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Abstract

In this paper, we consider identifying the minimum effective dose (MED) in a dose-response study when survival data are subject to random right-censorship, where the MED is defined to be the smallest dose level under study that has survival advantage over the zero-dose control.  To this end, we suggest single-step-down testing procedures based on three different types of weighted logrank statistics, respectively.  The comparative results of a Monte Carlo error rate and power/bias study for a variety of survival and censoring distributions are then presented and discussed.  The application of the testing procedures for identifying the MED is finally illustrated by using a numerical example of prostate cancer data.  
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1.  Introduction

Dose-response studies are frequently conducted to evaluate the treatment effects of a drug in animal experiments or clinical trials for drug development, where subjects or patients are randomly allocated to groups to receive several increasing dose levels of the drug and a zero-dose control.  One factor of interest in such studies is to identify the minimum effective dose (MED) of the drug, where the MED is defined to be the smallest dose level producing a clinically important response that can be declared statistically significantly more effective than the placebo response (Ruberg, 1995).  Under the assumption that responses are distributed according to normal distributions with a common variance, Ruberg (1989) proposed single-step multiple tests based on different contrasts of sample means to identify the MED.  Tamhane et al. (1996) then suggested use of more powerful step-down closed testing procedures based on some contrasts of sample means for the MED identification.  On the other hand, when the assumption of normal distribution is not tenable, Chen (1999) considered the step-down closed testing procedure as suggested in Tamhane et al. (1996), but based on the Mann-Whitney statistics for identifying the MED.  Jan and Shieh (2004) further proposed some contrasts of average ranks incorporated with the step-down closed testing scheme for the MED identification. 

However, in animal experiments or clinical trials, it occurs quite often that the response corresponding to a certain dose level of a drug is time to tumor occurrence or the prolonged survival time of patients with a particular disease.  In such studies, the survival data are usually subject to random right-censorship since these studies may be terminated at preassigned times or subjects who randomly enter a study may be lost to follow-up randomly.  Therefore, to identify the smallest dose level for randomly right-censored survival data that has survival advantage over the zero-dose control, we need new testing procedures. 
For the ith sample (i=0,1,…,k), let
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be i.i.d. random variables each with a continuous survivor function Fi, where Ciu is the censoring time associated with the survival time Xiu.  Suppose that the zero population (i = 0) is the control and the other k populations correspond to the increasing dose levels.  Furthermore, assume that the k+1 samples are independent of each other and the censoring time Ciu is distributed independently of the lifetime Xiu.  In such a setting, we often observe the bivariate vectors {min(Xiu, Ciu), 
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for some t.  In this paper, specifically, we consider to identify the minimum effective dose 

MED = min{ i : 
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for the situation where the survival data are randomly right-censored.  

In Section 2, we consider single-step-down multiple tests based on three types of weighted logrank statistics, respectively, for the MED identification.  In Section 3, the results of a Monte Carlo study investigation of the relative error rate, power and bias performances of the competing procedures are presented.  Finally, in Section 4, the use of these testing procedures is illustrated with the numerical example involving patients with stage III prostate cancer (Byar and Corle, 1977).
2. Proposed Testing Procedures 

For identifying the MED with randomly right-censored survival data, we consider testing for the null hypotheses
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, i =1,2,…,k.  Since the family of null hypotheses H={
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(Marcus et al., 1976), we use a level
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 single-step-down closed testing scheme for identifying the MED based on adjusted p values (Wright, 1992).  Suppose that
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are the statistics involved.  The single-step-down closed testing procedure starts at the first step testing for 
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In this paper, to identify the MED with randomly right-censored survival data based on the single-step-down closed testing scheme stated above, appropriate test statistics and the associated p values are needed.  To this end, we consider in the following three types of weighted logrank (WLR) statistics.  One called pairwise WLR statistic compares a certain dose-group with the zero-dose control, another referred to as the combined-groups WLR statistic contrasts a certain dose-group with all the lower dose groups combined, and the other termed step-type WLR statistic makes a comparison between the higher dose groups and the lower dose groups.  
2.1 Pairwise weighted logrank statistics

