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Summary

In this paper we are concerned with test procedures for umbrella alternatives in the k-sample
location problem. Distribution-free tests are considered for both cases where the peak of the um-
brella is known or unknown. Comparative results of a Monte Carlo power study are presented.
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1. Introduction

A problem that occurs frequently in statistical data analyses is to determine
whether £ sets of independent observations arose from the same population. A
variety of nonparametric tests have been developed for this £-sample setting. In
particular, KRuskaL and WALLIS (1952) considered a distribution-free test for
general location alternatives to the null hypothesis of one common distribution.
JONCKHEERE (1954) and TERPSTRA (1952) carried out the initial studies for
testing against ordered location alternatives. Cuacxo (1963) proposed another
test for ordered alternatives, which is similar in construction to the one proposed
by Kruskal and Wallis for general alternatives. For the case of umbrella alterna-
tives, which include ordered alternatives as a special case, Mack and WoLrze
(1981) are the first to provide a general solution to this problem in the k-sample
setting. Stmpson and MARGOLIN (1986) discussed a recursive procedure for testing
an increasing dose-response relationship when a downturn in response at high
dose is possible. HETTMANSPERGER and N ORTON (1987) also considered a general
approach to testing for various restricted alternatives.

In this paper we are concerned with umbrella alternatives and consider several
Competing tests for when the peak of the umbrella is known a priori and for the
tore common practical setting where the peak of the umbrella is unknown. Such
alternatives are appropriate for many problems. For example, an experimenter in
Psychology usually expects that an increase in stress (or training) produces an
iereasing negative (or positive) effect on performance of some task. Moreover, it
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is generally believed that learning ability is an increasing function of age up to g
certain point and then it decreases with increasing age. Other examples are In’
medicine where therapies often become counter-productive at high doses. In such
cases, an increasing dose-response relationship with a downturn in response at.
high doses is anticipated.

In Section 2 we describe the umbrella model under consideration in this paper
and discuss previously proposed test procedures for either the peak known or’
unknown settings. In Section 3 we propose a natural generalization of CHACKO's
(1963) statistic to obtain a test for umbrella alternatives when the peak is known
a priori. In Section 4 we propose an alternative distribution-free extension of the
Misck-WoLFE (1981) statistics to the unknown peak setting. In Section 5 we
present the results of an ektensive Monte Carlo simulation investigation of the
relative powers of these competing distribution-free tests for a variety of umbrella
alternative configurations. |

2. The Setting. Notation. and Previous Work

Suppose that X, ..., Xug =1, «.y b, are k independent random samples from
populations with continuous distribution functions Fi(z)=F (x—&). i=1..... &
We consider testing the null hypothesis Hy: [¢,=...=%] against the class of

umbrella alternatives H: [} =... =0« =... =, for some o, with at least one
strict inequality]. In this article, we discuss both the setting where =, the peak of
the umbrella. is known and where it is unknown.

k
Let Ry be the rank of X;; among the N= 3 n; observations and let Ri=
"‘L gl

=3 Ry/n; be the average rank of the ith sample. Set A;=n:/N. i=1,.., k. For
j=1

testing H, against ordered alternatives (corresponding to umbrella w ith known
peak o« =£k), the JoNCKkHEERE (1954)-TERPSTRA (1952) test rejects for large values
of the statistic

k-1 &
B eSS
{=1 J=i+1

where Uy, is the usual Mann-Whitney statistic corresponding to the number of
observations in sample j that exceed observations in sample i. Mack and WOLFE
(1981) extended this methodology to an arbitrary peak-known (x) umbrella alter-
native H4 by combining a Jonckheere-Terpstra statistic and a reverse Jonck-
heere-Terpstra statistic to base their test on rejecting Ho for large values of

a-1 «a k-1 K
(2:2) 4,=2 2 UgkZ 2 Un.
=1 J=i+1

i=a2 j=i+1

For the more general unknown peak alternative, Mack and Wolfe proposed t0
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reject Hyp for large values of

e Ai 7 Asz
(2.3) gr =il
oo(4,)
where
(24)  pldo)= [N1+Nz 2 n? ] /s
I
and
5 1 ” BB e
(2.5) op(de) == { (NI+N3) +3 (N7 +N3)
{ -
k
— 20§ (2n5+3)—n; (2n¢+3)
i=1
- lintNlNg— 127&3;'} i
t k
with N1 = X n; and Na= 3 n;, are the null (H,) mean and variance, respectively,
l=l 1= t

of Ay, t=1, ..., k, and & is a sample estimate of the unknown peak «. (See Mack and
WorrE (1981) for details on their estimator z.)

