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Abstract. In this paper we are concerned with the problem of testing against
the simple-tree alternative that there is at least one treatment more effective
than the control when data are subject to random right-censorship. A class of
tests based on linear combinations of two-sample weighted logrank statistics
cach comparing an individual treatment with the control is proposed. Asymp-
totic relative efficiencies of the simple-tree versions of Gehan-Wilcoxon, logrank
and Peto-Prentice-Wilcoxon under Lehmann and scale altornatives are evalu-
ated for various combinations of survival dissributions and censoring probakbil

ities. The results of a Monte Carlo level and power study are presented. An
iliustrated numerical example is also reportoed.

Key words and phrases:  Asvmptotic relative efliciency, right-censored data,
simple-tree alternative.

1. Introduction

The problem of comparing scveral treatment groups with a control group
oceurs frequently in survival data analyses. For example, in comparative clinical
trials, different therapies are often corpared with a standard therapy or placebo
in the prolongation of the survival time of the patient with a cortain discase. Tn
these cases, randomly right-censored data are often available, since subjects who
randomly enter the study to take therapies under consideration may be lost to
follow-up randomly or the study may be terminated at a preassigned time owing
to time limitation.

For the é¢th sample (i — 0,1,..., k), let L', ....T,,, be independent iden-
tically distributed (1.i.d.) random variables each with a continuous distribution
function F,, and . ..., C%,, be tid. random variables cach with a continuows

clistribution function &,, where Cy, is the censoring time associated with the sur-
vival time 1;,. Suppose that the zero population (i = 0) is the control and the
other & populatlons are treatments. Furtherinore, assume that the & + 1 sam-
ples are independent of each other and the €, are distributed independently
of the T,,. In suchk a setting, we actually only ohserve the bivariate vectors
(X biy ), where X, = min(/;,,Ci ), &, = 1, # Xy, = 1y, and 0 otherwise.
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Let S; =1—1,.1=0,1,....k Supposc that the treatments are at least eguiva-
lent to the control and that a higher response corresponds to a better treatment
effeet. In this paper, specifically, we are concerned with testing the null hypoth-
osis Hog: (S, = So, i = 1,2,..., k) against the simple-tree alternatives (Barlow et
al. (1972)) II1: (8, = Sp with striet inequality for at least one ¢, ¢ = 1,2,... k)
when the randomly right-consored dafa are involved. The problem of deciding
treatments {if any) which are more cffective than the control is also considered.

For the setting where data are subject to unequal patterns of censorship,
Chakraborti and Desu (1991) based on the Gehan-Wilcoxon {Gehan (1965)) scoro
and suggested a gencralization of the Fligner-Wolfe (1982) test for the simple-
tree alternative. They also proposed, according to Slepian’s {1962) incquality, a
multiple test based on two-sample Gelian-Wilcoxou statistics in determining which
treatments are more effective than the control. However, the logrank statistic
(Mantel (1966}) is probably the most commonly used two-sample test statistic
and Gehan’s generalized Wilcoxon statistic is a member of the general class ot
weighted logrank statistics (larone and Ware (1977)). Therefore, we consider
in this paper gencralizations of the Fligner-Wolfe test on the basis of weighted
logrank statistics tor the simple-tree alternatives. Multiple tests based on two-
sample weighted logrank statistics are also suggested.

A class of tests based on lincar combinations of two-sample weighted logrank
statistics each comparing an individual treatment with the control is proposed.
Three special simple-tree tests based on the Gehan-Wilcoxon, logrank and Peto-
Preutice-Wilcoxon (Peto and Peto (1972), Prentice (1978)) statistics are inves-
tigated in detail. A numerical example [King et af. (1979)} studying the offect
of dicts on the development of tumors is illustrated. The Pitman cfficacies of
the sirnple-tree tests under Lehmann and scale alternatives are calenlated. The
optimal sample sive allocation in the sense of maximizing the eflicacies is then ob-
tained. The asymptotic relative efficiencies {ARE) among these tests for Weibull
and lognormal distribniiong are evaluated and the effect of censoring on ARE is
explored. The results of a Monte Carlo simulation investigating the level and
power performances of the simple-tree tests for small and moderate sample sizes
are pregseuted.

