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Abstract

In this paper, we are concerned with multiple comparison problems in a
one-way layout under the general setting with continuous population
distributions. Of interest are the comparisons of successive treatments
when the treatment effects are expected to be increasing or decreasing
with treatment levels. Let X; be the random variable corresponding

to the ith group, i=1,...,.k. To make the comparisons, we construct
simultaneous confidence regions for probabilities P(X; < X;,1),

i=1..,k-1. A simulation study is conducted to investigate the
coverage probability of the proposed simultaneous lower confidence
bounds for the probability and the ones suggested by Lee and Spurrier
[9] for comparing successive population medians. Finally, the proposed
confidence region is illustrated by using a data set from a subchronic
study of a chemical on liver damage conducted by the National Toxicology
Program.
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1. Introduction

The effects of a substance (e.g., a toxin or a drug) are usually
investigated by an experiment including several increasing or decreasing
levels of the substance. It often assumes reasonably that the larger dose
level produces stronger or at least equal treatment effects. However, the
exact dose response relationship remains unknown. To get insight the
real pattern for the dose response relationship, Lee and Spurrier [8] and
Liu et al. [11] considered multiple comparisons between adjacent
treatments to decide if an increasing or decreasing level leads to an
additional effect when the underlying populations are normally
distributed. However, the assumption of normal distributions may not be
feasible in practical world. Lee and Spurrier [9] then suggested
nonparametric procedures for the successive-treatment comparisons
when the underlying continuous distributions are different only in location
parameters.

Most of the multiple comparison procedures developed under a one-
way layout involve several two-sample statistics. For example, Lee and
Spurrier [8] and Liu et al. {11] employed several two-sample student’s ¢
statistics and Lee and Spurrier [9] considered several two-sample Mann-
Whitney [12] statistics. However, for the general two-sample problem, it
occurs quite often that the two populations may be different both in
location and scale. Therefore, Sen [14] estimated the variance of the
Mann-Whitney statistic and constructed a confidence interval for the
probability that the variable (X;) in one group is smaller than that (X,)

in the other group, denoted by P(X; < X;). Halperin et al. [6] simplified

the variance estimate of the Mann-Whitney statistic as a function of
P(X; < X3) and then obtained a confidence region for the probability

following the procedure in Ghosh [5] for a binomial proportion. However,
the variance estimate developed in Halperin et al. [6] underestimates the
true variance and, hence, the confidence interval suggested therein tends
to be anti-conservative in holding its confidence level. Therefore, Mee [13]
employed a variance estimate in Sen [14] to construct a binomial

proportion-type confidence interval or bound for P(X; < X,). In fact, the
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confidence bound suggested in Mee [13] maintains the confidence level
better than that of the one proposed in Halperin et al. [6]. Moreover, both
the binomial proportion-type lower confidence bounds are superior to the
one in Sen [14] on holding the confidence level.

Therefore, in this paper, we consider to contrast adjacent treatment
effects based on Mee’s [13] procedure. Under the one-way layout, let
Xy, .., X; be the independent random variables distributed as

continuous distribution functions Fj(x),..., F(x), respectively. In Section

2, for comparing adjacent treatments under such a general setting, we
develop a simultaneous confidence region for probabilities P(X; < X i)
i =1, .., k-1, when treatment effects are expected to have an increasing
or decreasing order. In Section 3, we present and discuss the results of a
simulation study for contrasting the proposed simultaneous lower
confidence bounds with the ones suggested in Lee and Spurrier [9] for a
variety of ordered treatment effects configurations under normal and two-
parameter exponential distribution. Finally, in Section 4, we demonstrate
the application of the proposed procedure by illustrating a data set from a
subchronic study conducted by the National Toxicology Program
investigation the effect of vinylidene fluoride on liver damage (Dietz [3]).