An entirely different approach leads to the ordered alternatives test proposed by
CrackO (1963). Let Ry =R.=...=R; be the isotonic regression of the average
ranks Ry, ..., Ri under the order restriction ¢y =...=9. (For a discussion of the
algorithm for obtaining Ry, ..., Rk, see BARLOW, et al. (1972).) Chacko’s rank test
then rejects Hy for large values of

9 k N +1)\2
2.6)  fy= (N+1 > zz( =ik )

i-l N

In a general approach to constructing tests designed for specific patterned
alternatives, HETTMANSPERGER and NORTON (1987) proposed two procedures for
testing Hj against the umbrella alternatives H 4. For the case of known umbrella
peak « and equally spaced effects, corresponding to §;=39q +id, fori=1, ..., «, and
=BG+ (2a—1) 9, for i=a+1, ..., k, they proposed rejecting Hy for large values
of the statistic

a k
13 1/22 At (?:—Ew) R{-f- Z}.i (.‘Zoc—i—-éw) Ri
(2.7) Va—_-( - ) o =it

A « : /2
i [Z )st (i—éw)z‘i' z At (2&—@—6“))2]
i=1 {=a+]

@ k

where ¢,= 3 il;+ 3 (2¢—i) 4. For the same equally spaced alternative and
i=1 i=at1

unknown umbrella peak «, they suggested rejecting Hy for large values of
(28) V:mx=fg?’éxk Vis

Wwhere V, is given by (2.7) for ¢=1, ..., k.
+ Biom. J. 32 (1090) 1
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Finally Srarsox and Marcorix (1986) suggested a recursive procedure for
investigating an increasing dose-response relationship when there is potential for
a drop in response at high dose levels. Set

Jj-1
(2.9) Qj=_=211 Ui

for j=2, ..., k, where the Uj;’s are the same Mann-Whitney statistics used in
defining J (2.1) and 4, (2.2). Let

w1
(2.10) §;=2 Z Uy
i=1 f=i+1

be the Jonckheere-Terpstza statistic for the first ¢ samples, t=2, ..., k. Setting

N+ ... +05-1) Ny
b}

-

M= max {j:Q;E(

2=sf=k

}, the form of the Simpson-Margolin test

considered in this paper rejects Hy for large values of

1
(2.11) S_u (;)=Q2+...+QM.

3. Generalization of Chacko’s Test to Umbrella Alternatives With Peak Known

When, under the alternative, the peak (x) of the umbrella is known a priori,
Chacko’s statistic is generalized to be

) . N+1\2
3.1 T e T G .
( ) Xla] (N+1)t_21 i( ] B )

where R;=...=R.=...=R; is the isotonic regression of Ry, ..., Ry with weights
M, ..., . Note that the derivation of the Ry's is a quadratic programming problem.
The object is to minimize

k
(3.2) > Ay (ri— Ry)?,

t=1
subject to the constraints

1= =0 =1

and
k
{=1

However, under umbrella alternatives each location parameter except the one
for the peak group has exactly one immediate predecessor. Therefore, an algo-
rithm similar to the Minimum Violation algorithm discussed in BarLow et al.
(1972) can be applied to obtain the isotonic regression R1=...= R, =... = R. This
algorithm can be described in the following way: if Ey=..=R,=...= R, then
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R;=Ri, i=1, ..., k; otherwise, we start with the average rank of the peak group,
R.. We look for violators, where R; is a violator if R;> R;4; for i=1,...,a—1 or
R;>Ri1 for i=a+1, ..., k. The algorithm begins by choosing a violator and
pooling it with its 1mmedmte predecessor to form a weighted average rank. This
violator and its immediate predecessor will then be replaced by the weighted
average rank. Consequently, the weighted average rank is regarded as the imme-
diate predecessor and is then compared with the adjacent ones and so on. This
procedure is continued until a set of quantities satisfying (3.3) is obtained. Note
that when we start with R we may immediately have two adjacent violators. In
this case, the average rank which has the maximum value between the two
involved averages is assigned to both R. and the adjacent group (either R.—; or
R.-1) that leads to this maximum.

Using an argument similar to that of Hoca (1965), HETTMANSPERGER and
NorToX (1987) showed that

3.4 (72 )2 = max ( ) = kit

(3.4) A1k] l Nt = iAi Ll

where the maximum is taken over choices of by, ..., b such that 3 A4;5;=0,

P ib;=1 and by =... =b;. Infact, we now prove, in addition, that, fora=1, ..., k,
. 12 1/2 %

3.5) (7. l’zzmax{ ) > i Rit

where the maximum is now taken over selections of ¢y, ..., ¢x such that > 2,¢,=0,
2.02 - -
Z AiC] = 1 and Cl=..=C, =... ZC.