2. The proposed tests

Fori=90,1,...,k let D,(t) be the number of patients in group i who have
been observed to dic by time ¢ and Y;(¢) the number of patients in group 7 who
are still alive and uncensored at time £ In the arca of wartingale based analysis
of censored data the two-sample weighted logrank statistic, for comparing the i-th
treatment with the control, is written as

(21) [ju, = /O(J ng(f)d{[\(](f) f&,(f)}
40
where K{].,j(t) — VVUA(T)YUU)Y’;(t)/{}/(](f) + Y,(ﬂ} and j\,(t) = j(]l dD,(S)/Y:(‘-) is

Nelson's (1969) estimator of the cumulative hazard function of group 4, A;{#).
We consmder 1 this paper three special cases ol the weighted logrank statistics
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which arc of general interest: the Gehan-Wilcoxon (Gehan (1965), Prentice and
Marek {1979} statistic when Wy, (#) = {Yo(t) + Yi(t)}/(ne + n;), the logrank
statistic (Mantel (1966)) when Wo, (#) = 1, and the Peto-Prentice-Wilcoxon ( Peto
and Peto (1972), Prentice (L978)} statistic when Wy, (t) = A'gi(t), where S, {(£)
is the Kaplan-Mcicr {1958) estimator in the combined samples of 0 and . Note
that the Chakraborti-Desu (1991) overall test considers only the Gehan-Wileoxon
two-gsample statistic.

Rermark 1. For Lhie Gelian-Wilcoxun statistic, equation (2.1) is

(29) [y = L {/mn(t)d,oo(f,) - /x%(f,)dD,- (t}} .
J0 JO

Tig + 1y

In comparing the i-th treatrent group with the contral group, we obtain (X,,,, ;).
w=1,...,n4 and (Xoy. 80 ), v == 1,...,n9. Therefore,

T, o

/m Yi(tdDo(t) = 3 S I Xin > Xou) (00w = 1)
Q

u=1v=1

and, similarly,

fa's) Ty T4}
f Vol(t)dD;(t) — Z 3 H(Xoy > X} T (B — 1),
4]

wu=1v=1

where T{s) = 1, if statement s holds, and 0 atherwise Henee, the connting process
formulation of the Gehan-Wilcoxon statistic in (2.2) can be reduced to the more
familiar expression {Gehan (1965)) as

T, T

1
2.3 Uyy = ———— ; Xiuafs'iu:X ':.:aé uw)h
(2.3) 0 Yo + 1, ;;Qﬁ( 3 Xows Oy
where
+1 it X,, > Xo, and &y, =— 1
(24) (D(Xiu:ﬁm; XOU;‘SOU) = —1 it Xtu << X()y and (Sm = 1

0 otherwise.

For testing against the simple-tree alternative Hy: (5, = Sy with strict in-
equality for at least one i, ¢ — 1,2,...,k), we propose 1o use the statistics nf the
form

k
Uipy = Z B:Uns.

=1

where 8 — (31, 3, ... 8} Is a vector of nonzero constants. Let N = iju n;. It
can be shown, in Appendix A1, that, under the null hypothesis Hp. the statistic
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N2y (#)/s has asymptotically a standard normal distribution, where s = Va2
and s? is stated in equation {A.3). Thercfore, the proposed test is to reject Hy if

(2.5) U(B)=N"PUB)/s > z(a),

whore z{«) Is the upper @ th pereentile of a standard normal distribution.

