=12150/72=168.75.
Since n;=...=n5=>5, we also have
Eo(As)=Eo(A43)=87.5 and Vary(4,4)=Vary(42)=2306.25
and
Eo(A45)=Ey(A1)=125 and Varg(ds)=Var(4;)=437.5.
It implies that
AT =[A4;—Eo(4,)]/[Vare (4A;)]H/2=(100—125)/(437.5)1/2= —1.20,
A =[As— Eo(A2))/[Var (42)]2 = (113 — 87.5)/(306.25)2 =1.46 ,
A =[As— Eo(4s))/[Varo (43)]H2= (119 —75)/(168.75)12=3.39 ,
=[As— Eo(d44)]/[Vary (4412 =(145—87.5)/(306.25)1/2=3.29
and

Ay =[As— Eo(4s5)]/[Varo (45)]4/2 = (150 — 125)/(487.5)/2=1.20 .

Therefore, 4.%,, =max (47, ..., A¥)=max (- 1.20, 1.46, 3.39, 3.29, 1.20)=3.39.
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With £=5 and equal sample size proportions, we know, from Table 1, that the
estimated 99th percentile for the asymptotic null distribution of 4, is 2.89.

max
Thus there is a significant evidence for an umbrella patterned dose-response curve.

Table 1
Estimated percentiles for the asymptotic null distribution A,y When 1= ... = Ax=1/k

Level Number of populations (k)
a 2 3 4 5 6 7 8 9 10 15 20 30

.10 1.65 1.82 191 1.97 2.02 206 2.09 213 2.3 220 220 221
.05 1.96 2.3 220 227 230 234 236 242 241 250 2,51 2.63
01 2.68 2.70 280 2.89 294 293 294 297 3.00 3.07 3.08 3.13
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Appendix
Proof of Theorem 4.2: Let

-1 k
Q=3 Uy and Q= 3 Uy
u=1 v=5+1

for:=2,..,kand j=1, ..., k—1. Then

¢ k-1 k
A= 3 Qi+ 20, t=2,.,k—1, and dpr= 3 Q.

Since the @; is the two-sampleMann-Whitney statistic computed between the ith sample and
the preceding ¢ — 1 samples combined, we obtain

Var, (Qi) =mNy_y (N3 +1)/12,

£
where Ny= 2 ny, =2, ..., k. Similarly, we have
%=1

Vary (Q))=ns (N—-Nj) (N =Ny +1)/12, j=1,.,k-1.
After some algebraic manipulations, we also have the following result:

—nny (N+1)/12  for ¢>j
COVO (Q-;, Q;) = { 77/{1\74_1 (N -—Ni)/12 for t.=j
0 for i<j.
Furthermore, we see, directly from TErPsTRA (1852), that, 1f H, is true, the random variables
Qs, ..., Qi are independent and the random rariables @y, ..., @;_, are also independent. Therefore,
we obtain, after some straightforward computations, the following result:

{16 E—1
Covy(4s, At)=I§ i nilN -1 (Nf+1)+12‘7?»1 (N—N;) (N—Nj1+1)

t
— 3 miNioy (Ni+1)+ Noog (Vo= Nooy) <N+1)], 2ss<t=k.
{=s

10 Blom. J., 33 (1991) 3
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Since
Covy (45, A;) =[Vargy (4s) Var, (At)]_1/2 Covy (4s, Ay)
=[N-3Vary (As) N=3Var, (4,)]~Y2 (N3 Covy (4s, 41)1,

the limits are easily obtained by substituting 44N for n4, ¢=1, ..., k, and replacing N =3 Var, (4,),
N-3Varp (4;) and N~3Cov;(A4s, A¢) by their limiting values.
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