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Abstract. The problem of testing for umbrella alternatives in a one-way layout
with right-censored survival data is considered. Testing procedures based on the
two-sample weighted Kaplan-Meier statistics suggested by Pepe and Fleming (1989,
Biometrics, 45, 497-507; 1991, J. Roy. Statist. Soc. Ser. B, 53, 341-352) are sug-
gested for both cases when the peak of the umbrella is known or unknown. The
asymptotic relative efficiency of the weighted Kaplan-Meier test and the weighted
logrank test proposed by Chen and Wolfe (2000, Statist. Sinica, 10, 595-612) is
computed for the umbrella peak-known setting where the piecewise exponential sur-
vival distributions have the proportional or crossing hazards, or the related hazards
differ at early or late times. Moreover, the results of a Monte Carlo study are pre-
sented to investigate the level and power performances of the umbrella tests. Finally,
application of the proposed procedures to an appropriated data set is illustrated.

Key words and phrases: Asymptotic relative efficiency, Monte Carlo study, umbrella
alternative, weighted Kaplan-Meier statistic, weighted logrank statistic.

1. Introduction

In animal experiments or clinical trials, dose-response studies are frequently used
to assess the relative treatment effects of increasing dose levels of a substance where the
response of interest is, for instance, time to tumor occurence or the prolonged survival
time of patients with a particular disease. These studies may lead to randomly right-
censored data, since they may be terminated at preassigned time, subjects who randomly
enter a study may be lost to follow-up randomly, or death may be due to a competing
risk which is not of interest.

For the i-th sample (i = 1,...,k), let T}y, ..., Tin, be independent and identically
distributed (iid) random variables each with a continuous distribution function F;, and
let D;y,...,D;p, be iid random variables each with a continuous distribution function
G;, where D;; is the censoring time associated with the survival time Tj;. Suppose
that the k£ sample are mutually independent and that the T;; and D;; are also mutually
independent. In such a setting, we actually observe only X;; = min{T};, D;;} and the
indicator of censorship 6;; = I{T;; < D;;},j =1,...,n;,i =1,...,k. Let S; =1—-F;
and C; = 1 -Gy, 1 = 1,...,k. When increasing dose levels may lead to a larger or
at least equal efficacy, Liu et al. (1993) proposed a generalization of the Jonckheere
(1954)-Terpstra (1952) test for Hy : (S; = --- = Si) against the ordered alternatives
Hio: (S; <--- < Sk, with at least one strict inequality) (Barlow et al. (1972)) based on
two-sample weighted logrank statistics (see, for example, Gill (1980)). When, however,
an increasing dose-response relationship with a downturn in response at high doses is
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anticipated, Chen and Wolfe (2000) suggested testing procedures based on two-sample
weighted logrank statistics against the peak-known umbrella alternative H{, : (S; <
oo <8, > - > Sk, with at least one strict inequality) or the peak-unknown umbrella
alternative Hyy : (S1 < --- < §p > --- > S, for some p, 1 < p < k, with at least one
strict inequality) (Mack and Wolfe (1981)).

However, the two-sample weighted logrank statistic, as a function of the difference
between two cumulative hazards, might not be sensitive to testing against the alternative
about the survival distributions. Therefore, Pepe and Fleming (1989) developed a two-
sample test based on the weighted Kaplan-Meier statistic. Pepe and Fleming (1989, 1991)
further indicated that the two-sample weighted Kaplan-Meier (WKM) test is competitive
to the two-sample logrank (LR) test for the proportional hazards model and the WKM
test is even more powerful than the LR test when the two hazard functions are crossing.
Therefore, in this paper, we consider tests based on two-sample weighted Kaplan-Meier
statistics against the umbrella alternatives, since the hypotheses HY;, and H,y only
involve survival functions. The proposed weighted Kaplan-Meier umbrella tests then
provide competitive alternatives to the weighted logrank umbrella tests suggested in
Chen and Wolfe (2000) for right-censored survival data.