Proof:
Since 3 1;c;=0, we can write

N+1)

-t

=i

=1

Aicy | By—
b K 211/2 k s ( t
Z ciliRi= [Z At (Rt—l’v%l) 2
i=1

i=1 =

uv=[u? 42 — (v —v)2]/2, we then have

s ’ N+1 N +1\2]?
Let w=2}"%c;, v=1"? (Rt :_ )/[ (R,— i ) ] Using the identity
J=1 .
k
k Z (

iy )
oo 12 5 )} ool =L
L-l t( 4 2 t§ lCt+k ( N+1)o
i

2

o ()]

i=1 =1 2 ~

ZAj(R]_NH)

j=1

k
Z Ci/ i
i=1

lvl)-‘
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Since > Aic2=1, the above expression is maximized by minimizing

k k N+1 9\ 1/2 & N+1 2
a3 22 (22
i=1 i=1 = =
under the restriction ¢; =... =c¢, =... =¢x. However, this minimum can be obtained

by selecting the ¢;’s so that

222

=

bi= k T 011/2
. N+1\}
25 (8-
j=1 =
for i=1, ..., k. We then see that
K r k 511/2
e | N+1
max Zci}.iRi=—; ZX; (Rg— 2 )]
i=1 = Li=1 =
k k
e N+1)\2
Z’t( z__"_,)—‘) _2/11 (Ri_Rz)
=1 - i=1
X414 *

N+1\2
> i Ri-=5)
=1 \ ~

k k - k
; N+1)\2 N+1\2
Since th(Rt— - ) =Z/’.£(Ei— ) —3 4 (Ri— Ry)?, we have
i=1 ~ i=1 ’ 2 =1
k ; 971/2
N+1)\2
m&XZCihRi:[Zﬂ,t( gt )]
i=1 i=1 . -

and (3.5) holds.

4. Alternative Adaptation of Mack-Wolfe Statistic to Umbrella Alternatives
With Peak Unknown

If the peak of the umbrella is unknown, the alternative Hy can be viewed 25 a
union of % individual umbrella alternatives with the peak at group 1, ..., &,

k
respectively; that is, H =] Ha: where H.4 corresponds to h =...=¢15h=
t=1

=941 =... =0, with at least one strict inequality. This way of viewing Hy leads
to a natural extension of the known peak test based on 4,(2.2) to the unknown
peak setting that is different from the one based on 4} (2.3) and studied by MAcE
and WoLrE (1981). This natural extension corresponds to rejecting Hp for large
values of

(4.1) A,‘fmx=1n;?§k Ak
where A;‘:-—L—M and A, uo(4,) and oy(4;) are given in equations (2.2),

oo(4e)
(2.4) and (2.5), respectively. This test based on Ag,, is similar in form to the
Hettmansperger-Norton unknown peak test based on V3, (2.8).
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5. Monte Carlo Power Study

To examine the relative powers of these competing distribution-free test proce-
dures for general umbrella alternatives, we conducted a Monte Carlo power study.
We considered both £=4 and £=5 populations, with n; =... =n; =3 observations
per sample in each case, and a variety of different umbrella alternatives.

For each of these settings, the International Mathematical and Statistical
Libraries (IMSL) routine RNUN was used to generate uniformly distributed
random numbers in (0,1]. Routines RNNOR and RNEXP were then employed to
generate appropriate normal and exponential deviates according to the pertinent
alternative. In each case, we used 10,000 replications in obtaining the various
power estimates. Exact critical values were used, when available, in the sample
rejection counts; otherwise, simulated critical values were used. The simulated
power estimates for the eight tests considered in this paper are presented in Ta-
bles 1 and 2. The designated alternative configurations correspond to values of

791,- ceey 'ﬂk-

Table 1

Monte Carlo Power Estimates for k=4 and ny=...=ny=3

(a) Normal

Umbrella Alternatives

Population Nominal Tests
1 5
1 2 3 "L Levcl .‘1; 4‘1 (’nax I”,’nax SJ! (';) J .‘l; V: 2 [.z]
0 D 1.0 1.5 10 H02 0 430 453 597 L6770 677 6760 .042
05,285 .289  .306 472 514 514 L5200 475
.01 102 = 107 . .116 157 231 231 .239  .220
0 RS W TR ;) J0 - 481 527 576 683 .72l .71 728 .708
05 339 374 430 548  .362  .562 579 540
D)

