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Abstract

In this paper we are concerned with the problem of comparing adjacent ordered treatments in
a one-way layout where survival data are subject to random right censorship. Multiple testing
procedures based on two-sample statistics, each comparing an individual treatment with the
previous one, are proposed for determining the pattern of the treatment effects. The two-sample
statistics under consideration are weighted logrank statistics (Fleming and Harrington, 1991,
Counting Process and Survival Analysis. Wiley, New York) and weighted Kaplan—Meier statistics
(Pepe and Fleming, 1989. Biometrics 45, 497-507; 1991. J. Roy. Statist. Soc. B 53, 341-352).
An illustrated numerical example is reported. Finally, the comparative results of a Monte Carlo
error rate and power study for small sample sizes are presented. (©) 2000 Elsevier Science B.V.
All rights reserved.
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1. Introduction

The effects of a toxin or a drug are often investigated by an experiment including
several increasing dose levels (treatments) of the substance. Usually, it can be reason-
ably assumed that the increasing dose levels produce stronger or at least equal treat-
ment effects. However, the pattern of the monotonic dose response relationship remains
unknown. To get insight into the pattern when data are normally distributed, van Eeden
(1960), and Lee and Spurrier (1995a) considered multiple comparisons between neigh-
boring dose levels to decide if a dose increase leads to an additional effect or the dose
response relationship in this domain is too flat. Budde and Bauer (1989) and Lee and
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Spurrier (1995b) suggested nonparametric procedures for comparing the adjacent treat-
ments when data are not normally distributed. In animal carcinogenesis experiments or
comparative clinical trials, however, it occurs frequently that the primary outcome of
interest 1s time to a certain event (for example, death, tumor occurrence). Moreover,
randomly right-censored data are often involved in these studies, since subjects who
randomly enter the study to receive treatments may be lost to follow-up randomly, or
the study may be terminated at a preassigned time owing to time limitation. Therefore,
testing procedures for determining the pattern of the treatment effects with randomly
right-censored survival data are needed.

For the ith sample (i = 1,...,k), let T;,...,T;, be independent identically dis-
tributed (1.1.d.) random variables each with a continuous distribution function F;, and
let Uj,..., U, be 1.1.d. random variables each with a continuous distribution function

Ci, where U;; is the censoring time associated with the survival time 7;;. Suppose that
the k& samples are independent of each other and the U;; are distributed independent of
Tj;. In such a setting, we actually only observe the bivariate vectors (Xj;,d;;), where
Xi; = min(T};, Uy;), 0;; = 1, if X;; = T};, and 0, otherwise. Let S; =1 — F; be the sur-
vival function of the ith group, i=1,...,k. Liu et al. (1993) based on weighted logrank
statistics (Fleming and Harrington, 1991) to develop testing procedures for the null hy-
pothesis Hy: (S;=S, i=1,2,...,k) against the ordered alternative H,: (S} <S5 < -+ <8;
with at least one strict inequality) (Barlow et al., 1972). Chi and Chen (1998) further
suggested an ordered test on the basis of the weighted Kaplan—Meier statistics (Pepe
and Fleming, 1989, 1991). Note that both the tests are designed for testing against
the global ordered alternative H;, but they do not provide any information about the
ordered pattern of the treatment effects.

To determine the pattern of the treatment effects when survival data are subject to
random right censorship, we consider multiple testing procedures between neighboring
treatments on the basis of the two-sample statistics each comparing an individual treat-
ment with the previous one. The two-sample statistics under consideration are weighted
logrank statistics and weighted Kaplan—Meier statistics. The use of these testing pro-
cedures is illustrated with the numerical example assessing the effect of ovalbumin
immune bone marrow cells on the transfer antitumor activity (Hornung et al., 1995).
Comparative results of a Monte Carlo study investigation demonstrate the relative error
rate and power performances of these testing procedures for small sample sizes. Some
suggestions and conclusions are finally given.