In Section 2 we propose a generalization of the Mack-Wolfe (1981) test for peak-
known umbrella alternative based on two-sample weighted Kaplan-Meier statistics. In
Section 3 the Pitman efficacy of the peak-known weighted Kalpan-Meier umbrella test un-
der Lehmann alternatives is derived. The asymptotic relative efficiency of the proposed
test and the competing weighted logrank umbrella test is then evaluated for different
piecewise exponential survival distributions with a certain uniform censoring distribu-
tion. In Section 4 we generalize the Chen-Wolfe (1990) test based on weighted Kaplan-
Meier statistics for the peak-unknown umbrella alternative with right-censored survival
data. Section 5 contains a numerical example and Section 6 presents the results of a
Monte Carlo study investigation of the level and power performances of the proposed
tests for a variety of umbrella pattern treatment effects configurations. Conclusion and
discussion are finally given in Section 7.

2. Peak-known umbrella test

To generalize the Mack-Wolfe (1981) peak(p)-known umbrella test for right-censored
survival data, we consider the following statistic:

(2.1) WEMy= > Y \[SEAWEM;+ Y > 4 [ WKM;,

1<i<y<p p<i<j<k

where

Te
WKM;; = /0 wij(8){S;(t) — Si(t)}dt

is the two-sample weighted Kaplan-Meier statistic comparing the j-th group with the
i-th group, with . )
2 (t) - Cﬁ(t—)cj (t—)
ij(t) = — -
piCi(t—) + p; C;(t-)

’

the weighted function downweights the difference between S'j(t) and S;(t), where S'g-(t)

-~

is the Kaplan-Meier (1958) survival estimator in group i, C;(t) is the Kaplan-Meier
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(1958) estimator of the censoring survival function Cy(t), p; = n;/N, i =1,...,k, and
T, = sup[t : min{C,(t),...,Ck(t),Si(t),...,Sk(t)} > 0]. Note that, for the uncensored
data case with w;;(-) = 1, the statistic WK M, reduces to

DPICLIL IS ST 3 S Te 4 )

1<i< j<p psi<j<k

where X; is the sample mean in group i. Therefore, the test based on WK M, can be
regarded as a generalization of the mean-based test for right-censored data.
To construct a test based on the statistic WK M,,, we obtain the null (Hy) asymp-

totic distribution of WK M, in the following:
THEOREM 2.1. Suppose that p; = n;/N — p;, 0 <p; < 1,i=1,..., k. Assume
that
Yi(t) »
n;

uniformly in t € [0,7]|, where Yi(t) = Z?:l I[x,,>4 18 the at-risk numbers in group
i, 1 = 1,...,k, 7 = sup[t : min{S(t),Ci(t),...,Ck(t)} > 0] and S(t) is the survival
function under Hy. Then the null asymptotic distribution of the statistic WK M, is a
normal distribution with mean zero and variance, N (O,Jg), where

mi(t) = Ci(t)S(t)

ko pr
(22) o2 = Z/U by ({1 — AA()}AA(2),

122?5; VDisgn(j — 1) {/:wa(u)ﬁ'(u)du} /?Tj(t) if1<j<p—1;
L1sizp 2
(2.3) hy(t) = < lékﬂ{/t 'tmp(U)S(u)du} /ﬂp(t) if = p
il 2
\ _pék\/ﬁsgnu ) {/t wﬁ(“)S(U)dU} /’rj(t) if p+1<j <k,

and

g () = Ci(t—)C;(¢-)
Y piCi(t=) + p;Cj(t-)’

sgn(z) =1 if x> 0 and —1 for x < 0, A(-) is the cumulative hazard function under Hy
and AA(t) = A(t) — A(t-).

PROOF. See Appendix A.l.

Let S (t) be the Kaplan-Meier estimator of the common survival function calculated
from the combined k samples. Since the Kaplan-Meier estimator is consistent, the con-
sistent estimator of 7;(t) is obtained as 7;(t) = S(t)C;(t—) and the consistent estimators
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of dA(t) and 1— AA(t) are given by dA(t) = —dS(t)/S(t—) and 1 — AA(t) = S(t)/S(t-),
respectively. Hence, the estimator

k T A A
— . =S(t)dS(t)
2.4 Var(WKM,) = / hi(t)————=
(24) ( 2 Z_:] 0 (1) S*(t—)
j
provides with a consistent estimator of 03, where
r T 2
T . o
S VFisen(j — i) { / wij(u)S(u)du} / $(6)C;(t-)
i#] ¥
| 1<i<p
i 15578 g—1;
_ 2
> "y )3 5(t)C
A m{ [ (u)S(u)du} / S(H)C,(t-)
@8  hit)=« | = e
| 1<i<k
if j=p;
2
. .
Z Vpisgn(i — j) {/ wjl(?L)S(zz)du} /S(t)Cj(t)
i#] k
p<i<k
\ if p+1<j<k.

