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Abstract. In this paper we are concerned with the problem of testing against
the simple-tree alternative that there is at least one treatment more effective
than the control when data are subject to random right-censorship. A class of
tests based on linear combinations of two-sample weighted logrank statistics
each comparing an individual treatment with the control is proposed. Asymp-
totic relative efficiencies of the simple-tree versions of Gehan-Wilcoxon, logrank
and Peto-Prentice-Wilcoxon under Lehmann and scale alternatives are evalu-
ated for various combinations of survival distributions and censoring probabil-
ities. The results of a Monte Carlo level and power study are presented. An
illustrated numerical example is also reported.
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1. Introduction

The problem of comparing several treatment groups with a control group
occurs frequently in survival data analyses. For example, in comparative clinical
trials, different therapies are often compared with a standard therapy or placebo
in the prolongation of the survival time of the patient with a certain disease. In
these cases, randomly right-censored data are often available, since subjects who
randomly enter the study to take therapies under consideration may be lost to
follow-up randomly or the study may be terminated at a preassigned time owing
to time limitation.

For the i-th sample (¢« = 0,1,...,k), let T}y,...,T;,, be independent iden-
tically distributed (i.i.d.) random variables each with a continuous distribution
function F;, and Cjy,...,Cj,, be iid. random variables each with a continuous
distribution function G, where C}, is the censoring time associated with the sur-
vival time 7j,. Suppose that the zero population (i = 0) is the control and the
other k£ populations are treatments. Furthermore, assume that the k£ + 1 sam-
ples are independent of each other and the C;, are distributed independently
of the Tj,. In such a setting, we actually only observe the bivariate vectors
(Xiu, 0in), where X;, = min(T;,,Ciy), 6iv = 1, if X;, = T;y, and 0 otherwise.
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Let S; =1—-F;,«=0,1,...,k. Suppose that the treatments are at least equiva-
lent to the control and that a higher response corresponds to a better treatment
effect. In this paper, specifically, we are concerned with testing the null hypoth-
esis Hy: (S; = So, 1 = 1,2,...,k) against the simple-tree alternatives (Barlow et
al. (1972)) H,y: (S; > Sp with strict inequality for at least one i, i = 1,2,... k)
when the randomly right-censored data are involved. The problem of deciding
treatments (if any) which are more effective than the control is also considered.

For the setting where data are subject to unequal patterns of censorship,
Chakraborti and Desu (1991) based on the Gehan-Wilcoxon (Gehan (1965)) score
and suggested a generalization of the Fligner-Wolfe (1982) test for the simple-
tree alternative. They also proposed, according to Slepian’s (1962) inequality, a
multiple test based on two-sample Gehan-Wilcoxon statistics in determining which
treatments are more effective than the control. However, the logrank statistic
(Mantel (1966)) is probably the most commonly used two-sample test statistic
and Gehan’s generalized Wilcoxon statistic is a member of the general class of
weighted logrank statistics (Tarone and Ware (1977)). Therefore, we consider
in this paper generalizations of the Fligner-Wolfe test on the basis of weighted
logrank statistics for the simple-tree alternatives. Multiple tests based on two-
sample weighted logrank statistics are also suggested.

A class of tests based on linear combinations of two-sample weighted logrank
statistics each comparing an individual treatment with the control is proposed.
Three special simple-tree tests based on the Gehan-Wilcoxon, logrank and Peto-
Prentice-Wilcoxon (Peto and Peto (1972), Prentice (1978)) statistics are inves-
tigated in detail. A numerical example (King et al. (1979)) studying the effect
of diets on the development of tumors is illustrated. The Pitman efficacies of
the simple-tree tests under Lehmann and scale alternatives are calculated. The
optimal sample size allocation in the sense of maximizing the efficacies is then ob-
tained. The asymptotic relative efficiencies (ARE) among these tests for Weibull
and lognormal distributions are evaluated and the effect of censoring on ARE is
explored. The results of a Monte Carlo simulation investigating the level and
power performances of the simple-tree tests for small and moderate sample sizes
are presented.