2. Weighted logrank multiple tests

For i = 1,...,k let Di(t) =#{u: Xy <t, 05 = 1, w= 1,1,...;,m} be the number of
patients in group i/ who have been died by time ¢ and let Y;(z) = #{u: X;, >t, u =
1,2,....n;} be the number of patients in group i/ who are still alive and uncensored at
time ¢. Let Niy =n; +niyy, Yip(t) = Yi(t) + Yis1(¢) and D;,(¢) = Di(t) + Diy (). Set
te =minimum(ty,...,# ), where ¢; is the last observation in group i. Using the counting
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process formulation described in Gill (1980), the weighted logrank statistic comparing
the (i + 1)th treatment with the ith treatments is

Yi(t)Yis(2) {dD,-(t) B dD,-+|(f)}
Yii(2) Yi(1) Yaa(e) J-

Fleming and Harrington (1991) suggested to use W(1) = {Si()Y{1 — Si(1)}" for
p, 7=0, where S;(¢) is the Kaplan and Meier (1958) survival estimate based on the
ith and (i + 1)th samples. Note that taking p =y = 0 produces the logrank statistic
(Mantel, 1966) and setting p =1 and y =0 yields the Peto—Prentice statistic (Peto and
Peto, 1972; Prentice, 1978). Moreover, the consistent and unbiased estimator of the
variance of WLR; is given by

WLR, — [ Wi(t) (2.1)
JO

/ W )Y(r)Y,H(t) {1 _ADi (1) — 1 } dD;-.+.(r)1 (22)
Yiy (1) Yii(2) Yiy (1)
where AD; (t) = D;,(t) — D;,(t—). Let
WLR? =WLR/v/sn. i=1,2....k =1 (2.3)

It can be shown (see Appendix) that, under the null hypothesis Hy, the asymptotic
distribution of the random vector (WLR}, WLR3,...,WLR}_,) is the (k — 1)-variate
normal with mean zero vector and correlation matrix R = {r;;}, where r;; = 0;;/,/0;;5;
and the o; and o;; are stated in Eqgs. (A.l1) and (A.2). Note that the matrix R can be
consistently estimated by R = {sij/\/5is;;}, where the s; are stated in (2.2) and the s;;
are given by, fori <j=2,....k — 1,

Y1)V (1) Vi (0) {1 _ ADj (1) - 1} dD;, 4 (1)

| wow ,
/U SUE A NP RNT) Vi) =1 | Yia(h)

(2.4)

if i=j—1 and 0, otherwise, D;, . (t)=D;(t)+D;1(t)+D;>(1), Yii  ()=Y:(t)+Y; 1 1(1)+

Yiio(t) and AD;, (t)=D;, (t)—D;, (t—). Let (Z,,2>,...,Z;_1) be a (k— 1)-variate
normal vector with mean zero and the correlation matrix R, and let zmax(k — 1,2) be
the upper oth percentile of the distribution of max(Z,,2,,...,Z;_1). As a generalization
of the Lee and Spurrier (1995a) testing procedure, we claim

Siv1 > 8; if WLR >zmax(k — 1,a) fori=1,2,...,k — 1. (2.5)

It is obvious that the experimentwise error rate, the probability of erroneously declaring
at least one treatment better than its preceding one, for this procedure is approximately
controlled, since

a ~ P{max(WLR}, WLRJ,...,WLR;_,)>zmax(k — 1,2)|Hp}
= P{WLR >zmax(k — 1,2) for at least one 7 | Hy}.
For any z, the probability P{max(Z,Z,,...,Z;_1)<z} can be computed using a pro-
gram for calculating multivariate normal probabilities (Schervish, 1984). Therefore,

the critical value zmax(k — l,«) can be found such that P{max(Z,Z,,...,Z;_1)>
zmax(k — 1,a)} = a.
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Table 1