Slutsky’s theorem further implies that the null asymptotic distribution of the statistic
WKM,

(2.6) WKM; = ——
VVar(W K M,)

is a standard normal. Therefore, we propose to reject Hy in favor of HY,, if
WKM; > z(a),
where z(«) is the upper a-th percentile of a standard normal distribution.
3. Asymptotic relative efficiency for the peak-known setting
Note that, under a sequence of contiguous alternatives such that
VN{S](t) - S (t)} — Di;(t)

unifromly on [0,7) for some bounded function D;;(-), ¢ # j = 1,...,k, the mean of
WKM, is

A=Y % \/;ij/; wij (t)Dij(t)dt + Z\/;ijfor w;i(t)Dji(t)dt.

1<i< j<p pli<j<k
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Moreover, the Martingale Central Limit Theorem implies that the asymptotic distribu-
tion of WK M, is N(A,02), where o7 is stated in (2.2). Note that the test based on the
statistic W K M, which has a higher power against H};; should have a larger value of the
parameter A. Therefore, the Pitman efficacy based on W KM, is given by

(3.1) eff (WK M,) = [Z Z\/IT;@J-/D‘r w;j(t)Dy; (t)dt

1<i<j<p

=t Z Z\/Pipj [JT wjg(t)Dji‘(t)dt:l /gg

psi<y<k

To evaluate the Pitman efficacy in equation (3.1), we consider the Lehmann alter-
natives:

HU:(Si:Sforz'zl,...,k)
and
Hl:(Sf:Sl'g’/‘/Na,nd 6 <---<f,>---> 0 for some p,1 <p <k, with at

least one strict inequality).

Since under the Lehmann alternatives, we observe D;;(t) — (6; — 6;)S(t)InS(t) for ¢,
j=1,...,k. Hence,

(32) CH(IVKA{F,) = [Z Z\/MAT wtj(t)(é'z = QJ)S(t) In S(t)dt

1<i< j<p

+ 2.2 VPP fo wji(t)(8; — 6:)S(t) In S(t)dt] /af,.

p<i< j<k

Note that the efficacy for the weighted Kaplan-Meier umbrella test under the assumption
of equal censoring and equal sample sizes is given in Appendix A.2, and the related
efficacy for the weighted logrank umbrella test can be found in Section 3 of Chen and

Wolfe (2000).
Notice that the Lehmann alternatives with constants 6;’s correspond to the pro-

portional hazards model. However, the Lehmann alternatives with S(t) = exp(—t) and
some time-related 6;’s generate the alternatives which have piecewise exponential sur-
vival distributions but with different hazards at different time periods. For example, for

the hazard functions
)\ﬂ[l(t) + /\12{1 - Il(t)},

where I, (t) = 1 if t < t; and 0, otherwise, the corresponding time-related 6; is
i1ty (t) + {/\3'2 + (Ail — )\Q)f]/t}{]. -1 (t)}

In this case, the hazard function with the same \;o (\;1) value but different A;; (Ai2)
values generate hazards that are different at early (late) times. Moreover, for the hazard

functions

Aithi(t) + Xia 2 (t) + Aials(t) + Aia{1 — I1(t) — I2(t) — I3(t)},
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(I) Early hazard difference
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Fig. 1. Survival configuration for alternatives.

where I;(t) = 1 if tj—; <t < t; and 0, otherwise, with to = —oo, for j = 1,2,3, the
corresponding 6; is

)\glfl(t) =+ {/\;‘2 + (/\ﬂ — )\ig)tl/t}fg(t) -+ {)\1‘3 +- (/\.,;1 - A.{Q)tl/t + ()\12 — )\i3)t2/t}
T3(t) + {dia + (Ain — Ai2)t [t + (Ni2 — Aig)ta/t + (Nis — Xia)ta/t}
{1 = I,(t) — Ix(t) — I3(t)}.

Note that the piecewise exponential distributions with different values of the A;; yield
crossing hazards.