2. Proposed Confidence Regions

We consider the multiple comparisons between adjacent treatments
by constructing simultaneous confidence regions for p; = P(X; < X i+1)

= [FdFy,i=1,.. k-1 Let Xj,..X,i=1..k be k independent
random samples. A consistent and unbiased estimator for p; is then

given by p; = IFdFHl, where F. (x)=n; 12 ¢(X, ,x) with ¢(a, b) =1,

if a < b, = 0, otherwise. Let Rz(:—)l denote the rank of Xj,; j among all

the observations in the combined samples of the ith and (i + 1)th samples.

Set Rl(i)l =M an Rz(il i The equivalence of the Mann-Whitney statistic

and Wilcoxon’s [15] average rank further leads to

= 1= N+l
piza[Ri(j)r———”;‘ ) (2.1)
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~ Note that var(p;) can be expressed as p;(1 - p;)/N; which can be
consistently estimated (Sen [14]) by

) 2
. 1 1 %( (i) i) My +1
vanp;) = RY _R.,.-RV 4%
( 1 ) | (ni+1 - 1) = 1+1, t+1, J i+l ———2
ni ] 9
1 (i) 5@ n+1
+m;(%‘ ~Rj-B+—5—] | 22

where R;; is the rank of X;; among all the observations within the ith

sample. Therefore, the N; can be estimated by

N; =[p;(1 - p;)l/var (p;)- (2.3)
The binomial proportion-type confidence interval for one particular p;

(Mee [13]) can then be solved by setting
VNi|bi - pi| "
< 24/9,
vpi(l - p;)
where z, is the upper ath percentile of a standard normal distribution.

We now construct a simultaneous confidence region for the p;’s. To

do so, we obtain the following result according to the Central Limit

Theorem and Continuity Theorem (Billingsley [1]):

Theorem. Let np = ZL n;. Suppose n;/np —> \;, for some constant

0<X <lasnp -, i=1..,k Thenas np - »

«/ﬁ(ﬁl - P1)’ VN (Prey —Pk—1)}j>Nk .0, T),
Vo1 - pp) VPe1(L - pp 1) )

where L =(p;;)p_1up and pj; =1 for i=1, .., k-1,p; ;5 =0 for 1 22

and p; ;4 = lim corr(p;, Djy1)-
nT-—)w
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Note that, following Chen and Wolfe [2], the covariance can be
estimated by

s N4}
A " = 1 g g Hi +1
. 5o)* oy 2 (s B =R+

1 _( pi+1) Bi+1) | M1 +1
[ni+2 (Ri+1,j “Rij - R+ 9 .
An estimate of p; ;,; is then given by

cov(p;, i)
\/;11‘(13;' yvar(p.;)

where var(p;) is stated in (2.2). Moreover, substituting, p; js1 by Pj s,

Pi i+l =

1

we have an estimate of I, denoted by L.

Let 2,7 and 2z, 2 be the upper ath percentiles of the distributions
of max(Zj, ..., Zy,;) and max(|Z;|, ... |Zp_y|), respectively, where
(Z, ..., Zy,,;) is distributed as Nj_,(0, ). Note that 2,1 and 2z, can

be solved by using the program in Drezner [4]. Therefore, we can employ
the values of 2,; or 2,3 to construct approximate simultaneous

confidence bounds or intervals for the p;’s. The approximate level- (1-a)

simultaneous confidence intervals for the p;’s are then obtained as

(t+22 o/ N Hp; +0.522 5/ N; £z2 2/ N; [135(1-ﬁ'i)+0-25zg,z/Ni]1/2},

where the Ni is given in (2.3). Moreover, the approximate level- (1 - o)
simultaneous lower and upper confidence bounds for the p;’s are given
by