Table of summary statistics for the bone marrow transplantation-tumor data

G(,i+1) WLR(Logrank) WLR(Peto—Prentice) WKM
(1, 2) 0.591 0.991 0.657
2:3) 2.189 1.961 1.879
(3, 4) 0.437 0.434 0.363
(4, 5) —0.488 —0.553 —0.525
Correlation

(1, 2) and (2, 3) —0.487 —0.474 —0.627
(2, 3) and (3, 4) —0.459 —0.481 —0.515
(3, 4) and (4, 5) —0.502 —0.494 —0.518

Remember that weight function w;(¢) = 1 corresponds to a logrank statistic, and
w;(t)=S8(t) to a Peto—Prentice statistic. Under the assumption of equal censoring, that
is, C;i=C, i=1,2,...,k, we observe, from (A.3) and (A.4), that the correlation structure
for the two weight functions is

ppsl, ipp= —V Pipiv2/[(pi + pis )Pt + pis2)], ti=j—L e
0, otherwise.

This correlation structure is the same as that stated in Lee and Spurrier (1995a). There-
fore, when sample sizes are equal and the assumption of equal censoring is tenable,
we suggest to use the critical values reported in Lee and Spurrier’s (1995a) Table 1
with infinite degrees of freedom.

3. Weighted Kaplan—Meier multiple tests

Note that the weighted logrank statistic in (2.1) on the basis of the difference of
the estimated hazard functions is, in fact, appropriate for testing against the hypothesis
of two ordered hazard functions. For constructing a procedure which is more sensitive
to testing against S; < S;,|, Pepe and Fleming (1989) proposed a class of weighted
Kaplan and Meier (1958) statistics given by

T
WKM, = [ /o) {Si1(2) — Si(2)} dt (3.1)

Jo

where 7, =sup{s: min(G(¢),Si(t), i=1,....k) > 0}, Gi(t) be the Kaplan-Meier esti-
mator of censoring survival distribution G;(¢)=1—C;(¢), Si(t) is Kaplan—Meier estima-
tors of §;, and w;(¢) is the random weight function which downweights the contribution
of S;.1(1)—Si(1) over later time periods if censoring is heavy so that the statistic WKM;

is stable. Moreover, if S; = S;;| = §, the variance of WKM; can be estimated by
T T. 2 A ~ A
! ‘ ~ ;G.; I— i Gj — de
Vi = / {/ L%,—(t:)S(u)du} 4 (,\ )+’E+] +1(7) = A( ) ; (3.2)
Jo ‘ Gi(t—)Gi+1(t—) S()S(t—)

where S(7) is the Kaplan—Meier estimator of the common survival distribution S(¢)
based on the ith and (i + 1)th samples and F(¢)=1—S(¢). Let p; benyN, i=1,....k.
For the k-sample setting studied in this paper, we employ the following weight function
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suggested in Pepe and Fleming (1989):
Gi(t—)Gir(t—)
piGi(t—=)+ p;1Giya(1—)

To determine the pattern of the treatment effects with randomly right-censored data,
we consider the random vector (WKM7, WKM3, ..., WKM; _,), where

WKM; = WKM;/\/vi, i=1,2,....,k— 1.

wi(t) = (3.3)

[t can be shown in Appendix that under the null hypothesis Hy, the asymptotic dis-
tribution of the random vector (WKM7, WKM;,...,WKM;_,) is the (k — 1)-variate
normal with mean zero and correlation matrix I = {p;;}, where p;; = ¢;;/\/ Pii¢;; and
the ¢; and ¢;; are stated in Eqs. (A.6) and (A.7), respectively. Note that the matrix I’
can be consistently estimated by I= {vij/ m}, where the v; providing consistent
estimates of N¢;; are stated in (3.2), and the v; as consistent estimates of N¢;; are
given by, fori < j=2,...,k -1,

T, T i T H
Vij = ~\/n,-n,v+2/ { / vi';(u)S(u)du} {/ vi’,-+.1(u)S(u)du}
J0 Jt t

y dF (1)
S()S(t—)Gi(1—)
if i=j—1, and O otherwise, and §(t) is the Kaplan—Meier estimator computed from

the combined samples of i, i+ 1, and i + 2. As a resemble to the testing procedure in
(2.5), we claim