To compute the asymptotic relative efficiency (ARE) between the weighted logrank
test and the weighted Kaplan-Meier test for peak-known (p) umbrella settings, we con-
sider k = 5 with equal sample size and p = k. The survival distributions considered
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Table 1. Asymptotic efficiencies of WKM tests relative to WLR tests for k = 5 and p = 5 with

equal sample size and covariate (61,...,05) with censoring distribution U(0, R).
0. R WKM WKM WKM
t LR PPW WLRL

(a) Standard exponential distribution

(1,2,3,4,5) 3.185 1.06 1.50 1.25

9.901 1.08 1.48 1.39
(1:1;3;,1,2) 3.185 1.63 2.34 1.95

9.901 1.69 2.31 2.17
(1,2,4,8,16) 3.185 1.31 1.85 1.54

9.901 1.33 1.82 1.72

(b) Piecewise exponential distribution?

I) Early hazard difference 1.31 0.97 27.4
II) Late hazard difference 0.70 1.86 0.21
II1) Crossing hazard difference 1.22 1.03 4.97

1: R = 2 for piesewise exponential distribution

herein are exponentials with scale parameters for i = 1,...,k (1) §; =1, (2) §; = 20—V,
and (3) 0, = 1, if it < k—1 and 2, if i = k, and a variety of piecewise exponentials
with different values of the A;;’s. The piecewise exponential survival functions under
consideration are presented in Fig. 1. The uniform distributions over 0 and R, namely,
U (0, R) with a variety of R values, are employed as censoring distributions. Note that
the weight function in the weighted logrank (WLR) test statistic is generally taken as
{S(t)}?{(1—S(t)}", p>0,v >0 (Fleming and Harrington (1991)). In this paper, for
the comparison with the weighted Kaplan-Meier (WKM) test, we consider the WLR test
based on the logrank (LR, p = v = 0) statistic, Peto-Prentice-Wilcoxon (PPW, p = 1,
v = 0) statistic or the statistic with p = 0, v = 1, denoted by WLRL, which is suitable
for the late hazard differences. The values of the ARE between the WKM test and WLR
test are then reported in Table 1.

We can see, from Table 1, that the WKM test is competitive to the LR test, which
is known to be optimal for the proportional hazards model. The WKM test also provides
with a competitor to the PPW test, which is believed to be appropriate for the early
hazard differences. For the late hazard differences, however, the efficacy of the WKM
test is less than that of the LR or WLRL test. This is not surprising, since the WKM test
puts less weight on late time, thereby reducing its efficacy for detecting the late occuring
hazard differences. Neverthless, for the survival functions with crossing hazards, the
WKM test is superior to any WLR test under consideration.

4. Peak-unknown umbrella test

As noted in Chen and Wolfe (1990), if the peak of the umbrella is unknown, the
alternative Hyy can be viewed as a union of k individual umbrella alternatives with
the peak at group 1,...,k, respectively. This way of viewing Hyy leads to a natural
extension for the peak-unknown setting to the test procedure which rejects Hy for large
values of

(4.1) WKM?,, =max(WKM;,... WKM;),

max

where WK M, p=1,...,k, are given in (2.6).
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Notice that, for any constants aq,...,ax, we have

k k T. ( k
S a,WKM, =" / {Z aprP)} dM,
p=1 i=1 Y0 p=1

where the pr ) are specified in (A.1). The Martingale Central Limit Theorem and the
Cramér-Wald device then imply that, under Hy,

(WKM;,...,WKM;)%N(O,R), as N — oo,

where
Cov(lVKMp, WKM,)

’
252
Jpgq

R=

with 02, p=1,...,k, as stated in (2.2),
koo
Cov(WKM, WKM,) =" / hPD{1 — AA}AA
i=1v0

and hgm) is the limit of Hz-(p)Hz-(QJY}, p#q=1,...,k. Since, for p # q = 1,...,k,
consistent estimators for the Cov(WKM,, WK M,) are

—S(t)dS(t)
§2(t-)

]

k[T .
Cov(WKM,, WKM,) =Y f P (1)
i=1v0

a consistent estimator for R is obtained as

B Cov(WK M, WK M,)

V/ Var(W K M,)Var(W K M,)

1

where Var(W K M,) is given in (2.4).

Let (Zy,...,Zk) be a random vector which has a k-variate normal distribution
with zero mean vector and correlation matrix R, and let zpmax(k,a) be the upper a-th
percentile of the distribution of max(Zy,...,Zx). We then obtain an approximate level
a test for the umbrella alternative H;y by rejecting Hy if

WKM,

max

Z zmax(k: a)'

Note that the value of z,ax (k, @) can be obtained by employing the program in Schervish
(1984) for k < 7.