2. The proposed tests

For i = 0,1,...,k, let D;(t) be the number of patients in group ¢ who have
been observed to die by time ¢ and Y;(¢) the number of patients in group 7 who
are still alive and uncensored at time t. In the area of martingale based analysis
of censored data the two-sample weighted logrank statistic, for comparing the ¢-th
treatment with the control, is written as

(2.1) Uo: = / " Kos(t)a{Ro(t) - A1)},

where Ko;i(t) = Woi(t)Yo(t)Yi(t)/{Yo(t) + Y;(t)} and A;(t) = ](; dD;(s)/Y;(s) is
Nelson’s (1969) estimator of the cumulative hazard function of group i, A;(?).
We consider in this paper three special cases of the weighted logrank statistics
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which are of general interest: the Gehan Wil(,oxon (Gehan (1965), Prentice and
Marek (1979)) statistic when Wy, (t) = {Yo(t) + Yi(t)}/(no + n;), the logrank
statistic (Mantel (1966)) when WO?,(t) =1, and the Peto-Prentice-Wilcoxon (Peto
and Peto (1972), Prentice (1978)) statistic when Wy, (t) = Soi(t), where So;(t)
is the Kaplan-Meier (1958) estimator in the combined samples of 0 and i. Note
that the Chakraborti-Desu (1991) overall test considers only the Gehan-Wilcoxon
two-sample statistic.

Remark 1. For the Gehan-Wilcoxon statistic, equation (2.1) is

(22) Ui = — { [ vwinu - [ vwano}.

no + n;

In comparing the i-th treatment group with the control group, we obtain (X, ix),

u=1,...,n;, and (Xoy,00s), v = 1,...,n9. Therefore,
‘/- dDO ZZI X.fu = XU‘U I(éov = 1)
0 u=1v=1
and, similarly,
: ni no
/ YO(t dD ZZI(XOU > qu (6?'.11 = 1)1
Y u=1 v=1

where I(s) = 1, if statement s holds, and 0 otherwise. Hence, the counting process
formulation of the Gehan-Wilcoxon statistic in (2.2) can be reduced to the more
familiar expression (Gehan (1965)) as

1 i No
2.3 U'.i = X'.iuaéi.s;X 1155 v/
23 o= e 355 o i Xow )
where
+1 if X, > Xgv and 6g, = 1;
(24) ¢(Xi1t16i1a;X0'rJa 601}) = -1 if X'_;,u <3 XUU and (5.,'.1,_ = 1;

0 otherwise.

For testing against the simple-tree alternative H;: (S; > Sp with strict in-
equality for at least one i, i = 1,2,...,k), we propose to use the statistics of the

form
k
= Z B:Uoi,
i=1

where 8 = (31, 32, ..., 0k) is a vector of nonzero constants. Let N = Zf:o n;. It
can be shown, in Appendix A.1, that, under the null hypothesis Hy, the statistic
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N~12U(B)/s has asymptotically a standard normal distribution, where s = /52
and s? is stated in equation (A.3). Therefore, the proposed test is to reject Hy if

(2.5) U(B) = N~Y2U(B)/s > z(a),

where z(«) is the upper a-th percentile of a standard normal distribution.

The choice of the constants (3's is open, see, for example, Chakraborti and
Desu (1991) for a discussion on several possible choices of these constants. For
simplicity, however, we suggest to employ 3; = 1, i = 1,2,...,k, namely, the
simple-tree tests based on U(1) in the practical situations.

Remark 2. Andersen et al. (1993) proposed a trend test statistic which is
a linear combination of the generalized Kruskal-Wallis (1952) rank-sum statistics
for right-censored data. For Breslow’s (1970) generalization of the Kruskal-Wallis
statistic, in particular, this trend test is a linear combination of the statistics

n; k nj
Vi=Y 3 3 d(Xuibini Xguibiu)s  1=0,1yse: oK

u=1 j3=0v=1

where ¢(-) is in (2.4). Note that the statistic V; compares the i-th group with the
combined groups from 0 to k, while the statistic Upy; in (2.3) compares the i-th
treatment group with the control (i = 0) group.

If the proposed simple-tree test rejects the null hypothesis Hy, one would wish
to determine which treatments are more effective than the control. According to
Slepian’s inequality, we then suggest, under an approximate experimentwise error
rate «, to

(2.6) claim S; > S, if (:Tgﬂ,; = N"l/QUgi/\/s.&; 28k foF i=1l....%

where s;; is given in (A.1) and @ = 1 — (1 — b)*. Note that the pairwise follow-up
tests with the Gehan-Wilcoxon two-sample statistics was proposed in Chakraborti
and Desu (1991).