For i=0,1,…, k, let 
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be the number of patients in group i who have been dead by time t and let 
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, i = 1, 2, …, k,        

where 
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the Kaplan-Meier (1958) estimator computed from the pooled groups 0 and i.  Notice that setting 
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= 0 yields the Peto-Prentice- Wilcoxon (PPW) statistic (Peto and Peto, 1972; Prentice, 1978) which is appropriate for hazards different at early times.
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At step i in the closed testing procedure, the statistic involved is 
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2.2 Combined-groups weighted logrank statistics

The second type of WLR statistics compares the ith dose group with all the lower dose groups combined, including the zero-dose control.  Therefore, the combined-groups WLR statistics under consideration are 
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, i = 1, 2, …, k,

where 
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Notice that the statistics 
[image: image89.wmf]k

G

G

,...,

1

 are uncorrelated under the null hypothesis
[image: image90.wmf]k

H

0

(Liu et al., 1993).  Therefore, the asymptotic null (
[image: image91.wmf]k

H

0

) distribution of the random vector (
[image: image92.wmf]*

1

G

,
[image: image93.wmf]*

2

G

,…,
[image: image94.wmf]*

k

G

) is a k-dimensional normal distribution with zero mean vector and identity covariance matrix.

At step i in the closed testing procedure, we suggest use of the statistic 
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2.3 Step-type weighted logrank statistics

The step-type WLR statistic that compares the involved higher (i-j+1) dose levels with all the lower j dose levels, including the zero-dose control, is given by
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A standard argument on the asymptotic results about the two-sample WLR statistics implies that the related variances and covariances can be consistently estimated by, for 
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At step i of the single-step-down testing procedure, the test statistic involved is
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. The associated approximate p values can be obtained, again, by using the program in Gassmann et al. (2002).
3. A simulation study
3.1 Description of the study
We conducted a Monte Carlo study to examine the relative error rate, power and bias performances of the proposed closed testing procedures based on the pairwise WLR statistics (1), combined-groups WLR statistics (2) and the step-type WLR test statistics (3), denoted by U, G and V, respectively.  The error rate performances of the tests were evaluated by the experimentwise error rate (EWE, the probability of incorrectly declaring MED under the global null hypothesis
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) and familywise error rate (FWE, the probability of underestimating the MED).  The probability of correctly identifying the MED and E(
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) - MED, respectively, were then used to assess the power and bias performances of the tests.  We consider k = 3 and 4 treatments with sample sizes 
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= 10, 30 and 50 in the EWE study and n=30 and 50 in the FWE and power/bias study.  

Notice that, under the Weibull distributions with the same shape parameters, the hazard functions are proportional.  On the other hand, the hazard functions are different at early time under the lognormal distributions.  Therefore, we consider both the Weibull and lognormal distributions as survivor functions with proportional hazards and early hazard difference.  We take the uniform distribution over (0, r) as the censoring distribution in which patients are allowed to drop out the study at anytime with equal chance.  The IMSL (International Mathematical and Statistical Library) routines RNUN, RNWIB and RNNOR were used to generate appropriate uniform, Weibull and normal variates, respectively (Morton and Popova, 2001).  The exponential-transformed normal variate then gives necessary lognormal variate.  In the EWE study, the survivor functions under study were Weibull with scale parameter 1 and shape parameter 2, and lognormal distribution with normal mean 0 and normal variance 1/2.  Various values of r, which correspond to the probability of censorship as 0.2 or 0.5 were considered in the EWE study.  The corresponding uniform censoring distributions were then employed in the FWE and power/bias study.  Notice that, in the FWE and power/bias study, the Weibull distributions under consideration have a common shape parameter 2 but various values of scale parameters 
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, i = 0,1,…,k with 
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=1, and the lognormal distributions have a common normal variance 1/2, but different values of normal means 
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=0.  Also notice that the dose-response configurations under study include both the ordered and umbrella patterns of treatment effects with either step or linear type of increments or decrements.