On the other hand, under the assumption of a common censoring distribution, we
obtain the Cov(W KM,, WK M,) values, for p < g, in the following:

p—i1 ; froen
Cov(WKM,, WEKM,) = S P en(i—i) > ; f p sgn(j — 1)
; i J
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Table 2. Values of zmax(k, @) for common censoring distribution and equal sample sizes.

k
« 2 3 4 5 6 7 8 9 10
0.01 258 272 280 286 290 293 299 3.02 3.05
0.05 196 212 222 228 233 236 237 238 239
0.10 1.65 1.82 192 199 203 207 208 209 2.10

N/ VP
= 22 || & -
1<i<k 1<i<q

i Z Z VPi sgn(i — j7) Z \/p_a sgn(j — )

=gt i# pPi + Dj i27 Pi + Dj
p<i<k 1<i<q
Di } Pi
H Y smi-g || X
p<i<k 1<i<k

k
\V Pi ; ; V Pi ; .
- Z Z _+i _sgn(z—j) Z - _sgn(z—j)
=gt | i PETPS ing DT P
p<i<k g<i<k

o U cws (“)duJ | T

The value of the o2 (2.2) can be simplified as

2 2
p=d k
, N N
o, = Z Z ey sgn(j —1) | + _Z Z ooy sgn(i — j)
j=1 i#] Jj=p+1 Sl
1<i<p p<i<k
Vi / U . r —dS(t)
+ C(u)S(u)du L
2 nray | (o Lh S SEsEsw
1<i<k

For this setting, we derive the correlations for the case of equal sample size and compute
(k < 7) or simulate (k > 7) the critical values zpyax(k, @) from the k-variate normal dis-
tribution with known correlation matrix R. Note that the correlation coefficient between
W K M,; and W KM, is —1. Therefore, the value of zax(k, @) is also the upper a-th per-
centile of the distribution of max(|Z;|, Zs, ..., Zk—1). The critical values zmax(k, a), for
the case of common censoring distribution, equal sample sizes, k = 2(1)10 and o = 0.01,
0.05 and 0.1 are then reported in Table 2. We recommend use of these critical values
for situations where the sample sizes are equal and the assumption of common censor-
ing distribution is tenable. Otherwise, we can obtain the estimated correlation matrix
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Fig. 2. The Kaplan-Meier estimates for the injection sites-transfer data.
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Fig. 3. The cumlative hazard functions for the injection sites-transfer data.

R from the data, and then compute or simulate the critical value zyax(k, @) from the
appropriate multivariate normal distribution with the estimated correlation matrix R.

5. An example

We consider the numerical example analyzed in Chen and Wolfe (2000) which is the
study presented in Homburger and Treger (1970) to investigate whether the carcinogenic
effect of transplantation of combined injection sites from previous animal hosts receiving
injections of a large dose (500 ug) of a weaker carcinogen, benz|a]-anthracene (BA) in
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Table 3. Umbrella test statistics for the injection sites-transfer data.

Peak (p) 1 2 3 4 5
(a) Weighted Kaplan-Meier (WKM)
WKJW; 1.016 2.995 3.824 1.324 —1.016
R 1.000 0.636 0.114 -0.455 —1.000
1.000 0.481 -0.060 —0.630
1.000 0.419 —0.112
1.000 0.472

p —value = 3 x 1074
(b) Logrank (LR)!

Ap —2.040 2,922 5.377 3.884 5.536
R 1.000 0.300 0.152 —0.133 —0.754

1.000 0.584 0.482 0.081
1.000 0.681 0.327

1.000 0.678
p —value = 4 x 10~7
(¢) Peto-Prentice-Wilcoxon (PPW)!
AZ —2.234 3.229 5.659  4.196 5.437
R 1.000 0.285 0.115 —-0.172 —0.803

1.000 0.663 0.549 0.126
1.000 0.753 0.384

1.000 0. 712
p —value =1 x 10”7

1: A7 is the weighted logrank umbrella test statistic sug-
gested in Chen and Wolfe (2000).