The choice of the constants @'s 1s open, see, for example, Chakraborti and
Desu (1991} for a discussion on several possible choices of these constants. For
slmplicity, however, we suggest to employ & = 1, ¢ = 1,2, ...k, namely, the
simple-tree tests based on U(1) in the practical situations,

Remark 2. Andersen ef al. (1993) proposed a trend test statistic which is
a linear combination of the generalized Kruskal Wallis {1952) rank-sum statistics
for right-censored data. For Breslow’s {1970) gencralization of the Krnskal-Wallig
statistic, in particular, this trend test is a linear combination of the statistics

n, k N4

Vi 3N S X i Xy b50), i =01,

w1 =0 v—1

where ¢(-} is in (2.4). Note that the statistic V, compares the i-th group with the
combined groups from 0 to &, while the statistic Uy, in (2.3) compares the i-th
treatment group with the control (i = 0) group.

If the proposed simple-tree test rejects the null hypothesis Hy, one would wish
to determine which treatments are more effective than the control. According to
Slepian’s ineguality, we then suggest, under an approximate experimentwise error
rate «, to

(2.6) claim S, >S5, if Upi = N0 s = 2By for i=1,.. Kk,

where s;, is given in (A1) and o = | — (1 — b)*. Note that the pairwise follow-up
tests with the Gehan-Wilcoxon two-sample statistics was proposed in Chakraborti
and Desu (1001).

3. An example

King et of. (1979) investigated the effect of diets on the development of tumors.
Ninety rats of the same age and speecies and in similar physical condition woera
divided into three groups and were fed with low fat, saturated and unsaturated
diets, respectively. The rats were observed for 260 days after an identical amount
of tumor cells were injected into a foot pad of cach rat and thelr twmor-fiee lnes
were recorded and reported in Table 1. The tumor-free tine of the rat without
turnor ai the end of the 200 days and the survival tiwe of the rat dyving accidently
with no evideonce of twmor are both regarded as censored times and underlines.
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Table 1. Tumor-ree tbne (days) of 80 rals oo three different diets.

Low-fat 140 177 50 656 86 153 181 191 77 84
87 56 66 73 119 140 200 200 200 200

200 200 200 200 200 200 200 200 200 200

Saturated 124 58 B6 68 T9 8 107 86 142 110
96 142 86 75 117 98 1040 126 43 46

8l 133 165 170 200 200 200 200 200 200

Unsaturated 112 68 84 109 153 143 60 70 98 164
63 653 ¥ Yl vl 4143 U 7 i3 66

66 94 101 105 108 112 115 126 161 178

Source: King et al. {1979).

40 60 30 160 120 140 160 180 200 220

Fig. 1. Survival curves of rats in three diet groups.

The Kaplan-Meier survival function estimates for the three groups were shown in
Fig. 1.

To compare the ability of the saturated (treatment 1) or unsaturated diet
(treatment 2) relative to low fat diet (control) in keeping the rats tumor free,
the two-sample weighted logrank statistics comparing the control group with the
treatment groups are employved to construct the simple-tree tests. After some
computations we have the relevant summary statistics in Table 2. According to
these statistics, we found that the p-values for the logrank, Peto-Prentice-Wilcoxon
and Gehan-Wilcoxon simple-tree tests are 8.9 = 1075, 1.7 x 1073 and 1.3 x 1073,
respectively. We then conclude that at least one of the saturated and unsaturated
diets has shorter tumor free time than does the low fat diet. To determine which
treatment diets that are unable to keep the rats tumor free compared to the control
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Table 2. Summary statistics [or the diet-tumor example.