.01 Jd17 132 163 .186 270 .270  .286  .279

0 ! 1.0 D A0 268 267 268 337 204 400 4320 353

.05 165 171 172 221 Jd46 0,267 294 229

.01 037 038 .040  .043 039 085 087  .064

0 1.0 1.5 .5 Jd0 0 463 451 428 494 221 641 648 566

.05 320 .326  .298 345 J13 0 491 493 416

01 079 .081 .077 .082 025 211 185 133

9 1.0 D 0 1070 276 261 272 . (116 023 412 448 363
.05 169 175 175 .032 009 .268 .295 .219

.01 035 .036 .040 .004 001 .091 .092  .008

1.8 5 0 10 .326 .306 .274 .212 058 498 437 423

05 209 .211 .164 .078 026 344 285 271

) .01 043 .044¢  .033  .012 005 125 .084 .099

1.5 1.0 . 0 .10 413391 465 017 001 690 697  .649
.05 290 .297 317 .002 0000 529 538 486

5 .01 101 106 115 000 000 .237  .236 .240

L5 1.5 s 0 A0 488 489 .585  .048 001 737749 713
.05 450 0383 438,003 000 L3800 597 L5535

.01 JA23 0 1360 171 000 0 L0090 267 .281  .300
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Table 1
(b) Exponential

Umbrella Alternatives

Population Nominal Tests

1
1 2 3 4 Level A7  Anax Vmax SM (5) J A Ve z%‘d]
0 5 1.0 1.5 10 592 619 .61t 757 .816 .816 .811 .779

9 676 676 .685 .636
.01 229 265 245 9 436 436 421 390
0 5 1.5 1.5 .10 .605 .664 .683 .770 .828 .828 .829 .807
.05 467 .330 .373 .673 708 708 .708  .6S8
.01 215 .2538  .308 325 434 434 450 455
0 %+ 1.0 5 .10 400 .402 414 460 3657 .581 605 .496
.05 268 277 207 336 235 417 464 356
.01 .068 .076 .099 .084 084 148 185 .31
0. ..1.0 1.5 5 .10 627 619 .5393 .630 284 800 776G 725
.05 472 483 469 495 64 668 639 386
.01 K10 T 1 5 M 1y 2 s L7 046 338 344 202
b5 1.0 %] 0 10 S97 0 381 408 155 019 L3699 .606 496
.05 262 270 29704t 008 407 5L 351
.01 067 076 097  .008 000 45 193 L1052

7
.05 473 479 481 .6
3
7

0 1.0 D 0 .10 AG0 440 388 .256 060 L6630 569 L5385
05 S 38 2560 LT 028 498 401 409

.01 Q077 079 056 018 0050 2000 LR I8

1.5 1.0 ) 0 .10 AS8L 561 600 0Lt 000 L8300 .8LE 0 .T62

.05 A063 473 472 000 000 L7060 684 627
01 Q330 245 2483 000 000 4SS E03 0 400
1.5 1.5 3 0 .10 G040 619 L6830 049 000 829 833 S0t
.05 A63 0 .522 369 002 000 707 JTLEL L6SS
0t 2000 .238 0 .3020 000 000 420 4290 454

The simulation results suggest several conclusions. The Jonckheere-Terpstra
test, J, is generally better than Chacko’s test, 7. for ordered alternatives. In the
peak known setting, both ¥, and 4, are superior to 77, against umbrella alterna-
tives. For 1 <a <k, V, provides a better test than does A4, for equal spacing alter
natives. However, when the alternatives are not equally spaced. the test V', may
not be as powerful as 4,, especially for exponential data. For the unknown peak

9

-~

: . 1 i
setting, the recursive test SM( ) has much higher power thon the other tests

considered here for the settings where the peak group is relatively close to the i
population. When, however, the location of the peak group is relatively far from
the % population, the recursive test performs poorly. In these cases, the thref
tests based on A% ., A¥ and V¥, ,, respectively, all do better than the one hses

max’
1
on SM (;)

Finally, it seems natural to consider development of a peak unknown analogd
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of the test based on the umbrella alternatives version, /[1], of Chacko’s stathmc
However, in view of the relative performances of the tests based on 4a, VeaoOr X[a]
it seems doubtful that such a test would do any better than the available proce-

1
dures based on AF, 4%,., V. or Sy (;

-

Table 2

\onte Carlo Power Estimates for k=35 and ny=...=n5=3
(a) Normal

Umbrella Alternatives

Population Nominal Tests
I a
1 3 3 4 5 Level A} Aoy Vo Sar (;) J Az Va Xfa]