tricaprylin (glycerol triocanoate), has on tumor growth in the secondary recipients. Of
interest, in particular, are possible differences in carcinogenic effects relative to the length
of time elapsed between the original injections in the host and the site transferred to the
transplant recipients. A group of 40 C57BL/6 J male mice at periods of 8, 12, 16, and
24 weeks after the original injection into the 40 donor mice. In addition, a control group
of 50 animals were also injected directly with 500 ug of BA, which was left in situ. The
measurement of record for each study group was the time (after the initial transplants
or injection, in the case of the control group) at which a tumor was first palpated. For
those animals which did not develop tumors, the time recorded is the number of weeks
between the initial transplants (or injection for the control group) and the end of the
study when animals were sacrificed and autopsied (or death for those which died without
tumors). Thus, those animals with no incidence of tumors yield censored data for this
study. The Kaplan-Meier estimates of the survival (tumor free) functions for the five
studied groups of animals are presented in Fig. 2 and the relevant summary statistics
for testing against the umbrella alternative are reported in Table 3.

We observe, from Table 3, that both the weighted Kaplan-Meier peak-unknown
umbrella test and the Peto-Pentrice-Wilcoxon peak-unknown umbrella test claim that
the survivals have an umbrella pattern with the peak, possibly, at the third group of
injection sites transferred after 12 weeks, while the logrank peak-unknown umbrella test
concludes that the survivals of the five groups follow an ordered pattern. Note that the
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Table 5. Power estimates for k = 4, nominal level @ = 0.05, censoring distribution U(0, R) and

nlz...:ndzn.

Parameters Peak-known Peak-unknown

Al A2 A3 A4 R n WKM LR WLRL PPW WKM LR WLRL PPW
(a) Exponential distribution

1 1 1.5 2 9901 20 0.631 0.619 0.509 0.544 0.420 0.386 0.292 0.300
30 0.795 0.774 0.673 0.673 0.627 0.561 0.438 0.447

3.185 20 0.580 0.507 0.392 0.458 0.355 0.284 0.205 0.242

30 0.727 0.653 0.521 0.599  0.517 0.409 0.288 0.367

1 1.5 2 1 9.901 20 0.607 0.741 0.653 0.647 0.472 0.575 0.491 0.476
30 0.787 0.882 0.792 0.806 0.671 0.765 0.649 0.654

3.185 20 0.560 0.627 0.527 0.569 0.405 0.453 0.730 0.400

30 0.720 0.782 0.692 0.728 0.572 0.639 0.528 0.569

(b) Early hazard difference
(A(t) = Ailjt<o0.5) + 0.51¢>0.5))

2 15 1 05 2 20 0.798 0.686 0.370 0.752 0.599 0451 0.197 0.506
2 30 0.922 0.838 0.501 0.887 0.788 0.645 0.290 0.724
2 1.5 0.5 1 2 20 0.698 0.598 0351 0.640 0.591 0.496 0.236  0.557
2 30 0.842 0.759 0.448 0.796 0.783 0.682 0.332 0.742
(c) Late hazard difference
(A(t) = 0.3]1t<0.5) + Ail[t>0.5))
2 15 1 0.3 2 20 0.600 0.713 0.749 0.564 0.379 0.481 0.512 0.317
2 30 0.769 0.867 0.904 0.721 0.562 0.687 0.736  0.489
2 1.5 03 1 2 20 0.541 0.683 0.777 0.530 0.396 0.532 0.610 0.381
2 30 0.693 0.828 0914 0.671 0.579 0.722 0.808 0.547

(d) Crossing hazard difference
(A(t) = Airl<o.8) + 0.1 [0.8<t<1.5] + Ai2l[1.5<t<2.3] + [[t>2.3] )

1.5 1 0.8 0.5! 2 20 0.712 0.634 0.403 0.659 0496 0.390 0.213 0.414
05 1 12 1.5 2 30 0865 0.798 0.534 0.828 0.702 0.585 0.322 0.617
1.5 08 05 1! 2 20 0.702 0.653 0.456 0.663 0.525 0.493 0.320 0.503

05 1.2 1.5 1 2 30 0.832 0.796 0.570 0.809 0.705 0.656 0.417 0.671

1: the first row is A;1 and the second row is Aa;.

tial distributions were considered. In the power study, we used exponential distributions
with various scale parameters, denoted by A;, i = 1,..., k. We also simulated the powers
for the alternatives with piecewise exponential distributions corresponding to early, late
or crossing hazards differences. Note that, for standard exponential distributions, the
U(0, R) distributions corresponding to probabilities of censorship 0.1 (R = 9.901) and
0.3 (R = 3.185), respectively, were considered in the level study. These uniform cen-
soring distributions were then used in the power study. For the piecewise exponential
distributions, the U(0,2) were employed as the censoring distribution in both the level
and power studies. Therefore, in the level study, case (1)-(3) have probabilities of cen-
sorship 0.51, 0.56 and 0.51, respectively. However, the populations involved in the power
study have different censoring probabilities due to different survival time distribution.