Siy1 > 8;  if WKM; >zmax*(k — 1,a), fori=1,2,....,k— 1. (3.5)

(3.4)

where zmax*(k — 1,2) is the upper ath percentile of the (kK — 1)-variate normal distri-
bution with mean zero and correlation matrix I". Note that, from (A.8) and(A.9), the
correlation structure under equal censoring pattern is the same as in (2.6). Therefore,
the critical values reported in Lee and Spurrier’s (1995a) Table 1 with infinite degrees
of freedom can, again, be used in (3.5) when the assumption of equal censoring is
tenable and sample sizes are equal.

4. An example

Hornung et al. (1995) conducted a laboratory study to assess whether antigen-specific
antitumor immune responses, elicited in normal donor mice by immunization with the
soluble form of the surrogate tumor antigen ovalbumin (OVA), can be transferred via
bone marrow transplantation into lethally irradiated, syngeneic recipient mice. In this
paper, we investigate the pattern of the antitumor immune responses transferred from
donors with increasing number of OVA-immune bone marrow cells.

Fifty female C57BL/6 mice bearing day-10, subcutaneous E.G7-OVA tumors were
given lethal TBI, then reconstituted with various doses of pooled bone marrow cells
from OVA-immune donors. The dosages of bone marrow considered in the study were:
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Fig. 1. The Kaplan-Meier estimates for the bone marrow transplantation-tumor data.

I x 107 Non-immune bone marrow cells (group 1); 5 x 10° OVA-immune bone mar-
row cells (group 2); 1 x 107 OVA-immune bone marrow cells (group 3); 2 x 10’
OVA-immune bone marrow cells (group 4); and 4 x 107 OVA-immune bone mar-
row cells (group 5). The measurement of record for each dosage group was the sur-
vival time after reconstituted with bone marrow cells. Mice without noticeable tu-
mors were sacrificed and autopsied at 150 days and were considered long-term sur-
vivors, yielding censored data for their respective dosage groups. The Kaplan and Meier
(1958) estimates of the survival functions for the five groups of mice are presented in
Fig. 1. Since there is a monotonic relationship between the transferred OVA-immune
bone marrow cells and the antitumor immune responses, we reported, in Table 1, the
relevant one-sided statistics and the critical values of the proposed tests corresponding
to their correlation estimates.

The approximate 5% and 10% critical values corresponding to the three sets of
correlation estimates are 2.237 and 1.951, respectively. (The 5% and 10% critical val-
ues with infinite degrees of freedom reported in Lee and Spurrier (1995a) are 2.238
and 1.952, respectively.) The WLR tests based on logrank and Peto—Prentice statistics
reach the same conclusion that, under the significance level o =0.10, there is only one
significantly different pair of 5 x 10° OVA-immune bone marrow cells (group 2) and
| x 107 OVA-immune bone marrow cells (group 3) in which group 3 produces better
antitumor immune response than does group 2. The WKM test fails to detect such a
difference at the same significance level.
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5. Monte Carlo study

A Monte Carlo study was performed to examine the relative level and power per-
formances of the weighted logrank (WLR) and weighted Kaplan—-Meier (WKM) tests
for comparing the adjacent treatments when survival data are subject to random right
censorship. The WLR tests based on logrank and Peto—Prentice statistics are denoted
by WLR(L) and WLR(P), respectively. Herein, we considered k£ = 5 treatment groups
with sample sizes n) =---=ns =n=10,20,30 in the error rate study and » =20 and
30 in the power study.