Statistics  Logrank Peto-Prentice-Wilcoxon  Gehan-Wilcoxon
g

U 6.565 4.053 4.200
Unz 14.010 7.292 7.667

31 0.368 0.271 0.2539
m 0.323 00.223 0.230

s 0.579 0.409 0.415
ot 1.879 1.565 1711
Uya A.566 3.455 3.513
1) 3.749 2.926 3.013

diet, we found, at o = 0.05, the critical value for the pairwise-wise comparisons
in {2.6) is 2(0.0253) = 1.955. ‘Therefore, all three multiple tests based on two-
sample logrank, Peto-Prentice-Wilcoxon and Gehan-Wilcoxon statistics lead to
the conchision that at o — 0.05, only the unsaturated diet has shorter tumor free
time compared to the low fat diet,

4. Asymptotic relative efficiency

Note that, under the simple-tree alternative Hy, we can express the statistic
N Y2008 as

- k o g
Af'“]/zU(ﬁ) = /0 I;;)((:))(JMO(I‘) — ZL I;.i((:}) d M {t)

R t’{ddft\ﬂ(%) JE

721 Kt {dj:(g }dA(t),

i=1

where Ky and K;’s are stated in Appendix A.1. Under the allernatives where
the abgolutely continuous distribution functions F¥ can depend on N and
Ny - FP@tY — 0as N — 00,4 = 0,1,...,k, for some absolutely
continuous distribution function F, we obtain, along the hnos of Section 74 in
Fleming and Hartinglon (19913, the general formula for the Pitman efficacy of the
simple-tree weighted logrank test in (2.5) is

Uy movodA = 300 f) FiidA )

ol

?
where

N
kg = lim /————-Kn. = lim
N—oG TL(_](IV TL()) N—oo

no(f\/

4

na)

(AAN JdA) — 1),
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R 2%} | Ny . . LTy N
ki = lm /—K;, o = lim /———{(dA [dA) — 1},
TN T, B = im o m{( i JdA) — 1}

i=1,2,...,k,
and

a? = / {E hz;(t)} {1 ~ AA()}dA(L)  is stated in (A.2).
40 =1

Note that there are some situations where the & + 1 groups of data arc subject to
the same pattern of censorship, see, for example, Chen (1994). Hence, we consider
in this section the assumption of equal censoring; that is, G, = G, i =0,1,... k.
Lot G =1—-Gand § =1~ F. The cfficacy of U{8} can he simplified to he

9

{ I 40/\0 ar(Zf_l AO-&.@MM)W’OGdP - Z;Ll vV AnAo. 3, fo wm%GdF}

Ao fyt{00E ) Mifiwen )2 + 300 Aail(1 — Agy) B2l Y GdE

To compute the efficacy discussed previously, two particular types of simple-
tree coutiguous alternatives are considered in the following:
I. Lehmann alternatives

H()ZS?'V_S for ?:O,IJK
and
Hy:5; = SUb/VE S and b; > by with strict inequality for at least one i,

i=1,2, ...k, where S 13 an underlying survival function.
II. Scale alternatives

IIQIS?;:S fOI' L:(),l,k
and
Hy:S(t) = Ste™™/ "/"\_"} and b > by with strict inequality for at least

onec i, i =1.2, ...k

Note that the Lehmann alternatives cotrespond to the proportional hazards model,
while the scale alternatives correspond to location shifts in log survival times. It

can he seen that, for ¢ = 0,1k, VN{dAN /dA — 1} — —b; for the Lehmann
alternatives and limy_o. VN{dAN(£)/dA(t) - 1} = —b, t;’(—%) — % — 1} for

the scale alternatives, We assume, without loss of generality, that by = 0. The
formulas for the efficacies of the simple-tree weighted logrank statistics under the
assumption of equal censoring are then obtained, after soine algebraic manipula-
tions, as

Ao{0 VRoibi Jo waGdF)?

(4-1) ko . k420 14
2 V000 Bwn)? 0 B, LG
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for the Lehmann alternatives and

1} I 2
'\0{22“1 VRobi, [ won t;--é‘;)—tg,(g) —1 G‘dF}

2 fom{(Ele Biwoi)? + Zf:l Bl }GdF

for the scale alternatives.