For each of these settings, we employed 5,000 replications in obtaining the level or
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Power estimates for £ = 4, nominal level @ = 0.05, exponential and piecewise
exponential survival distributions with uniform censoring distribution U (0, R).

Parameters p=i2 p=3 peak-unknown
Al A2 A3 A4 R n WKM LR WKM LR WKM LR
(a) Exponential distribution
1 1.5 2 1 9.901 20 0.315 0.426 0.607 0.741 0.472 0.575
30 0.418 0.573 0.787 0.882 0.671 0.765
3.185 20 0.293 0.377 0.560 0.627 0.405 0.453
30 0.393 0.512 0.720 0.782 0.572 0.639
1 1.5 2 1.5 9.901 20 0.104 0.160 0.461 0.529 0.355 0.421
30 0.115 0.195 0.627 0.677 0.529 0.593
3.185 20 0.102 0.148 0.419 0.424 0.367 0.328
30 0.114 0.179 0.562 0.579 0.449 0.469
(b) Early hazard difference

(A(t) = Ailjt<o.5) + 0.5 1t>0.5))
2 1 0.5 1.5 2 20 0.290 0.382 0.798 0.752 0.632 0.601
2 30 0.367 0.498 0.920 0.890 0.805 0.765
1.5 1 0.5 2 2 20 0.382 0.436 0.734 0.690 0.567 0.531
2 30 0.485 0.574 0.856 0.853 0.735 0.730

(¢) Late hazard difference

(A(t) = 0.3I11<0.5) + Ail[t>0.5))
2 1 0.3 1.5 2 20 0.176 0.323 0.604 0.803 0.428 0.628
2 30 0.226 0.418 0.784 0.927 0.613 0.822
1.5 1 0.3 2 2 20 0.225 0.347 0.558 0.757 0.383 0.579
2 30 0.258 0.456 0.717 0.892 0.552 0.761

(d) Crossing hazard difference

(A(t) = Mirdji<o.8) + 0.1 g 8<e<1.5) + Ai2l[1.5<t<2.3) T [1>2.3])

1.5 1 0.8 0.5! 2 20 0.053 0.090 0.712 0.634 0.496 0.390
0.5 1 1.2 1.5 2 30 0.048 0.103 0.865 0.798 0.702 0.585
1.5 0.8 0.5 11 2 20 0.218 0.287 0.702 0.653 0.525 0.493
0.5 1.2 1.5 1 2 30 0.288 0.368 0.832 0.796 0.705 0.656

1: the first row is A;; and the second row is Ag;.

power estimates under the nominal level & = 0.05. Since the simulation results for k = 4
and £ = 5 are quite similar, we only report the level and power estimates for k = 4
populations. The level estimates are presented in Table 4 and the power estimates are
reported in Table 5. Note that the results in Table 6 provide information about how the
peak-known umbrella test performs when it corresponds to the wrong peak.

We observe, from Table 4, that, for the peak-known setting, the weighted Kaplan-
Meier (WKM) test and the weighted logrank (WLR) test maintain their levels reasonably
well. For the peak-unknown setting, however, the level performance of the WKM test is
better than the WLR test. In fact, the WLR test tends to be conservative in holding its
level.

The results of the power study in comparisons between the WKM and WLR tests
given in Table 5 are generally in a good agreement with those of the asymptotic relative
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efficiency presented in Table 1. Moreover, we observe that the WKM or WLR test has
excellent power against umbrella pattern treatment effects when the peak is correctly
chosen. However, the results in Table 6 reveal that the power of the peak-known umbrella
test declines when the peak is incorrectly selected. In these cases, the peak-known WKM
or, for example, the LR umbrella test with incorrect peak is even less powerful than the
associated peak-unknown umbrella test.