Exponential distributions and three types of piecewise exponential distributions,
demonstrated in Fig. 2, were employed to be the survival distributions under the null
hypothesis and a variety of alternative hypotheses corresponding to different types of
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A3(t)= 0.251{t<0.8}+0.51{t>0.8)

1.0

Survival Function
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Time

Fig. 2. Survival configurations for alternatives.
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(I Ay(t) = 0.11{1<0.8)+1.91{0.8<t<1.6}+0.11{ 1.7<t<2.4) +1{1>2.4)
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Fig. 2. (continued)

hazard differences. The solid line in each panel represents the common survival func-
tion under the null hypothesis. Panel (1) displays the survival distributions generated by
exponential distributions with different hazard rates which correspond to proportional
hazards; the survival distributions in panel (II) are generated by piecewise exponential
distributions to produce an early hazard difference alternative; the survival distributions
in panel (III) are generated by piecewise exponential distributions to give a middle
hazard difference alternative; and the survival distributions in panel (IV) generated
by piecewise exponential distributions yield a late hazard difference alternative. The
ordered alternatives considered in the study are (i) S} =85, <83 =83 = S5 and (i1)
S =8 <83 =384 <8s. In both the alternatives, the first two groups have the same
hazard rate ~,. In alternative (1), S3, S4 and Ss are survival functions corresponding
to 43, while, in alternative (ii), 4> is the hazard rate of groups 3 and 4, and Ss is
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the survival function corresponding to 43. Uniform distribution over (0,R) was used as
the censoring distribution. Various values of R which correspond to the probability of
censorship as 0.3 and 0.5 were considered in the error rate study, the corresponding
uniform distributions were then employed as censoring distributions in the power study.
Note that the censoring probabilities were fixed for each population in the error rate
study, but they may be different for the populations involved in the power study due
to different survival distributions.

For each of these settings, 25000 replications were used to obtain the estimated
experimentwise error rates, 10000 replications were employed to estimate the ex-
perimentwise powers (probability of correctly detecting at least one treatment bet-
ter than its preceding one) and marginal powers (probability of detecting the (i +
1)th treatment better than the ith treatment), denoted by 7; under the nominal level
o = 0.05. Therefore, the standard error for the estimated error rate is around 0.001(~
1/(0.05)(0.95)/25000), while the maximum standard error for the power estimate is
0.005(=\/ (0.5)(0.5)/10000). The estimated error rates and powers are presented in
Tables 2—4, respectively.

Table 2 clearly reveals that the WLR(P) holds its error rate well across all the
simulations under consideration. In addition, the unweighted logrank test WLR(L) and
the WKM test reasonably maintain their error rates when the common sample size is
at least 20.

The power study in Tables 3 and 4 indicates that the WLR(L) test is more powerful
than either the WLR(P) or WKM test for exponential distributions. This result is not
surprising, since the WLR(L) test is the most efficient one for proportional hazards.
Nevertheless, the WKM test provides with a competitor to the WLR(L) test for propor-
tional hazards. For early hazard difference alternatives, the WLR(P) test has the best

Table 2
Estimated level for k=5and ny =---=ns=n
n Distribution Censoring probability
03 0.5
WKM WLR(L) WLR(P) WKM WLR(L) WLR(P)
10 (1) 0.054 0.061 0.051 0.057 0.056 0.050
(1) 0.054 0.063 0.051 0.061 0.059 0.052
(I11) 0.040 0.066 0.053 0.048 0.067 0.053
(1V) 0.044 0.066 0.052 0.043 0.067 0.051
20 (h 0.051 0.056 0.050 0.054 0.054 0.049
(1) 0.055 0.055 0.052 0.052 0.049 0.050
(1IT) 0.051 0.060 0.051 0.053 0.056 0.050
(1v) 0.050 0.059 0.050 0.051 0.057 0.050
30 (I 0.053 0.055 0.052 0.054 0.053 0.052
(1) 0.052 0.053 0.049 0.051 0.053 0.048
(I11) 0.050 0.055 0.050 0.055 0.056 0.051