For each of these settings, 10,000 replicates were used to obtain the estimated EWE, FWE, power, and bias under the nominal level 
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= 0.05.  Therefore, the maximum standard error for the error rate and power estimators is about 0.005 
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.  In fact, the standard deviation of the error rate estimator is about 0.002
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.  Since the relative EWE performance of the three testing procedures is similar for k=3 and k=4, we only presented the estimated EWE for k=4 in Table 2.  Again, the relative FWE and power/bias performances of the three testing procedures are similar for k=3 and 4 and for n=30 and n=50.  Therefore, we report, for simplicity, the estimates of FWE, power and bias for k= 4 and 
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=50 in Table 3, 4 and 5, respectively.  Notice that, when the true MED is 1, the FWE is zero since no type I error is involved.  Therefore, we did not consider any treatment effect configurations with MED=1 for the FWE study.  Also notice that, in the bias study, we conventionally assign 
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= 5 for k=4 if the MED is identified not to be any dose levels under study. 
3.2 Description of the results
It is evident, upon examination of Table 2, that all the tests hold their EWE when sample size is 30 or larger.  When sample size is 10, the pairwise and step-type PPW tests still maintain their EWE.  However, for such a small sample size, both the combined-groups LR and PPW tests tend to be conservative in hold its EWE, while the pairwise and step-type LR tests do not maintain their EWE.  Moreover, as shown in Table 3, the FWE of all the testing procedures are well under controlled.

It is not surprising to find, from Tables 4 and 5 that, in terms of power and bias, the LR test performs better than the PPW test for Weibull distribution, while the PPW test is superior to LR test for lognormal distribution, since the Weilbull distributions under study have the proportional hazards, but the hazards of lognormal distributions differ in early time.  The step-type test outperforms in power and bias performances for ordered dose-response, but it performs poorly for umbrella patterned dose-response, especially, with a dramatic down turn.  In general, when the true MED is the first dose level, the power or bias performance of the pairwise test is better than that of the combined-groups test.  When the true MED is higher than first dose level, however, the combined-groups test is superior to the pairwise test.

To sum up, when the sample size is 30 or larger for each group, both the experimentwise and familywise error rates of the three WLR tests are under controlled.  In terms of power and bias performances, the step-type WLR test is recommended for ordered dose-response.  For umbrella patterned dose-response, however, the pairwise or combined-groups WLR test is suggested.  In fact, the pairwise WLR test is preferred if the true MED is relatively close to the first dose level; otherwise, the combined-groups WLR test is suggested.
4.  An example

The data from a randomized and double-blinded clinical trial involving patients with stage III prostate cancer (Byar and Corle, 1977) were used for illustration.  There were 292 patients with local extension of the disease, but without evidence of distant metastasis, where 75 took the placebo pill and served as the control group, 73 received 0.2 mg of diethylstilbestrol (DES) as dosage group 1, 73 were treated with 1.0 mg of DES as dosage group 2 and 71 were assigned to take 5.0 mg of DES as dosage group 3.  Patients were followed according to a standard protocol at 6-month intervals or more frequently if required, and the survival times of the patients in the four groups since randomization were recorded.  For patients who had not yet died or were dead due to causes other than the prostate cancer, the observed times were regarded as censored data.  Herein, we are concerned with the minimum dosage of DES under study so that the survivor function of the involved patients is better than that of the patients taking the placebo pill.  The Kaplan-Meier (1958) estimates of the survivor functions for the four groups were shown in Fig. 1.  The relevant summary statistics, including the statistics at each step, the identified MED, and the associated adjusted p values were then given in Table 1.

To apply the single-step-down close testing procedure based on the pairwise LR statistics, we compute
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0.331.  Therefore, we identify the MED to be 1.0 mg of DES and the adjusted p value is 
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= 0.025.  The test based on the pairwise PPW statistics reaches the same conclusion as stated above, but has a different adjusted p value as 0.027.

The combined-groups LR statistics are obtained as 
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0.331.  Therefore, the LR statistics identifies the MED to be 1.0 mg of DES with an adjusted p value of 0.035.  The test based on the combined-groups PPW statistics also identifies the 1.0 mg of DES to be the MED, but with a different adjusted p value of 0.034.

Finally, we use the single-step-down closed testing procedure based on step-type LR statistics to identify the MED.  We observed 
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= 0.046, which leads to the next step with 
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= 0.022, we go to the next step with 
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0.331, so we identify the MED to be 1.0 mg of DES and the adjusted p value is 0.046.  Moreover, the test based on the step-type PPW statistics reaches the same conclusion as stated above, but the associated adjusted p value is 0.043.
Notice that, under significance level 0.05, all the three methods considered herein identify the 1.0 mg of DES as the MED at which the involved patients have a better chance to live longer than the patients taking the placebo pill.  However, the survivor estimates in Fig. 1 show an apparent downturn in survivor function at the highest dose level, it is not surprising to see that the step-type test produces the largest adjusted p values.  This result is, in fact, in a good agreement with the simulation results presented in previous section.  Therefore, regarding to this particular application, either the combined-groups test or the pairwise test is better than the step-type test for MED identification. 
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Fig. 1. Kaplan-Meier estimate of survivor functions for the prostate cancer data.