7. Conclusion and Discussion

The asymptotic relative efficiencies and the simulation results both indicate that
none of the competing umbrella tests is uniformly better than the other for the peak-
known and peak-unknown settings, respectively. If the hazard difference is known or can
be clearly visualled from the log-cumulative hazards plot to occur at early or late time,
then the weighted logrank umbrella test can be used with appropriate weight function. If,
however, the hazard functions are apparently crossing, then the weighted Kaplan-Meier
umbrella test is suggested. Nevertheless, when the time period at which the hazard
difference occurs is unknown or can not be identified clearly, the weighted Kaplan-Meier
umbrella test may be used, since it would not be the worst one, although it might not
be the best one.

[t was noted in Chen and Wolfe (2000) that, when the peak of the umbrella is not
certain, the peak-unknown weighted logrank umbrella test is even more powerful than
the corresponding peak-known weighted logrank umbrella test with incorrectly selected
umbrella peaks. The weighted Kaplan-Meier umbrella tests share the same merit. There-
fore, if the peak-unknown weighted Kaplan-Meier umbrella test based on WKM . (4.1)
rejects Hy and WK My, = WKM}, then we may estimate the unknown peak group
to be at p. Hence, we expect that the test based on WK M, .. would not only provide
a suitable test, but also give a reasonable estimation of the location of the peak group
in those problems involving peak-unknown umbrella pattern treatment effects. In fact,
a confidence set for the unknown umbrella peak would be of more interest in practice.
Therefore, an extension of the work in Pan (1997) is needed. This topic will be addressed

in a separate paper.
Appendix

A.1 Proof of Theorem 2.1
Let I;4) be an indicator function of event A. Following Theorem 3.2.3 in Fleming

and Harrington (1991), the Kaplan-Meire estimator S;(t) can be represented by

50 - 5(0) | G vsadMi(o) + Bi(t).

where

Bi(t) = Ir.cg 2 HE0 = 50}

and the M;(-) are indenpent mean-zero martingales. Then equation (2.1) can be written
as

(A.1) WKMp _Z/ H;(t)dM;( Z/ t)dt
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where
Bapy e / " S b 30 w0
= VN T s %0
1<i<p
if 1<j<p-1;
. T. S I
Z nin, / iy () S () o Sp(t) L1y, (t)>0]
Hit)={ 4 N ¢ S(t)  Yp(t)
1<i<k
it j=p;
z ;
n;n; s M Sj(t) I[Yj(t)>0]
il = d
> | 3){/t ai(w)S () u} 2l dut
psiék
! if p+1<j<k
and ;
> /o senl - () i 1<j<p-L;
i#£]
1<i<p
ningp A : S
v =4 2\ § D) i S=0
iEp
1<i<k
> [ otsenli- () i pH1<i<k
i#)
| p<i<k

The second term of (A.1) converges to zero and H?(t)Y;(t) —P h;(t), umiformly in ¢ for
j = 1,...,k, where the hj(t) in (2.3) satisfy the conditions stated in Theorem 6.2.1
in Fleming and Harrington (1991) known as the Martingale Central Limit Theorem.
Therefore, the theorem holds.

A.2 Pitman efficency of W KM, under equal censoring and equal sample sizes

The simplified form of equation (3.2) assuming equal censoring is given as

2
(ADef(WEM,) = | 3 3 Vp*pj (6= 0;) + >y Vp‘pJ (6, - 0)
1<s<3<p p(z{}(k
¢ 2
T 2 p—1
U C(t)S(t)lnS(t)dt] /< > vPi sgn(j — i)
0 T —< DitDpj
Jj=1 1#]
] 1<i<p
2 2
VPi [ VPi
Pi Di
+ Z 0 +Z Z s sgn(i — 7)
izp D¢ Pp jept | 32 HTHY
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L ([ cosone) gt

Under the assumption of equal sample sizes, equation (A.2) can be further simplified

as
2
T 2
(A3) eff(WEKM,) = [ YD (6:i—0;)+ > > (6;—6)) l / C(t)S(t) In S(t)dt
1<i< j<p p<i< j<k .
2
p—1
k Z Z sgn(j —i) | + (k- 1)?
g=1\ i#j
1<i<p
2
k
+ Z Z sgn(i — j)
J=p+1 | i#j
p<i<k
" o 7 , 2 —dS(t)
([ cwswan) s
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