(IV) 0.050 0.056 0.050 0.051 0.057 0.047
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Table 3
Estimated experimentwise powers for k =5 and ny =---=ns =n
n Alternative Censoring probability
0.3 0.5
WKM WLR(L) WLR(P) WKM WLR(L) WLR(P)
20 (1 (1) 0.755 0.772 0.718 0.528 0.554 0.528
(i) 0410 0.420 0.395 0.265 0.279 0.260
(11) (i) 0.560 0.509 0.609 0.587 0.555 0.565
(ii) 0.313 0.294 0.31 0.313 0.297 0.292
(1) (1) 0.427 0.399 0.623 0.483 0.498 0.542
(i1) 0.248 0.238 0.349 0.281 0.276 0.303
(IV) (i) 0.496 0.632 0.353 0.170 0.316 0.178
(i1) 0.307 0.413 0.241 0.115 0.198 0.126
30 (I) (1) 0.921 0.931 0.904 0.734 0.764 0.740
(i) 0.573 0.594 0.537 0.382 0.398 0.380
(I1) (1) 0.743 0.678 0.800 0.785 0.752 0.773
(i) 0.437 0.402 0.477 0.460 0.440 0.443
(1) (1) 0.579 0.529 0.805 0.657 0.654 0.740
(i) 0.332 0.299 0.488 0.373 0.363 0.430
(IV) (1) 0.693 0.838 0.529 0.236 0.486 0.271
(i1) 0.437 0.600 0.355 0.153 0.289 0.179
Table 4
Estimated marginal powers for k =5 and ny =---=ns=n
n Alternative Censoring probability
0.3 0.5
WKM WLR(L) WLR(P) WKM WLR(L) WLR(P)
20 (D) (1) 1) 0.755 0.772 0.718 0.528 0.554 0.528
(i) m 0.280 0.285 0.239 0.177 0.188 0.172
T4 0.184 0.189 0.177 0.107 0.111 0.104
(11) (1) m 0.560 0.509 0.609 0.587 0.555 0.565
(i1) 153 0.255 0.243 0.272 0.249 0.242 0.234
m4 0.078 0.066 0.086 0.085 0.073 0.076
(1) (1) ) 0.427 0.399 0.623 0.483 0.498 0.542
(i) m 0.077 0.097 0.108 0.091 0.104 0.092
Ty 0.186 0.154 0.271 0.208 0.192 0.231
(1v) (1) m 0.496 0.632 0.353 0.170 0.316 0.178
(i) T 0.059 0.095 0.058 0.038 0.064 0.041
m4 0.259 0.349 0.195 0.081 0.144 0.088
30 (N (1) Ty 0.921 0.931 0.904 0.734 0.764 0.740
(i1) 6 0414 0.431 0.375 0.269 0.282 0.264
Ty 0.273 0.287 0.262 0.157 0.166 0.161
(11) (1) b1 0.743 0.678 0.800 0.785 0.752 0.773
(i) T 0.370 0.346 0.410 0.384 0.371 0.372
4 0.106 0.085 0.113 0.124 0.109 0.116
(I11) (1) m 0.579 0.529 0.805 0.657 0.654 0.740
(i) m 0.099 0.118 0.152 0.120 0.115 0.264
Ty 0.257 0.204 0.396 0.291 0.133 0.345
(V) (1) T 0.693 0.838 0.529 0.236 0.486 0.271
(i1) m 0.087 0.143 0.080 0.050 0.090 0.056
T4 0.383 0.535 0.299 0.109 0.219 0.131
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power performance when the null censoring probability is light as 0.3, while the WKM
test outperforms over the other two when the null censoring probability is about 0.5.
This is because that the WKM test puts more weight on early times for heavy cen-
sored data. For middle occurring hazard difference alternatives, although the WKM test
is better than the WLR(L) test as specified in Pepe and Fleming (1989), the WLR(P)
test is superior to the WKM test. For late difference hazard alternatives, the WLR(L)
has the highest power. The WKM test is second to the WLR(L) test when the null
censoring probability is light as 0.3. However, when the null censoring probability is
about 0.5, the WKM test puts less weight on late times, thereby reducing its power
for detecting the late occurring hazard differences. In this case, the WKM test is even
less powerful than the WLR(P) test.