3. An example

King et al. (1979) investigated the effect of diets on the development of tumors.
Ninety rats of the same age and species and in similar physical condition were
divided into three groups and were fed with low fat, saturated and unsaturated
diets, respectively. The rats were observed for 200 days after an identical amount
of tumor cells were injected into a foot pad of each rat and their tumor-free times
were recorded and reported in Table 1. The tumor-free time of the rat without
tumor at the end of the 200 days and the survival time of the rat dying accidently
with no evidence of tumor are both regarded as censored times and underlines.
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Table 1. Tumor-free time (days) of 90 rats on three different diets.

Low-fat 140 177 50. 65 86 153 181 191 77 84
87 56 66 73 119 140 200 200 200 200

200 200 200 200 200 200 200 200 200 200

Saturated 124 58 56 68 79 89 107 86 142 110
96 142 86 75 117 98 105 126 43 46

81 133 165 170 200 200 200 200 200 200

Unsaturated 112 68 84 109 153 143 60 70 98 164
63 63 77 91 91 66 T0 77 63 66

66 94 101 105 108 112 115 126 161 178

Source: King et al. (1979).

1.04

40 60 80 100 120 140 160 180 200 220

Fig. 1. Survival curves of rats in three diet groups.

The Kaplan-Meier survival function estimates for the three groups were shown in
Fig. 1.

To compare the ability of the saturated (treatment 1) or unsaturated diet
(treatment 2) relative to low fat diet (control) in keeping the rats tumor free,
the two-sample weighted logrank statistics comparing the control group with the
treatment groups are employed to construct the simple-tree tests. After some
computations we have the relevant summary statistics in Table 2. According to
these statistics, we found that the p-values for the logrank, Peto-Prentice-Wilcoxon
and Gehan-Wilcoxon simple-tree tests are 8.9 x 107>, 1.7 x 1073 and 1.3 x 1073,
respectively. We then conclude that at least one of the saturated and unsaturated
diets has shorter tumor free time than does the low fat diet. To determine which
treatment diets that are unable to keep the rats tumor free compared to the control
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Table 2. Summary statistics for the diet-tumor example.

Statistics Logrank Peto-Prentice-Wilcoxon Gehan-Wilcoxon

Up1 6.568 4.053 4.200
Uo2 14.010 7.292 7.667
NGT 0.368 0.271 0.259
V522 0.323 0.223 0.230

s 0.579 0.409 0.415
Uor 1.879 1.565 LTI
Uopa 4.566 3.455 3.513
U(1) 3.749 2.926 3.013

diet, we found, at o = 0.05, the critical value for the pairwise-wise comparisons
in (2.6) is 2(0.0253) = 1.955. Therefore, all three multiple tests based on two-
sample logrank, Peto-Prentice-Wilcoxon and Gehan-Wilcoxon statistics lead to
the conclusion that at a = 0.05, only the unsaturated diet has shorter tumor free
time compared to the low fat diet.

4. Asymptotic relative efficiency

Note that, under the simple-tree alternative H;, we can express the statistic
N-12U(B) as

k

f=i X

+/m Ko(t){d;'f(i)) l}dA(t)
Lo { g - fao

where Ky and K;’s are stated in Appendix A.1. Under the alternatives where
the absolutely continuous distribution functions F¥ can depend on N and
SUPg<icns [FN(t) — F(t)] — 0as N — 00, 4 = 0,1,...,k, for some absolutely
continuous distribution function F, we obtain, along the lines of Section 7.4 in
Fleming and Harrington (1991), the general formula for the Pitman efficacy of the

simple-tree weighted logrank test in (2.5) /s’ as

{I() hO’YOdA Zz lfo 517?dA}2

=
where
_ N ) . no(N — no)
on i . = 1 \/—— dA dA) — 1
8 A}}_I.nw no(N — ng) o L NE’T(.}X_) N tidhy /dh) s
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no + Tl? .
ki = lim K;, v = lim
N —00 non; N—oo \ Ng + 1N

non;

-l dA} /dA) - 1},

i=19 ...k

and
o [k
= / {Z hl(t)} {1 - AA(t)}dA(t) is stated in (A.2).
0 \i=1

Note that there are some situations where the k£ + 1 groups of data are subject to
the same pattern of censorship, see, for example, Chen (1994). Hence, we consider
in this section the assumption of equal censoring; that is, G; = G, ¢ =0,1,...,k.
Let G=1—-G and S =1 — F. The efficacy of U (B) can be simplified to be