0 S 1.0 153 20 10 .653 897 .731 .821 .897 .897 .896 .8
&5 - 523 .558 588 502 199 080 805 T

.01 267 .281 302 405 476 476 .501 4

0 0 1.0 idzp . 1.9 10 .562 .638 .691 .761 834 .83+ 841 .8
06 432 480 54f 622 - 50T 07 G20 6

.01 180 .201 .263 .308  .360 .360 .403 .3

0 s RN (10 S (5 i (11 0. - 61 408 521 595 - 576 648 716 S5
05 317 347 356 437 413 483 564 435

.01 10 110 199 186 139 194 230 16T

0 1,00 0 1.9 0 A0 551 5560 4760 L5061 A74 759 579 688
05 394 397 208 4321 085 .608 .410 .330

.01 A38 ° 418 02 bl 015 278 11T 232

0. L0 2.0 1.0 0 40 716 708 780 618 - 054 001 017 835
05  .623 .398 .624 - .442 021 .807 .833 .697

.01 2970 .2920 350 141 Dot 526 .383 3069

0 S 20 10 %3] 4007045 639 -.038 . .895 - 22l 827 LBOR. Va8
M5 2 A0 - S Al 308 LT 60T 660 500
01 JA73 171 182 100 017 382 325 .255
A0 464 498 524 106 .003 643 .718  .603
03 321 350 .356 .025 .001 .498 .565 .429
01 08 108 437 0040000 215 251 171
S 20 1.0 0 0 0 648 664 .390 .263  .004 .868 .799 .782
05 514 526 412 041 001 762 .633 .632

.01 209 .185 .139 .005  .000 439 312 .299

20 15 1.0 D 0 0 635 .698 .729 .016 .000 .896 .903 .870
03 .526 .363 .389 .002 .000 .801 .808 .757

. .01 262,281,300 .000  .000 541 332 494
La- 18 . 10 D 0 A0 523 576 613 .04 .00t 773 784 .T43
05 .382 423 439 008  .000 .635 .640 .602

.01 1500 163 .201 .001 .000 .346 345 328

1.0 1.5 1.0

(97}
o

b) Exponential

Umbrella Alternatives
Population Nominal Tests

: 1 5
L L 3 4 5 Level A7  Apax Vhax Sy (-;) J . Va Z{a)

0 S0 1.8 T 20 10 806 .83
057 21 .75
01 486 .51

23 915 962 .962 050 921
28 .851 013 915 892 .84
4 637 704 704 678 62D
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Table 2 continued

Umbrella Alternatives
Population Nominal Test

d 2 3 4

Ot

3

1 - )
Level 43 dpax Tooe Su(3) 7 4 Vo 2y

0 0 1.0 1§ 1.5 10 683 759 7T 847 013 913 913 .883
.05 564 637 .669 .742  .832 .832 .829 .792
.01 305 332 428 464 334 534 569 L5349

0 S 1.0 1.5 1.0 .10 635 .678 .675 719 714 819 835 .74
05 498 .33 540 580 574 688 .732 612
.01 227 243 300 275 278 357 439 .338
0 S 1.0 1.5 0 10 713 722 625 .738  .245 .886 .692 .82

05 579 385 451 612 144 785 L5336 .703
.01 273 244 U187 204 035 468 .196  .405
0 1.0 2.0 1.0 0 10 .885 .880 .886 .720 .072 .969 .963 .907
.05 777 758 769 546 033 916 914 81t

.01 472 474 332 198 004 711 714 .53
0 o 12:05 1.0 S J0. 0 7800 77 759 617 202 034 898  .862
.05 616 .605 .504¢ 431 164 845 791 T2
.01 2000 295 304 123 030 550 464 418
1.0 1.5 1.0 5 0 A0 0 .837 679 675 133 001 .819 .839 .738
050 503 543 L5410 .037 00t 693 728 605
.01 2350 245 .300 .007 000 395 4610 340
S 20 1.0 5 0 10 .807 .817 .718 .276 002 952 879 878
05 696 707 569 .047 001 890 772 755
.01 379 3490 .298 0 .005 000 651 486 466
2.0 1.5 1.0 5 0 10 807 844 825 012 000 960 950 924
05 717 7500 728 .001L 000 911 894 852
.01 480 311 494 000 .000 746 .699 .66

1.5 1.5 1.0 5 0 A0 679 733 739 .047  .000 .886 .882 .83

05  .563  .617 .621 .007 .000 .794 .783 .75l
.01 303 342 382 .001  .000 .337 .532 .54
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