6. Conclusions

To use the weighted logrank statistics (Fleming and Harrington, 1991) in constructing
the class of multiple test for comparing successive treatments, the most important issue
is how to choose appropriate weight functions. The logrank statistic (p =7 = 0) is
known to be optimal under proportional hazards alternatives and the Peto—Prentice
statistic (p =1 and y=0) is suitable for early occurring hazard differences. Moreover,
appropriate weight function would be the one corresponding to p =1 and y = 1 for
hazard differences occurring at middle times, and p =0 and y = 1 for late hazard
differences. Some useful plots, for example, the plot of log{-log(survival estimate)},
can be used to assess the feasibility of the proportional hazards. The Kaplan—Meier
survival estimates can also be used to investigate whether the hazards differ at early,
middle or late times. Furthermore, although we only consider, for simplicity, the use
of the same type of weight function in this paper, we can, in fact, employ different
types of weight functions for comparing different pairs of adjacent treatments in the
weighted logrank multiple test.

The multipe test on the basis of weighted Kaplan—Meier statistics does not lose too
much power than the logrank multiple test for proportional hazards alternatives. In
addition, the power performance of the weighted Kaplan-Meier multiple test is com-
petitive for some nonproportional hazards alternatives. However, to use the weighted
Kaplan—Meier multiple test, we still need to select the weight function satisfying the
constraints specified in Pepe and Fleming (1989) to ensure stability of the weighted
Kaplan—Meler statistic.

According to the observations stated above, we learn that the weighted Kaplan—Meier
multiple test may not be the best one, although it would not be the worst one in most
cases. Moreover, the weight function previously chosen in (3.3), for example, involves
the estimators for the censoring distributions, which seems to be a little bit curious. In
contrast to this, the weighted logrank multiple test does not use the censoring estimator
and the weight functions give the statistician the chance to make the test sensitive to
the corresponding hazard differences. For these reasons, the weighted logrank multiple
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test with appropriate weight functions is preferred for comparing successive treatments
if the times at which adjacent hazards are different can be recognized clearly.
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Appendix A
A.1. Asymptotic null distribution of N~"?(WLR|, WLR,,...,WLR;_)

Note that, when S} =S, = --- = S, using the martingale framework, the statistic
WLR; in (2.1) can be written as

 Ki(1) e Ki(t)
W= [o i) e /0 i)
where K;(t) = Wi;(t)Yi(t)Yi1(2)/Yi(t), Mi(t) =Di(t) — jor Yi(s)dA(s) are independent
zero-mean martingales and A(s) is the common cumulative hazard function. Suppose
that N — oo in such a way that n;/N — p;, 0 < pi < 1, i=1,2,....k If Yi(t)/n; = (1),
i = 1,....k, and Wi(t)>wi(t) uniformly as N — oo, then K2(¢)Yii(1)]/
[NYi(1)Yis1(0)] 5 kis(¢) and Ki(1)Ki1(1)/[NYi1(£)] = kiy (1) uniformly as N — oo for
i=1,2,...,k— 1, where

kii(t) = pi pir1of(Omi()mi 1 (1) [ pimi(t) + pisimigi(1)]

ki (t) = pipis1 Pir20i()0i 1 (O (Omi2(OD)/{ [ pimi(t) + piva1ivi(2)]
X[ pis1is1(t) + piramiza(2)]}.
Hence, the Martingale Central Limit Theorem (see, for example, Theorem 6.2.1 in
Fleming and Harrington, 1991) implies that, the null (Hy) asymptotic distribution of

the random vector N~ V2(WLR,, WLR,,..., WLR;_) is the (k—1)-variate normal with
mean zero and covariance matrix ¥ = {o;;}, where, for i =1,2,...,k — 1,

gij = /OO kﬁ(!){] — A/l(f)}d/l([), (Al)