2

o poo ) o
{ ; _0/\~0 f(} (Z?:l A(Jir@iUJO'é)'}’OGdF = Zle £\ /\0)\0?;5.,; fU w().,;’}’.,;GdF}
/\U fOOO{(Zle ’\U?'.ﬁi("-"{}i)2 + Z:czl )\01'(]. == A{Jz)ﬁf“’&}édﬁ‘ -

To compute the efficacy discussed previously, two particular types of simple-
tree contiguous alternatives are considered in the following:
[. Lehmann alternatives

Hog:S5;=8 for i=0,1,...,k
and
H,:S; =8t—b/ VN and b; > by  with strict inequality for at least one i,

1=1,2,...,k, where S is an underlying survival function.
II. Scale alternatives

H[]:S.g:S for ?ZO,I,k
and
H; 2:854%) = S(te_b"/m) and b; > by  with strict inequality for at least

priert, $o L v

Note that the Lehmann alternatives correspond to the proportional hazards model,

while the scale alternatives correspond to location shifts in log survival times. It
can be seen that, for i = 0,1,...,k, VN{dAN /dA — 1} = —b for the Lehmann

3 ; tS (¢
alternatives and limy_ o VN{dAN (t)/dA(t) — 1} = —b;{Z q(t - S,((t)) — 1} for
the scale alternatives. We assume, without loss of generality, that by = 0. The
formulas for the efficacies of the simple-tree weighted logrank statistics under the
assumption of equal censoring are then obtained, after some algebraic manipula-

tions, as

)‘U{Zle vV AoibiBi ]030 woiGAF}?

(41) 00 k ‘ k 2
2 rn {(Y\‘.;_l ﬁiw()i]z + Y,;_1 6 U-)n }CdF




318 YUH-ING CHEN

for the Lehmann alternatives and

/ 1" 2
Ao {8 VAL e [ S 1] Gar |

B o Biwos)? + e ﬁfwgi}édf;

(4.2)

for the scale alternatives.

Remark 3. The problem of allocating observations is usually of interest in
practical situations. If se consider the setting of \g = aX and \; = Ay = --- =
A = A, where A = (a + k)~!, then \p; = (a+ 1)~ fori = 1,2,...,k. Since,
under such a sample size allocation, maximizing the efficacy in (4.1) or (4.2) is
equivalent to maximizing AoAo; = a[(a + 1)(a + k)]~1, we find that the efficacy is
maximized by taking a = v/k. Hence, for equal censoring, the optimal design for
the simple-tree test based on U(8) is the same as that for Dunnett’s (1955) test.

Note that wo; = SG gives the Gehan-Wilcoxon (G-W) statistic, wo; = 1 yields
the logrank (LR) statistic and wp; = S produces the Peto-Prentice-Wilcoxon (P-P-
W) statistic. By replacing with appropriate weights, the efficacies for the LR, G-W
and P-P-W statistics for equal censoring and sample sizes can be readily obtained
as given in Appendix A.2. In fact, the efficacy of the Gehan-Wilcoxon simple-
tree test is identical to that of the Chakraborti-Desu (1991) test for Lehmann
alternatives when sample sizes are all equal. Moreover, for equal censoring and
sample sizes, the asymptotic relative efficiencies among the tests considered here
depend only on the survival and censoring distributions.

To evaluate the asymptotic relative efficiencies (ARE) among the simple-tree
tests U(B), we consider the Weibull survival distribution with density function
f(t) = nt" L exp(—t"), t > 0, for the Lehmann alternatives and the lognormal sur-
vival distribution with density function f(t) = {n/(tv/27)} exp{—(n?/2)(logt)?},
t > 0, for the scale alternatives, where n = 0.5, 1 and 2. We employ the uniform
censoring distributions over (0, R) with probabilities of censorship 0.1, 0.3 and 0.5.
The values of the ARE’s for the Lehmann and the scale alternatives with equal
uniform censoring when sample sizes are all equal are reported in Table 3.

Table 3. Asymptotic relative efficiencies.