Table 1 

Summary statistics for the prostate cancer data
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	PPW

	
	1
	0.44 (1.06, 5.89)
	
	0.32 (0.69, 4.57)
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	1.67 (4.39, 6.92) 
	
	1.62 (3.88, 5.76)  

	
[image: image174.wmf](3)

(3)*(3)

(,)

V

iiii

VVs


	2
	2.12 (6.25, 8.71) 
	
	2.14 (5.74, 7.21)

	
	3
	0.33 (0.80, 6.01) 
	
	0.33 (0.74, 4.97)

	
[image: image175.wmf](2)

(2)*(2)

(,)

V

iiii

VVs


	1
	1.64 (4.14, 6.35)
	
	1.57 (3.59, 5.23)

	
	2
	2.26 (5.68, 6.30) 
	
	2.28 (5.18, 5.16)

	
[image: image176.wmf](1)

(1)*(1)

(,)

V

iiii

VVs


	1
	0.44 (1.06, 5.89)
	
	0.32 (0.69, 4.57)

	
[image: image177.wmf]D

E

M

ˆ


	
	2
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	Adjusted p value
	
	0.046
	
	0.043


Table 2

Estimated experimentwise error rates for
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, various survivor functions with uniform censoring distribution U(0, r) and n0 = n1 =…= n4 = n
	
	
	
	LR
	
	
	
	PPW
	
	

	r
	n
	
	U
	G
	V
	
	U
	G
	V

	Weibull
	
	
	 
	
	
	
	
	

	4.410
	10
	
	0.062
	0.045
	0.061
	
	0.051
	0.036
	0.053

	
	30
	
	0.055
	0.045
	0.053
	
	0.050
	0.042
	0.049

	
	50
	
	0.050
	0.044
	0.049
	
	0.046
	0.043
	0.046

	
	
	
	
	
	
	
	
	
	

	1.745
	10
	
	0.059
	0.039
	0.057
	
	0.051
	0.030
	0.052

	
	30
	
	0.055
	0.044
	0.052
	
	0.051
	0.040
	0.053

	
	50
	
	0.049
	0.043
	0.049
	
	0.048
	0.040
	0.049

	Lognormal
	
	
	
	
	
	
	
	
	

	6.381
	10
	
	0.056
	0.040
	0.055
	
	0.047
	0.036
	0.051

	
	30
	
	0.055
	0.046
	0.054
	
	0.050
	0.044
	0.049

	
	50
	
	0.054
	0.048
	0.052
	
	0.053
	0.045
	0.050

	
	
	
	
	
	
	
	
	
	

	2.297
	10
	
	0.055
	0.038
	0.055
	
	0.049
	0.035
	0.050

	
	30
	
	0.055
	0.043
	0.054
	
	0.051
	0.045
	0.053

	
	50
	
	0.052
	0.044
	0.046
	
	0.052
	0.044
	0.050


Table 3

Estimated FWE for
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, n0 = n1 =…= n4 = 50, and various survivor functions with uniform censoring distribution U(0, r)

	
	
	θ1
	θ2
	θ3
	θ4
	True 
	LR
	
	　
	
	PPW
	
	　

	
	
	
	
	
	
	MED
	U
	G
	V
	　
	U
	G
	V

	Weibull and r=1.745

	
	
	1
	1
	1
	1.5 
	4 
	0.051 
	0.043 
	0.048 
	
	0.051 
	0.040 
	0.048 

	
	
	1
	1
	1.5 
	1.5 
	3 
	0.051 
	0.044 
	0.051 
	
	0.049 
	0.042 
	0.050 

	
	
	1
	1.5
	1.5 
	1.5 
	2 
	0.048 
	0.043 
	0.049 
	
	0.047 
	0.041 
	0.048 

	
	
	1
	1
	1.3 
	1.5 
	3 
	0.048 
	0.037 
	0.049 
	
	0.045 
	0.035 
	0.046 

	
	
	1
	1.3
	1.3 
	1.5 
	2 
	0.044 
	0.030 
	0.046 
	
	0.042 
	0.028 
	0.044 

	
	