(4.2)

Remark 3. The problem of allocating observations is usually of interest in
practical situations. If se consider the setting of Ag = ad and Ay = A = -+ =
M = X where A = (a+ k)7L, then Ag; = (e + 1)7! for i = 1,2,...,k. Since,
under such a sample size allocation, maximizing the efficacy in (4.1) or (4.2) is
equivalent to maximizing AoAo; = al(a + 1){a + k)] ™!, we find that the efficacy is
maximized by taking ¢ = vk. Hence, for equal censoring, the optimal design for
the simple-tree test based on /() is the same as that for Dunnett’s {1955) test.

Note that wg; = SG gives the Gehan-Wilcoxon {G-W) statistic, wg; = 1 yields
the logrank {LR) statistic and wy; = S produces the Peto-Prentice-Wilcoxon (P-P-
W) statistic. By replacing with appropriate weights, the efficacies for the LR, G-W
and P-P-W statistics for equal censoring and sample sizes can be readily obtained
ag given in Appendix A.2. In fact, the efficacy of the Gehan-Wilcoxon simple-
tree test is identical to that of the Chakraborti-Desu {1991) test for Lehmann
alternatives when sample sizes are all equal. Moreover, for equal censoring and
sample sizes, the asymptotic relative efficiencies among the tests considered here
depend only on the survival and censoring distributions.

To evaluate the asymptotic relative officiencies (ARE) among the simple-tree
tests U{B), we consider the Weibull survival distribution with density function
f(t} = nt" “Lexp{—t7), t > 0, for the Lehmann alternatives and the lognormal sur-
vival distribution with density function f(¢) = {n/(#vV/27)} exp{ (n?/2}{logt)?},
t > 0, for the scale alternatives, where n = 0.5, 1 and 2. We employ the uniform
censoring distributions over (0, 2) with probabilities of censorship 0.1, 0.3 and 0.5.
The values of the ARE’s for the Lehmann and the scale alternalives willh equal
uniform censoring when sample sizes are all equal are reported in Table 3.

Table 3.  Asymptotic relative efficiencies.

Corssons G-W/LK P-P-W/LR

ensoring

Alternatives probability =05 1.0 2.0 0.5 1.0 20

Lehmann 0.1 0.78 075 0.73 0.80 078 .76
0.3 083 078 0.75 0.89 0.85 0.80
0.5 .87 0.81 0.75 0.95 093 0.88

Scale 0.1 1.15 L6 1.17 1.15 1.16 L.17
0.3 1.11 1.13 1.15 1.12 1.14 L.16

0.5 1.0 111 1.13 1.09 1.11 1.14
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We can see, from Table 3, thart the logrank simple-tree test is superior to
either the Gehan-Wilcoxon simple-tree test proposed by Chakraborti and Desu
(1991} or the Peto-Prentice-Wilcoxon simple-tree test for Lehmann alternatives,
while the Gehan-Wilcoxon test and the Peto-Prentice-Wilcoxon test are both more
efficient than the logrank test for scale alternatives. This is not surprising since
Weibull distributions preserve the proportional hazards, but the hazards arc far
from being proportioral for lognormal distributions. Note that the ARE’s are also
generally in agreement with the findings in Liu et al. (1993).

5. Monte Carlo study

To examine the relative level and power performances of the simple-tree tests
based on (1) in (2.5) for comparing several treatments with a control when
observations are subject to random right-censorship and sample sizes are varied
from small to moderate, we conducted a Monte Carlo study. We considered & == 3
treatments with sample sives ng =y — -+ = ng,, = n = 10, 20 and 30 in the level
study and with n = 20 and 30 in the power study.