: G-W/LR P-P-W/LR
Censoring
Alternatives probability =05 1.0 2.0 0.5 1.0 20
Lehmann 0.1 0.78 0.75 0.73 0.80 0.78 0.76
0.3 0.83 0.78 0.75 0.89 0.85 0.80
0.5 0.87 0.81 0.75 0.95 0.93 0.88
Scale 0.1 1.15 1.16 1.17 1.15 1.16 1.17
0.3 1.11 1.13 1.15 1.12 1.14 1.16

0.5 1.08 1.11 1.13 1.09 1.11 1.14
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We can see, from Table 3, that the logrank simple-tree test is superior to
either the Gehan-Wilcoxon simple-tree test proposed by Chakraborti and Desu
(1991) or the Peto-Prentice-Wilcoxon simple-tree test for Lehmann alternatives,
while the Gehan-Wilcoxon test and the Peto-Prentice-Wilcoxon test are both more
efficient than the logrank test for scale alternatives. This is not surprising since
Weibull distributions preserve the proportional hazards, but the hazards are far
from being proportional for lognormal distributions. Note that the ARE’s are also
generally in agreement with the findings in Liu et al. (1993).

5. Monte Carlo study

To examine the relative level and power performances of the simple-tree tests
based on U (1) in (2.5) for comparing several treatments with a control when
observations are subject to random right-censorship and sample sizes are varied
from small to moderate, we conducted a Monte Carlo study. We considered k = 3
treatments with sample sizes ng = ny = --- = np = n = 10, 20 and 30 in the level
study and with n = 20 and 30 in the power study.

Exponential and lognormal distributions were considered as survival time dis-
tributions and the uniform distribution over (0, R) was used as the censoring dis-
tribution. Appropriate uniform, normal and exponential variates were generated
by using the IMSL routines DRNUN, DRNNOR and DRNEXP. The exponential-
transformed normal variates then give necessary lognormal variates. In the level
study, the standard exponential distribution and the lognormal distribution with
zero normal mean and normal variance 0% = 1/2 were considered. In the power
study, we used exponential distributions with various values of scale parameters
f;’s and lognormal distributions with normal variance o2 = 1/2 but different val-
ues of normal means 6;’s. Various values of R which correspond to the probability
of censorship as 0.10, 0.30 and 0.50 were considered in the level study, the corre-
sponding uniform distributions for probabilities of censorship 0.10 and 0.30 were
then employed as censoring distributions in the power study. Note that the cen-
soring probabilities were fixed for each population in the level study. However, in
the power study, they might be varied for the four populations involved due to
different survival time distributions.

For each of these settings, we used 1,000 replications to obtain the level or
power estimates under the nominal level &« = 0.05. Therefore, the maximum
standard error for the power estimate is about 0.016 (~4/(0.5)(0.5)/1000). In fact,
the standard error for the level estimate is less than 0.007 (a+/(0.05)(0.95)/1000).
The level and power estimates are presented in Tables 4 and 5.

It is evident, upon examination of Table 4, that the logrank, Gehan-Wilcoxon
and Peto-Prentice-Wilcoxon simple-tree tests hold their levels reasonably when
the common sample size is about 20. The power study presented in Table 5 shows
that the unweighted logrank test is more powerful than the Gehan-Wilcoxon and
Peto-Prentice-Wilcoxon tests for exponential distributions. However, the Gehan-
Wilcoxon and Peto-Prentice-Wilcoxon tests are both superior to the logrank test
for lognormal distributions. These results in fact coincide with the ones in com-
paring their asymptotic relative efficiencies presented in Table 3.
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Table 4. Level estimates for a = 0.05, uniform censoring and ng = ny = ngo = n3z = n.

Censofing Exponential Lognormal
n  probability LR P-P-W G-W LR P-P-W G-W
10 0.1 0.071  0.057 0.065 0.082 0.063 0.068
0.3 0.066 0.062 0.065 0.066 0.057 0.061
0.5 0.058 0.054 0.067 0.058 0.059 0.061
20 0.1 0.062 0.054 0.057 0.049 0.051 0.053
0.3 0.058 0.059 0.062 0.048 0.047 0.053
0.5 0.055 0.054 0.057 0.056 0.051 0.054
30 0.1 0.058 0.052 0.052 0.052 0.045 0.045
0.3 0.052 0.053 0.057 0.059 0.050 0.053
0.5 0.056 0.058 0.056 0.054 0.053 0.056

Exponential: f(t) = exp(—t).