	1
	1
	1.5 
	1
	3 
	0.051 
	0.043 
	0.047 
	
	0.048 
	0.041 
	0.044 

	
	
	1
	1
	1.5 
	1.3 
	3 
	0.051 
	0.043 
	0.051 
	
	0.049 
	0.041 
	0.049 

	
	
	1 
	1.3 
	1.5 
	1.3 
	2 
	0.045 
	0.033 
	0.046 
	
	0.043 
	0.031 
	0.045 

	
	
	1 
	1.5 
	1.3 
	1 
	2 
	0.048 
	0.041 
	0.046 
	
	0.046 
	0.038 
	0.043 

	Lognormal and r=2.297

	
	
	0
	0
	0
	0.5 
	4 
	0.052 
	0.041 
	0.049 
	
	0.052 
	0.042 
	0.053 

	
	
	0
	0
	0.5 
	0.5 
	3 
	0.051 
	0.045 
	0.053 
	
	0.050 
	0.044 
	0.050 

	
	
	0
	0.5
	0.5 
	0.5 
	2 
	0.050 
	0.045 
	0.051 
	
	0.048 
	0.043 
	0.049 

	
	
	0
	0
	0.3 
	0.5 
	3 
	0.047 
	0.035 
	0.051 
	
	0.046 
	0.035 
	0.048 

	
	
	0
	0.3
	0.3 
	0.5 
	2 
	0.044 
	0.029 
	0.047 
	
	0.043 
	0.029 
	0.045 

	
	
	0
	0
	0.5 
	0
	3 
	0.051 
	0.044 
	0.050 
	
	0.050 
	0.043 
	0.047 

	
	
	0
	0
	0.5 
	0.3 
	3 
	0.051 
	0.044 
	0.053 
	
	0.050 
	0.043 
	0.050 

	
	
	0 
	0.3 
	0.5 
	0.3 
	2 
	0.045 
	0.032 
	0.048 
	
	0.044 
	0.033 
	0.046 

	
	　
	0 
	0.5 
	0.3 
	0 
	2 
	0.050 
	0.043 
	0.047 
	　
	0.048 
	0.042 
	0.045 


Table 4

Estimated power for
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, n0 = n1 =…= n4 = 50, and various survivor functions with uniform censoring distribution U(0, r)

	
	θ1
	θ2
	θ3
	θ4
	True 
	LR
	　
	　
	
	PPW
	　
	　

	
	
	
	
	
	MED
	U
	G
	V
	　
	U
	G
	V

	Weibull and r=1.745

	
	1
	1
	1
	1.5
	4 
	0.596 
	0.774 
	0.810 
	
	0.547 
	0.711 
	0.756 

	
	1
	1
	1.5
	1.5
	3 
	0.624 
	0.767 
	0.806 
	
	0.576 
	0.710 
	0.759 

	
	1
	1.5
	1.5
	1.5
	2 
	0.657 
	0.736 
	0.787 
	
	0.612 
	0.681 
	0.742 

	
	1.5
	1.5
	1.5
	1.5
	1 
	0.766 
	0.667 
	0.763 
	
	0.719 
	0.614 
	0.714 

	
	1
	1
	1.3
	1.5
	3 
	0.315 
	0.428 
	0.496 
	
	0.281 
	0.373 
	0.447 

	
	1
	1.3
	1.3
	1.5
	2 
	0.347 
	0.392 
	0.459 
	
	0.301 
	0.341 
	0.403 

	
	1.3
	1.3
	1.5
	1.5
	1 
	0.451 
	0.345 
	0.448 
	
	0.407 
	0.309 
	0.399 

	
	Average (Ordered)


	0.537 
	0.587 
	0.653 
	
	0.492 
	0.534 
	0.603 

	
	
	
	
	
	
	
	
	

	
	1
	1
	1.5 
	1
	3 
	0.603 
	0.750 
	0.440 
	
	0.555 
	0.693 
	0.359 

	
	1
	1
	1.5 
	1.3 
	3 
	0.611 
	0.756 
	0.773 
	
	0.562 
	0.698 
	0.715 

	
	1 
	1.3 
	1.5 
	1.3 
	2 
	0.364 
	0.415 
	0.489 
	
	0.319 
	0.364 
	0.433 

	
	1 
	1.5 
	1.3 
	1 
	2 
	0.619 
	0.709 
	0.518 
	
	0.576 
	0.652 
	0.438 

	
	1.3 
	1.5 
	1.3 
	1 
	1 
	0.479 
	0.380 
	0.371 
	
	0.431 
	0.338 
	0.320 

	
	1.3 
	1.5 
	1
	1 
	1 
	0.471 
	0.378 
	0.223 
	
	0.423 
	0.336 
	0.187 

	
	Average (Umbrella)