Exponential aud lognormal distributions were considered as survival time dis-
tributions and the uniform distribution over (0, R) was used as the censoring dis-
tribution. Appropriate uniform, normal and exponential variates were generated
by using the IMSL routines DRNUXN, DRNNOR and DRNEXF. The exponential-
transformed normal variates then give necessary lognormal variates. In the level
study, the standard exponential distribution and the logrormal distribution with
zero normal mean and normal variance ¢° = 1/2 were considered. In the power
study, we used exponential distributions with various values of scale parameters
0;'s and lognormal distributions with normal variance o2 = 1/2 but different val-
ues of normal means #;’s. Various values of R which corresponrd to she probability
of censorship as 0.10, .30 and 0.50 were considered in the level study, the corre-
sponding uniform distributions for probabilities of censorship .10 and 0.30 were
then emploved as censoring distributions in the power study. Note that the cen-
soring probabilities were fixed for cach population in the level study. However, in
the power study, they might be varied for the four populations involved due to
different survival time distributions.

For ecach of these settings, we used 1,000 replications to obtain the level or
powoer estimates under the nominal level o — 0.05. Therefore, the maximum
standard error for the power estimate is about 0.016 {=+/(0.5)(0.5)/1000). In fact,
the standard error for the level estimate is less than 0.007 (/2,/{0.05)(0.95)/1000}.
The level and powar estiates are preseated in Tables 4 and 5.

It 1s evident, upon examination of Table 4, that the logrank, Gehan-Wilcoxon
and Peto-Prentice-Wilcoxon simple-tree tests hold their levels reasonably when
the cominon sample size 18 about 20. The power study presented in Lable 5 shows
that the unweighted logrank test is more powerful than the Gehan-Wilcoxon and
Peto-Prentice-Wilcoxon tests for exponential distributions. However, the Gehan-
Wilcoxon and Peto-Prentice- Wilcoxon tests are both superior to the logrank test
for lognormal distributions. These results in fact coincide with the ones in com-
paring their asymptotic relative efficiencies presented in Table 3.
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level astimates for ov = 005, uniform censoring and ng — Ry — r2 — 75

Censoring Expeonential Lognormal
n  prohability LR PoPoW OW LR P.P-W  O-W
10 0.1 0.071  0.057  0.065 0.082 0.063 0.068
0.3 0.066 0.062 0.065 0.066 0.057 0.061
0.3 0.058 0.0541 0.067 0.008 0.0 0,001
20 0.1 0.062  0.054 0.057 0.049 0051 0.053
0.3 0.058 0059 0.062 0,048 0.047  0.053
0.5 0.055  0.084  (Q.057 0.036  0.051  0.054
30 0.1 0.068 0052  0.052 0.662  D.045  0.048
(L3 3.052  0.063 0.057 0.0589  0.050 0.0533
0.5 0,036 G.058  0.066 0.054  0.0563 0.056

Fxponential: f(#) = exp(—t).

Lognormal: f{t) — {1/(t/7)} exp{—(logt)?}.

- T,

Table 5. Powers estimates for « = 0.05, uniform cengoring and ng = ny = 1y — Ny — n.

Censoring probability

Survival 0-1 0.3
distribution n 8y & &2 O3 LR P-P-W G-W LR P-P-W G-W
Exponential 20 1 ] 1 2 0.187 0175 0.176 0.164  0.161  0.15]
1 1 1.5 2 0.363  0.312  0.304 0.289  0.263 0.259
11 2 2 0.469 0.417 0416 0.384  0.359 0.344
1 15 2 2 0.663 0,599  0.600 0.568  0.537  0.520
1 2 2 2 0.788  0.729 0.731 0.673 0.624 0.625
30 1 1 1 2 0.262 0.240 0.239 0.219 0.213 0.211
11 1.5 2 0.502 0423 0.424 053988 0.373  0.360
1 1 2 2 0.645  0.502  0.549 0,509  0.48¢ 0.439
1 1.5 2 2 GB8a7 0TTs 0772 024 D.sh 0.663
1 2 2 2 0.825  0.875  0.870 0.827  0.790 0.761
Lognormal 20 0 0 0 0.5 0,185 0.226  0.218 0.169  0.207  0.199
0 0 02 05 0306 0359 0349 0.280 0.316  0.310
O 0 0% 05 0476 0.534  0.535 0442 0480  0A7T
0 0.2 05 05 Nnea2 06RO 0.670 0.562 0.G18 0.611
0 05 05 05 0772 0831 0324 0.735 G796 0779
300 0 0 0.5 0246  0.277  0.268 0.227  0.238 0238
0 0 02 05 0388 0421 04121 0308 0391 0.385
0 0 0.5 05 0604 0.633 0651 0.577  0.604  0.604
0 02 05 G5 0732 0.790 0.7%4 0.702 (.754 0.743
0 0.0 05 05 0833 0931 05829 0.864  0.880 0.891