=@+ 22 /MY B + 0.52% 1 /N; ~ Vza 1/ Ni[piQ - b;) + 0-2523,1/1\7;']1/2}
and
Y = @+22,/N)Mp; +0522 /N; + \)2(21,1/&' [B:;(-2;)+ 0-252(3,1/1\7:‘]1/2},

respectively.
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Note that, to perform the one-sided inference, we need to compute
Z5,1 such that the probability P(max(Z;, ..., Z,_y) 2 Zy 1) = @, where
(21, ..., Zp_1) is distributed to Nj,_;(0, £), by performing a suitable

program. However, if the program is not available, according to Hunter
[7] or Worsley [16], the probability can then be bounded above by

k-2
(k-1)P(Z) > zy,)- Zi:l P(Z; > 241, Ziy) > 24 1)

Let @(.) be the distribution function of a standard normal random

variable. Lee and Spurrier [8] modified the upper bound and suggested
use of

(B -1l - D(z,1)] - (k - 2) [l - D(2 )P

denoted by LS, which is, in fact, a probability upper bound when the
number of treatments k > 5. Due to the particular covariance structure,
the joint probability P(Z; > z, 1, Z;y; > 24,1) can be neglected for large

24,1, but the remaining joint two-variable probability should be taken

into account. Therefore, following the results in, again, Hunter {7] or
Worsley [16], we obtain an upper bound for the probability,

(- - (2, 1)] - [(k - 2) (& - 3)/2][1 - (2 ),

denoted by CW, for 2 = 3,4 and 5. In fact, CW bound reduces to the

usual Bonferroni upper bound when %k = 3 and coincides with the LS
bound when & = 5.

‘To investigate the appropriateness of the upper bounds, we computed,
by using the program in Drezner {4], the critical values 2q,1 for

1-0=0.90 or 0.95, 3 < k <7 and equi-correlation coefficient Pii+l =P

ranges from —0.1 to —0.5, which occurs often in practice. The probability
upper bounds, reported in Table 1, indicate that the CW bound provides a
better approximation for the probability than the LS bound for all k

under study, except for k = 5, when the involved random variables are
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equi-correlated. In general, to obtain approximated critical values only
based on the ®(.), use of CW bound is suggested for £ = 3 or 4 and LS

bound is recommended for & = 5.

Table 1. Comparisons of probabilities for one-side critical values

obtained CW and LS bounds for k treatment groups with equi-

correlation coefficient p; ;43 = p

l-o

0.90

0.95

Method
Cw
LS
CwW
LS
Cw
LS
Cw
LS
Cw
LS
CwW
LS
CW
LS
Cw
LS
CwW
LS
Cw
LS

-0.1
0.9016
0.8990
0.9013
0.9002
0.9011
0.9011
0.9008
0.9017
0.9007
0.9021
0.9504
0.9497
0.9497
0.9500
0.9502
0.9502
0.9502
0.9504
0.9502
0.9505

-0.2
0.9009
0.8983
0.9007
0.8996
0.9005
0.9005
0.9004
0.9012
0.9003
0.9017
0.9502
0.9495
0.9495
0.9498
0.9501
0.9501
0.9501
0.9503
0.9501
0.9504

-0.3
0.9005
0.8979
0.9003
0.8992
0.9002
0.9002
0.9001
0.9010
0.9001
0.9015
0.9501
0.9494
0.9494
0.9498
0.9500
0.9500
0.9500
0.9502
0.9500
0.9504

-0.4
0.9002
0.8976
0.9001
0.8990
0.9001
0.9001
0.9000
0.9009
0.9000
0.9014
0.9500
0.9494
0.9494
0.9497
0.9500
0.9500
0.9500
0.9502
0.9500
0.9504

-0.5
0.9001
0.8974
0.9000
0.8989
0.9000
0.9000
0.9000
0.9008
0.9000
0.9014
0.9500
0.9494
0.9494
0.9497
0.9500
0.9500
0.9500
0.9502
0.9500
0.9504
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Finally, note that, when tied observations are present, the midranks
are suggested to replace the associated ranks in (2.1)-(2.3). In fact, this
implies that we replace P(X; < X;,;) by P(X; <X;,;)+0.5P(X; =X;;)
for the relative effect between the ith and the (i + 1)th groups.