	0.525 
	0.565 
	0.469 
	
	0.478 
	0.514 
	0.409 

	
	Average (Overall)


	0.531 
	0.577 
	0.568 
	
	0.485 
	0.525 
	0.513

	
	
	
	
	
	
	
	
	

	Lognormal and r=2.297

	
	0
	0
	0
	0.5
	4 
	0.630 
	0.795 
	0.828 
	
	0.668 
	0.826 
	0.850 

	
	0
	0
	0.5
	0.5
	3 
	0.654 
	0.784 
	0.822 
	
	0.689 
	0.820 
	0.850 

	
	0
	0.5
	0.5
	0.5
	2 
	0.688 
	0.761 
	0.815 
	
	0.724 
	0.795 
	0.844 

	
	0.5
	0.5
	0.5
	0.5
	1 
	0.793 
	0.705 
	0.801 
	
	0.827 
	0.747 
	0.834 

	
	0
	0
	0.3
	0.5
	3 
	0.281 
	0.363 
	0.433 
	
	0.307 
	0.398 
	0.465 

	
	0
	0.3
	0.3
	0.5
	2 
	0.304 
	0.341 
	0.414 
	
	0.332 
	0.374 
	0.447 

	
	0.3
	0.3
	0.5
	0.5
	1 
	0.424 
	0.329 
	0.421 
	
	0.454 
	0.359 
	0.453 

	
	Average (Ordered)


	0.539 
	0.583 
	0.648 
	
	0.572 
	0.617 
	0.678 

	
	
	
	
	
	
	
	
	

	
	0
	0
	0.5 
	0
	3 
	0.635 
	0.768 
	0.440 
	
	0.670 
	0.802 
	0.434 

	
	0
	0
	0.5 
	0.3 
	3 
	0.640 
	0.771 
	0.777 
	
	0.675 
	0.805 
	0.812 

	
	0 
	0.3 
	0.5 
	0.3 
	2 
	0.327 
	0.372 
	0.445 
	
	0.355 
	0.408 
	0.477 

	
	0 
	0.5 
	0.3 
	0 
	2 
	0.648 
	0.733 
	0.502 
	
	0.680 
	0.763 
	0.518 

	
	0.3 
	0.5 
	0.3 
	0 
	1 
	0.458 
	0.366 
	0.356 
	
	0.488 
	0.403 
	0.377 

	
	0.3 
	0.5 
	0
	0 
	1 
	0.453 
	0.365 
	0.221 
	
	0.482 
	0.402 
	0.219 

	
	Average (Umbrella)


	0.527 
	0.563 
	0.457 
	
	0.558 
	0.597 
	0.473 

	
	Average (Overall)


	0.533 
	0.573 
	0.560 
	
	0.565 
	0.608 
	0.583 


Table 5

Estimated bias for
[image: image181.wmf]0.05

a

=

, n0 = n1 =…= n4 = 50, and various survivor functions with uniform censoring distribution U(0, r)

	
	θ1
	θ2
	θ3
	θ4
	True 
	LR
	　
	　
	
	PPW
	　
	　

	
	
	
	
	
	MED
	U
	G
	V
	　
	U
	G
	V

	Weibull and r=1.745

	
	1
	1
	1
	1.5
	4 
	0.239 
	0.091 
	0.053 
	
	0.290 
	0.162 
	0.109 

	
	1
	1
	1.5
	1.5
	3 
	0.436 
	0.221 
	0.099 
	
	0.524 
	0.321 
	0.166 

	
	1
	1.5
	1.5
	1.5
	2 
	0.556 
	0.449 
	0.198 
	
	0.660 
	0.591 
	0.279 

	
	1.5
	1.5
	1.5
	1.5
	1 
	0.611 
	1.164 
	0.628 
	
	0.729 
	1.345 
	0.767 

	
	1
	1
	1.3
	1.5
	3 
	0.856 
	0.687 
	0.466 
	
	0.943 
	0.800 
	0.553 

	
	1
	1.3
	1.3
	1.5
	2 
	1.312 
	1.331 
	0.855 
	
	1.444 
	1.489 
	0.991 

	
	1.3
	1.3
	1.5
	1.5
	1 
	1.393 
	2.120 
	1.390 
	
	1.544 
	2.265 
	1.552 

	
	Average (Ordered)