Fxponentiak: f,(¢) = {1/0,) exp{—t/8,}.
Lognormal: f,(1) = {1/{t/mYexp{ (logt — §,)2}.
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6. Conclusion

A class of tests based on linear combinations of two-sample weighted logrank
statistics 13 proposed for testing against the simple tree alternatives when data
are subject to random right-censorship. The asymptotic relative efficiencies and
simulation results show that the unweighted logrank simple-tree test should be
used when the asswnplion of proportional hazards is tegable and sanplc sizes
are near 20, When the hazards are far from being proportional, both the Gehan-
Wilcoxon and Peto-Prentice-Wilcoxon simple-tree tests are more powerful than the
logrank test. However, as noted by Andersen et al. ((1993), 349-350}, the weight
function used in the Peto-Prentice-Wilcoxon test depends only on the survival
experienee, while the Gehan-Wilcoxon test uses a weight function that depends
on survivals as well as censorings, we recommend to implement the Peto-Prentice-
Wilcoxon simple-tree test for the non-proportional hazards model, especially, when
the censoring patterns differ greatly in the populations under consideration.

In comparing several treatments with a control, experimenters arc also inter-
ested in deciding which treatments (if any) are more effective than the control.
In such cases, the pairwise follow-up tests based on two-sample weighted losrank
tests are suggested. The choice of the weight function for the multiple test is,
again, similar to the one for the overall simple-tree test.
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Appendix

Al Asymptotic null distribution of N—1/2U(8)
Note that, when S; = Sp, using the martingale framework, the statistic U,
in (2.1) can be written as

. e K (f) /% ]‘:(_),,1(5) )
Ugi = 1M () — M (1),
0 | e [ e

where the AL{t) = D, (%) j(; Yi{s)dA(s) arc independent zero mean martingalee
and A(s) is the common cumulative hazard function. Suppose that N — oo in
such a way that n, /N — X;, 0 < A\; < 1, and, hence, n;/{ng + n;) — MN/(A +
Ao) = Aog, 1= 000,00k TEY(E) /gy 2, mi{t), ¢ = 0,1,...,k, uniformly as N —
oc, then the three weight functions considered in this paper satisfy the property
that Wi, {t) 5 woi(t) and, thus, K2 (1){Yo(t) + Yi(&)]/[NYa(0)Yi{t)] L h,i(t) and
Kos (£ Ko (8)/[NYa(t)] 5 his(t) uniformly as N — oo for i = 1,2,..., k, where
h.g;:(t) = Ag,\o,‘,u}gi(t)ﬁo(f/)ﬂi(i)/;(l - /\(_),)Tro(t) + /\0.,,71'.,;(1,)}
fl-,.jj(xﬁ) — )\(]/\(].,;/\iju, (t)t;u'()j(t)ﬂ'()[t)ﬂi(t)ﬁj(ﬁ)/{[(l — /\[);;)?T(;.(t) + )\oiﬁi(f.ﬂ
(1= Aoz )mo(t) + Aogm;(£)] 1
iA G120k
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Hence, the Martingale Central Limit Theorem (see, for example, Theorem 6.2.1 in
Fleming and Harrington (1991)) implies that the asvmptotic null (Hy) distribution
of the random vector N~ Y2(Ua;. Ugs, .. .. Ung) is the k-dimensional normal with
zero mean vector and covariance matrix £ = {,;), where