0

and, for i< j=2,...,k -1,

— —/0 ki (O{1 — AA(O)YdA(r)  if i=j—1, (AD)

0 otherwise,
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with AA(t)= A(t) — AA(t—). The unbiased and consistent estimators of No;; and No;;
are then given by s;; and s;; stated in Eqgs. (2.2) and (2.3), respectively. Under the as-
sumption of equal censoring, that is, C;=C, i=1,2,...,k, we obtain, for i=1,2,....k—1,

R / W (0)G()AF (1) (A.3)
pi + Piv1 Jo
and, for i < j=2,3,...,k— 1,
— DiDi1 Dit2 [“
Gii = i) 1()G(1) dF (1), (A.4)
T pi+ pinillpis1 + pis2l Jo £

if i=j—1, and 0, otherwise, where F(t)=1—S(¢) and G(¢t) =1 — C(¢).
A.2. Asymptotic null distribution of N=Y* (WKM,, WKMy,..., WKM;_,)

When S; =85, =--- =8, = S, the weighted Kaplan—Meier statistic WKM; can be
expressed as

T, ) )
WKM, = / W0 d{Sii1(0) — $:(0))
Jo
where Wi(t) = /nin j;r‘ wi(u)S(u)du 1s a predictable weight function. Applying

Lemma 2.4.1 in Fleming and Harrington (1991), the martingale representation of
N~12WKM; is given by

1. f
/ H,-(r>de(f)-f Hir (1) dM; 1 (1)
( 0

)
v 'TL' 'TL' i i ;
+\/ "*";\;” / {/ Li“,—(u)S(u)du} d{B*'*'(” B*(”} (A.5)
J0 Jit

S(1)
where
e [T, Si(t) 1{Yi(1) > 0}
H(t)= | {/ w;(u)S(u)du} e
and

ST){S(Te) — S(1)}
S(T¢) '
Since the last term in (A.5) converges to zero in probability as N — oo, we observe

Bi(t) =I{T. <t}

T Te
N~2WKM; = Hi(t)dM;(t) — / Hio1(0)dM; 1 (1) + 0p(1).
0 0
Suppose that Y;(t)/n; —p>TE;(f) and w&,-(t)—p+w,-(r) uniformly for i =1,2,...,k — 1. Then,
H2(£)Yi(t) 2 hi(¢) uniformly, where

" 282(t) 1
hi(t) = pis {/ “’f(“)S(”)d“} S2(t) mi(t—)’

Hence, the Martingale Central Limit Theorem implies that, the null (Hp) asym-
ptotic distribution of the random vector N ~"2(WKM;, WKM,,..., WKM;_,) is the

= 12,5005k — 1,
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(k — 1)-variate normal with mean zero and covariance matrix ¥ = {¢;;}, where for
N T

T T 2
L y piti(t=) + pi i (=) o
bu= [ { [ wiwsaa} 2EEIELMEI) G 5 4y aaco,

(A.6)
and for i< j=2,3,....,k—1
(35{,:‘:/0 V Pi Pit2 {/ w,-(u)S(u)du} {] w,-+.|(u)S(u)du}
1

if i=j—1 and 0, otherwise. Consistent estimators of N¢;; and N¢;; are then obtained
as stated in (3.2) and (3.4), respectively. Assume that C; = C, i = 1,2,...,k. Let
t=sup{s: min(S(¢),G(¢))=>0}, where G(¢) =1 — C(t). For the weight function given
in (3.3), we obtain for i=1,2,...,k — 1,

I S 2 dF (1)
s gy G(u)S(u)d A8

¥ p;-+p,-+.aA {/ i) ”} S(OS(—)G(—) &8)
and for i < j=2,3,....6— 1,

. —/PiPinz {/G g d}z dF (1) %"
%= o o om + ) Jo Lo CO5W % ssincasy A

if i=j—1, and 0, otherwise.
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