Lognormal: f(t) = {1/(ty/7)} exp{—(logt)?}.

Table 5. Powers estimates for a = 0.05, uniform censoring and ng = n1 = ng = n3 = n.

Censoring probability

Survival e b3
distribution n 6y 61 62 63 LR P-P-W G-W LR P-P-W G-W
Exponential 20 1 1 1 2 0.187 0.175 0.176 0.164 0.161 0.151
| 1.5 2 0.363 0.312 0.304 0.289 0.263  0.259
1 1 2 2 0.469 0.417 0.416 0.384 0.359 0.344
1 15 2 2 0.663 0.599 0.600 0.568 0.537 0.520
1 2 2 2 0.788 0.729 0.731 0.673 0.624 0.625
30 1 1 1 2 0.262 0.246 0.239 0.219 0.213 0.211
1 4 15 2 0.502 0.423 0.424 0.398 0.378 0.360
O | 2 0.645 0.552 0.549 0.509 0.489 0.459
1 1.5 2 0.837 0.773 0.772 0.729 0.686 0.663
L. 2 2 0.925 0.875 0.870 0.827 0.790 0.761
Lognormal 20 0 0 0 0.5 0.185 0.226 0.218 0.169 0.207 0.199
0 0 0.2 05 0306 0.359 0.349 0.280 0.316 0.310
0 0.5 0.5 0476 0.534 0.535 0.442 0.490 0.477
0 02 05 05 0620 0.680 0.670 0.562 0.618 0.611
0 5 05 0.5 0.772 0.831 0.824 0.735 0.796 0.779
30 0 O 0 0.5 0.246 0.277 0.268 0.227 0.238 0.238
0 0 0.2 05 0388 0421 0.421 0.358 0.391 0.385
0 0 0.5 0.5 0.604 0.653 0.651 0.577 0.604 0.604
0 02 05 05 0732 0.790 0.794 0.702 0.754 0.743
0 05 05 05 0893 0.931 0.929 0.864 0.890 0.891

Exponential: f;(t) = (1/6;)exp{—t/6;}.
Lognormal: f;(t) = {1/(tv/7)}exp{—(logt — 6;)?}.
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6. Conclusion

A class of tests based on linear combinations of two-sample weighted logrank
statistics is proposed for testing against the simple-tree alternatives when data
are subject to random right-censorship. The asymptotic relative efficiencies and
simulation results show that the unweighted logrank simple-tree test should be
used when the assumption of proportional hazards is tenable and sample sizes
are near 20. When the hazards are far from being proportional, both the Gehan-
Wilcoxon and Peto-Prentice-Wilcoxon simple-tree tests are more powerful than the
logrank test. However, as noted by Andersen et al. ((1993), 349-350), the weight
function used in the Peto-Prentice-Wilcoxon test depends only on the survival
experience, while the Gehan-Wilcoxon test uses a weight function that depends
on survivals as well as censorings, we recommend to implement the Peto-Prentice-
Wilcoxon simple-tree test for the non-proportional hazards model, especially, when
the censoring patterns differ greatly in the populations under consideration.

In comparing several treatments with a control, experimenters are also inter-
ested in deciding which treatments (if any) are more effective than the control.
In such cases, the pairwise follow-up tests based on two-sample weighted logrank
tests are suggested. The choice of the weight function for the multiple test is,
again, similar to the one for the overall simple-tree test.
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Appendix

A.1  Asymptotic null distribution of N~1/2U(B)
Note that, when S; = Sy, using the martingale framework, the statistic Uy,
in (2.1) can be written as