	0.772 
	0.866 
	0.527 
	
	0.876 
	0.996 
	0.631 

	
	
	
	
	
	
	
	
	

	
	1
	1
	1.5 
	1
	3 
	0.610 
	0.347 
	0.956 
	
	0.716 
	0.469 
	1.124 

	
	1
	1
	1.5 
	1.3 
	3 
	0.549 
	0.307 
	0.210 
	
	0.648 
	0.422 
	0.311 

	
	1 
	1.3 
	1.5 
	1.3 
	2 
	1.088 
	1.069 
	0.691 
	
	1.220 
	1.228 
	0.828 

	
	1 
	1.5 
	1.3 
	1 
	2 
	0.882 
	0.675 
	1.237 
	
	1.005 
	0.848 
	1.476 

	
	1.3 
	1.5 
	1.3 
	1 
	1 
	1.334 
	1.953 
	2.275 
	
	1.479 
	2.133 
	2.474 

	
	1.3 
	1.5 
	1
	1 
	1 
	1.431 
	1.979 
	3.050 
	
	1.589 
	2.156 
	3.197 

	
	Average (Umbrella)


	0.982 
	1.055 
	1.403 
	
	1.110 
	1.209 
	1.568 

	
	Average (Overall)


	0.869 
	0.953 
	0.931 
	
	0.984 
	1.095 
	1.064 

	
	
	
	
	
	
	
	
	

	Lognormal and r=2.297

	
	0
	0
	0
	0.5 
	4 
	0.201 
	0.075 
	0.034 
	
	0.168 
	0.043 
	0.002 

	
	0
	0
	0.5 
	0.5 
	3 
	0.389 
	0.190 
	0.070 
	
	0.326 
	0.132 
	0.042 

	
	0
	0.5
	0.5 
	0.5 
	2 
	0.495 
	0.396 
	0.142 
	
	0.407 
	0.313 
	0.099 

	
	0.5
	0.5
	0.5 
	0.5 
	1 
	0.549 
	1.047 
	0.526 
	
	0.445 
	0.888 
	0.423 

	
	0
	0
	0.3 
	0.5 
	3 
	0.880 
	0.761 
	0.524 
	
	0.820 
	0.691 
	0.479 

	
	0
	0.3
	0.3 
	0.5 
	2 
	1.401 
	1.448 
	0.955 
	
	1.307 
	1.343 
	0.863 

	
	0.3
	0.3
	0.5 
	0.5 
	1 
	1.447 
	2.107 
	1.407 
	
	1.327 
	1.983 
	1.281 

	
	Average (Ordered)


	0.766 
	0.861 
	0.523 
	
	0.686 
	0.770 
	0.456 

	
	
	
	
	
	
	
	
	

	
	0
	0
	0.5 
	0
	3 
	0.546 
	0.308 
	0.946 
	
	0.481 
	0.242 
	0.967 

	
	0
	0
	0.5 
	0.3 
	3 
	0.510 
	0.284 
	0.210 
	
	0.446 
	0.219 
	0.158 

	
	0 
	0.3 
	0.5 
	0.3 
	2 
	1.119 
	1.131 
	0.754 
	
	1.029 
	1.015 
	0.675 

	
	0 
	0.5 
	0.3 
	0 
	2 
	0.819 
	0.608 
	1.286 
	
	0.730 
	0.521 
	1.250 

	
	0.3 
	0.5 
	0.3 
	0 
	1 
	1.326 
	1.909 
	2.307 
	
	1.213 
	1.767 
	2.243 

	
	0.3 
	0.5 
	0
	0 
	1 
	1.392 
	1.926 
	3.052 
	
	1.277 
	1.786 
	3.068 

	
	Average (Umbrella)


	0.952 
	1.028 
	1.426 
	
	0.863 
	0.925 
	1.394 

	　
	Average (Overall)


	0.852 
	0.938 
	0.939 
	　
	0.767 
	0.842 
	0.888 
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