oy = /0 ho (O~ AA@AA(),  d,5=1,2,... k,

with A(#) the common cumulated hazard function and AA(#) = A(t) — At~}

Note that unbiased and consistent cstimators of o,y are then given by

ri e [0y o] o 0] 20

and
A i /x Koi (1) Koy (1) {l i AD(H) — [} dD{t)
Sig N fo }’()(t) Y6y~ 1 Y {t)
for i#5=1,2,...k,

where D(t) —~ ., D,(1), Y(t) = 3F  Vi(t) and AD(1) = D{t) - D(t—). Fol-

Lot bz}

lowing the Cram@r—\\‘old dpvmn we observe that the asymptotic null distribution
koo

of N~ -1/ $F 1 B:Ug, is normal with zero mean and variance % = Y., oy

NY, £y 88,0, for any nonzerc constants J;, i = 1,2,. .. k.

Note that we can write N™Y2U(8), under HO, ag

* Ky(

i Ad(t
dMgl( (1),
0 Yo of Z/ ®

where K(1) = N-V23,Ko(t), 1 = 1,2,..., k, and Kg(r) = Zl | K;(t). Moreover,
we have KZ(1)/Y,(t) & h;(t), 1 =0,1,..., k, where

NV () =

ho(t) = Aol ZADJB uJ()y(f)WJ( JHIE = Aoy hmo(t) + Ao (£)}

Gl
and, fori =1,2,... Ak,
Rilt) = AoAos (1 — Nog) 82w (6w (8)mi () /{(L — Aoi)molt) + Aaimi(£)}2

2

Therefore, o7 can also he expressed as

(A.2) JZ:/‘ th [ AA{AA(L).
Q

Aun unbiased and consistent estimator of o2 is then given by

. s SN K2 AD(t) - 1Y) dD(t)
(A3) 52 ;/@ {Z:———K(t) }{1 v -1 } <08

0

Hence, we obtain, by applying Siutsky’s Theorem, that N~Y20U(8)/s is asymp-
totically standard normal, where s = v's2,
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A2 Pitman efficacies for equal censoring and sample sizes
The Pitman eflicacics of the Logrank (LR), Gehan-Wilcoxon (G-W) and Peto-

Prentice- Wilcoxou (PP-P-W) simple-tree tests for equal censoring and sample sizes
derived directly from equations (4.1) and (4.2} are given in the following:

k 2 e i 2 g
off(LR) = {Za&b?} [ GdF / (k+1) (Zﬁi) +Zﬁ?
/0 i=1

i=1 =1

i 2 oo
o1 R) = {z} ([ esur)
i=1 J0
k “ k _—
kE+1 gl Y 8 / GPS2dF
/| (e) 2 |

k 12 o) 2
off(P P W) = {Zﬁiblj {f GS(IF}
¢

i=1

/e

tor the Lehmann alternaiives, and

k 2 -
, 0o L1ST(E) ES(E) .
ff(LR) = B3ib; — 1| GdF
L {2 } oG-S

2

and

o]

,l'c O
+ 67 / GS*dF
i=1 v

k 2 k
/ (k+1) (Zﬂij +3°8H ¢
/ i=1 i=1
2 .
T . oS ESM(Y) U
eff (G-W) - {Zﬂb} {/0 (S(t) -5 1) szdF}

a

&

k 2 -
/ (k4 1) (Zm) + 87 f G SR
=1 a

i=1
k 2 o0 f‘j"(f) tq”(f) &
FP-P-W) = 4N 4:h, A AN ) SAF
“H(P-P-W) {L } fo (Su) 0 ) }

=1

2
g k o
/ (k+1) (Z 3.,») Yy g GS2dI
i=1 i—1 40

for the scale alternatives.

and
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