3. Monte Carlo Study

A simulation study is conducted for studying the coverage probability
of the proposed simultaneous lower confidence bounds, denoted by CW,
for a variety of distributions. We also investigate the one suggested in Lee
and Spurrier [9], denoted by LS, for comparing adjac_:ent location
parameters on holding its confidence level when the underlying
distributions are different not only in location parameters, but also in

scale parameters.

Two different types of distributions are under study: (1) Normal:
X; ~ N(8;, 5;),i =1, ..., k, and (2) Exponential: X; ~ E(8;, 0;),i =1, ..., k.
We consider k2 = 4 groups each with a common sample size of n; =
«+=n4 =n=10,20 or 30. The IMSL (International Mathematical and
Statistical Library) random number generators DRNNOR and DRNEXP

are used to generate normal and exponential variates, respectively. For

each set of distributions, the p;’s and the differences of the successive

population medians are computed. Under the nominal level 1-o =0.95,
the CW bounds are constructed for the p;’s and the LS bounds are

established for the adjacent-median differences. We perform the
simulation with 2000 replications for each set of distributions and
samples. The proportion of the confidence bounds which cover the true
probabilities or parameters is then used to estimate the coverage
probability of the confidence bounds. Finally, the results are reported in
Tables 2 and 3. Note that the standard error of the estimate is about

0.005 (=+/(0.95)(0.05)/2000).
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Table 2. Simulated coverages for simultaneous lower confidence

bounds under nominal level 0.95 and n; =... = ngy = n when the

underlying distributions are normal

(0'1, Og, O3, 0'4) (2, 2, 2, 2) (5, 2, 2, 2) (10, 5, 2, 2)
(p1, P2, P3) Method n =10 20 10 20 10 20

(0.5,0.5,0.5) CW 0.951 0949 0.952 0.948 0.948 0.945
LS 0.951 0.947 0942 0941 0.940 0.937-
(0.5,0.5,0.6) CW 0.952 0.952 0.953 0.951 0.949 0.948

LS  0.951 0947 0942 0941 0940 0.937-
(0.50.7,0.5) CW  0.945 0.947 0946 0.946 0942 0.947
LS  0.951 0.947 00942 0941 0940 0.937-
(0.7,0.5,05) CW  0.949 0951 0946 0947 0.947 0.947
LS 0951 0947 0942 0941 0940 0.937-
(0.5,0.6,0.7) CW 0951 0951 0952 0951 0.950 0.951
LS 0951 0947 0942 0941 0940 0.937-
(0.6,0.506) CW 0953 0951 0956 0951 0.951 0.950
LS 0951 0947 0942 0941 0940 0.937-
(0.7,0.7,05) CW 0943 00949 0939- 0945 0941 0.949
LS 0951 0947 0.942 0941 0.940 0.937-
(0.8,0.6,0.5) CW 0951 0951 0935~ 0946 0.943 0.945
LS 0951 00947 0942 0941 0.940 0.937-
(0.7,0.6,0.6) CW 0951 0954 0948 0950 0951 0.953
LS 0951 0947 0942 0.941 0.940 0.937-
(0.6,0.7,0.8) CW 0945 0945 0947 0.945 0942 0.947
LS 0951 0047 0942 0941 0940 0.937-

+: At least two standard deviations above (below) 1 — a = 0.95.
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Table 3. Simulated coverages for simultaneous lower confidence

bounds under nominal level 0.95 and n; =... = ny = n when the

underlying distributions are normal

(61, 62, G3, G4) 2 2 2 2) (5,2, 2, 2) (10, 5, 2, 2)
(p1, P2, p3) method n =10 20 10 20 10 20
(0.5,0.5,05) CW 0955 0955 0956 0.953 0953 0.953