[ Kalt) * Ku(t)
o= [ Jeg ) - [ o

where the M;(t) = D;(t) — fo (s)dA(s) are independent zero-mean martingales
and A(s) is the common cumulatwe hazard function. Suppose that N — oo in
such a way that n;/N — \;, 0 < \; < 1, and, hence, n;/(no + n;) — Ai/(Ai +
Aol = Ao =01, vt 10 YR f i £ 7i(t), 1 =0,1,...,k, uniformly as N —
00, then the thre(, weight functions considered in this paper sa,tisfy the property
that Wo;(t) & woi(t) (md thus, K2(t)[Yo(t) + Yi(t)]/[NYo(t)Yi(t)] 2 hii(t) and
Koi(t)Ko;(t)/[NYo(t)] & hij(t) uniformly as N — oo for i = 1,2,...,k, where
hii(t) = Aodoiw; ()mo(t)mi(£) /[(1 — Aoi)mo(t) + Aoimi(t)]
hij(t) = XoXoiAojwoi (t)wo; (E)mo(t)mi(£)m; () /{[(1 — Aoi)mo(t) + Aoimi(t)]
- [(1 = Aoj)mo(t) + Aojm;(t)]},
R ) R
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Hence, the Martingale Central Limit Theorem (see, for example, Theorem 6.2.1 in
Fleming and Harrington (1991)) implies that the asymptotic null ( Hy) distribution
of the random vector N1/ 2(Un, Uog, . . ., Uok) is the k-dimensional normal with
zero mean vector and covariance matrix ¥ = (o;;), where

gy = / hi ()1 - AADIAA(E), i, =1,2,....k,

with A(t) the common cumulated hazard function and AA(t) = A(t) — A(t-).
Note that unbiased and consistent estimators of ¢;; are then given by

1, 1 1 ~ AD(t) - 1] dD(t)
(A1) sy N/o K (t) [Yg(t)+1’i(t)J [l Y(t)—l] Y(t)

and

= d [ K [, ADG1] 4D
N Jo Yo () Y(t)-1] Y(t)

for i#£j=12...k,

where D(t) = S°F ( Di(t), Y(t) = S2F_,Yi(t) and AD(t) = D(t) — D(t—). Fol-
lowing the Cramer Wold device, we observe that the asymptotic null distribution
of N—1/2 Z; 1 BiUo; is normal with zero mean and variance 02 = lel Biai; +

XX+ BiB;oi; for any nonzero constants 3;, 1 =1,2,...,k.
Note that we can write N~1/2U(B), under Hy, as

k

N-V2U(8) = fo h ﬁf((f))dMo(t)—_Z 0 ﬁ((f))dM()

where K;(t) = 1/2[1,, 0i(t), i =1,2,...,k, and Ko(t) = 3¢, K;(t). Moreover,
we have Kf(t)/Y.,-_( 2 hi(t),i=0,1,... k, where

k

ho(t) = Xomo(t) | D AojBjwo; (8)m;(£)/{(1 — Xoj)mo(t) + Nojm;(t)}

i=1
Al 16Fq = L 20 i

hi(t) = MoXoi(1 — Xoi) Biwi; (8)mg ()mi () /{(1 — Xoi)mo(t) + Aoimi(t)}.

Therefore, o can also be expressed as
o5 K
(A.2) o® = [ Y hi(t)[1 — AA(t)]dA(2).
0 i=o

An unbiased and consistent estimator of o2 is then given by

2 [ <= K2(2) AD(t) — 1) dD(t)
A = {Z Yi(0) }{1“ VT ) T

0

Hence, we obtain, by applying Slutsky’s Theorem, that N~12U(B8)/s is asymp-
totically standard normal, where s = v/ s2.



SIMPLE-TREE WEIGHTED LOGRANK TESTS 323

A.2  Pitman efficacies for equal censoring and sample sizes

The Pitman efficacies of the Logrank (LR), Gehan-Wilcoxon (G-W) and Peto-
Prentice-Wilcoxon (P-P-W) simple-tree tests for equal censoring and sample sizes
derived directly from equations (4.1) and (4.2) are given in the following:

eff(LR) = {Z[jb} / GdF/{(Ajtl){(éﬁl)ngég?}}’
eff(er)—{éﬁ,,bi} {/0 Ggde}

k 2 -
/{(HI)KZ@) +Zﬁ3}/ GSS%F}
i=1 i=1 0
k 2 o _ 2
eff(P-P-W) = {Zﬁ;ﬁb} { /0 GSdF}

Jfeolie 5

for the Lehmann alternatives, and

k 2
B " tS'(t)  tS"(t) .\ A
eff(LR,)—{;ﬁ.,,b&} /0 (S(t) =0 1)GdF
k 2 %
/{(kﬂ)[(Z@) +Zﬁf”7
=1 i=1

e~ {San ) {7 (50 - 50 1) s

i=1
f é:3S2le} ,
0

2
N . = sty 8 -\ 2 2
eff (P-P-W) = {Z ﬁ,b,} /O ( ORI 1) GSdF}

and

o8 o i
/ GS2dF
0

and

for the scale alternatives.
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