LS 0957 0951 0940 0.922- 0.924 - 0.903 -
(05,0506) CW 0955 0956 0956 0955 0954 0955
LS 0957 0951 0940 0.922- 0.924 - 0.903 -
(05,0.7,05) CW 0951 0957 0952 0955 0.951 0.953
LS  0.957 0951 0.940 0.922- 0.924 - 0.903 -
(0.7,05,05) CW  0.950 0.958 0.944 0958 0.943 0.957
LS 0957 0951 0940 0.922- 0.924- 0.903 -
(0506,07) CW 0943 0959 0944 0958 0.946 0.958
LS 0957 0951 0.940 0.922- 0.924- 0.903—
(0.6,0506) CW 0954 0957 0956 0958 0.951 0.959
LS 0957 0951 0.940 0.922- 0.924- 0.903 -
(0.7,0.7,0.5) CW 0946 0959 0.940 0.960 0.941 0.957
LS 0957 0951 0.940 0.922— 0.924- 0.903 -
(0.8,06,0.5) CW 0931- 0956 0930- 0956 0.933- 0.957
LS 0957 0951 0940 0.922- 0.924 - 0.903-
(0.7,06,06) CW 0948 0961+ 0942 0.961+ 0946 0.960
LS 0957 0951 0940 0.922- 0.924- 0.903—
(0.6,0.7,0.8) CW 0929- 0959 0.930- 0.959 0.927- 0.959
LS 0957 0951 0.940 0.922- 0.924- 0.903-

+: At least two standard deviations above (below) 1 - a = 0.95.

The coverage probabilities presented in Tables 2 and 3 indicate that

the CW procedure generally holds its nominal confidence level except for

the cases with small sample sizes as 10 and some of the p;’s as high as

0.7 or 0.8. The LS procedure also reasonably maintains its nominal
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confidence level when the underlying distributions differ only in location
parameters. However, when the scale parameters of the underlying
distributions are widely different, the coverage probability of the LS
procedure does not reach the nominal level 0.95.

4. An Example

To investigate the effect of a chemical, called vinylidene fluoride, on
liver damage, the National Toxicology Program conducted a subchronic
animal study in which groups of ten male Fischer 344 rats were assigned
to receive by inhalation exposure one of six dosages of vinylidene fluoride
and three serum enzymes were measured for each rat. In this section, we
consider the serum enzyme, namely, SDH, under the four dosages
(parts/million) of vinylidene fluoride: 0, 1500, 5000 and 15000 (Dietz [3]).

We explore the assumptions of normal distribution and equal
variation for the data. Note that the box plot, displayed in Figure 1,
reveals that the median SDH is non-decreasing with the dosage of
vinylidene fluoride, while the variation of SDH in the zero-dosage group
seems to be larger than the ones in the other groups. The Lilliefors
normal test further gives the p-value of 0.038, 0.50, 0.014 and 0.50 for the
four groups under study. Hence, we learned that the normal distribution
assumption is not feasible for the first and the third groups. Moreover,
the underlying distributions may not be different only in location
parameters. Therefore, we employ the CW procedure to analyze the SDH
data.

32

50H

17 4

12 T T T T
1 2 3 4
Dasage. group

Figure 1. Box plot for seurm enzyme SDH.
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Note, as indicated in Dietz [3], that the SDH is, of statistical
significance, increasing with the dosage of vinylidene fluoride. The 95%
lower confidence bounds for (p;, ps, p3) proposed herein are further

obtained as (0.21, 0.30, 0.51). Therefore, at 95% confidence level, we claim
that the first dosage of vinylidene fluoride may be regarded as unharmful
as the zero-dose control to the liver damage. The dosages of 1500 and
5000 are equivalent in terms of the SDH value. However, the dosage
15000 preserves a significant effect on causing larger SDH value than the
dosage 5000. Finally, the data analysis suggests only the highest dosage
of vinylidene fluoride under study is significantly bringing damage to the
liver of rat than the other lower dosages of vinylidene fluoride.
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