
Variable Selection and Model Building

Chapter 9. Variable Selection and Model

Building



We want: 1) bias errors to be small for prediction purposes

— include as many X ′s as possible.

2) variance of the prediction to be small

— i.e.
∑n

i=1 Var ŷi/n = p
n
σ2, small — p to be small.

Seek for a compromise between 1) and 2) – no unique procedure.



Usually iterative approach is employed including

(1) a particular variable selection criterion

(2) diagnostic check for the resulting model.



Motivation for Selecting Variables

Assume there are K candidate regressors, x1, . . . , xK .

Full model : yi = β0 +

K
∑

j=1

βjxij + ǫi , i = 1, . . . , n,

or

y = Xβ + ǫ.



Let r be the number of regressors that are deleted from the full

model. Rewrite the full model as

y = Xpβp + Xrβr + ǫ, X = (Xp,Xr ),β = (β′
p,β′

r )
′

such that the subset model is

y = Xpβp + ǫ.



Then the LSE of β is β̂⋆ = (X ′X )−1X ′y =





β̂⋆
p

β̂⋆
r



 and we use

σ̂2
⋆

to denote the estimate of σ2;

ŷ⋆

i to denote the fitted values in full model.

Also, let β̂p = (X ′
pXp)

−1X ′
py be the LSE of βp in the subset model;

σ̂2 and ŷi for estimate of σ2 and fitted values.



Results: 1. β̂p is a biased estimate of βp (unless βr = 0 or

X ′
pXr = 0).

2. Var(β̂⋆
p) − Var(β̂p) is p.s.d. (”≥ 0”).

i.e. deleting variables never increases the variances of

the estimates of the (remaining) parameters.

3. Var(β̂⋆
p) − MSE (β̂p) ” ≥ 0”, if Var(β̂⋆

r ) − βrβ
′
r

” ≥ 0”. (|βr | < s.e.(β̂⋆
r ) in one-dimension)

... β̂p has smaller MSE if Var(β̂⋆
r ) − βrβ

′
r ” ≥ 0”.



Results: 4. E (σ̂2
⋆
) = σ2 but E (σ̂2) ≥ σ2.

5. Var(ŷ⋆) ≥ MSE (ŷ) if Var(β̂⋆
r ) − βrβ

′
r ” ≥ 0”.

Conclusions: 1. Deleting variables may improve the precision, but

potentially introduces bias.

2. Retaining negligible variables may increase the

variances of the estimates of the parameters and

the predicted response.



Criteria of Evaluating Subset Regression Models

1) R2. The R2 in a p-term subset model including β0 is

R2
p =

SSR(p)

SST

= 1 −
SSRes(p)

SST

.



Note: 1. R2
p ↑ in p and attains maximum when p = K + 1.

2. There are





K

p − 1



 subset models of size p.

3. Look at the point where an additional variable is not

useful. i.e. it provides only a small increase in R2
p .



1 K+1...2
p

1

p∗

R2
p



Ex. The Hald Cement Data. K = 4.

p I II III IV

.675(4) .979 (12)* .98234(124)* .98237(1234)

.666(2) .972(14)* .98228(123)*

R2
p .534(1) .935(34) .98128(134)*

.286(3) .847(23) .97282(234)*

.680(24)

.548(13)



1 K+1...2
p

(12)
(14)

(4)

p∗

R2
p

(14) or (12) is the best, but (4) is the best when p = 2.

Read Page 271 in text.



Note: 4. Large R2
p is preferred. Choose subsets of regressors

producing an R2 greater than

R2
0 = 1 − (1 − R2

K+1)(1 + dα,n,K ), where

dα,n,K = K FK ,n−K−1;α/(n − K − 1), called R2
adequate(α)

subsets.

Ex. (cont’d)

R2
0 = 1 − (1 − R2

5 )(1 +
5F4,8;.05

8
) = .94885.



1 K+1...2
p

(4)

(14)
(12)

p∗

R2
p

R2
0

�



2) MSRes . MSRes(p) =
SSRes(p)

n − p
↓ then ↑ as p ↑ .

Ex.(Cont’d)

df

p
p∗

MSRes

�



Note: 1. For each p, there are





K

p − 1



 possible subset models.

1) Average over all possibilities for each p.

2) Find the smallest p that ’begins’ to get close to

MSRes(full).

3) Choose the subset of size p that yields

MSRes ≈ MSRes(full).



Note: 2. R2
Adj ,p = 1 −

n − 1

n − p
(1 − R2

p) = 1 −
n − 1

n − p
(
SSRes(p)

SST

)

= 1 − n−1
SST

MSRes(p).

... minMSRes(p) and maxR2
Adj ,p are equivalent.

Ex.(Cont’d) Again (14) or (12). See P. 274. �



3) Mallow’s Cp statistics.

Recall that E (SSRes(p)) = (n − p)σ2 +
∑n

i=1 B2
i .

Define

Cp = SSRes(p)/σ̂2 − (n − 2p), where σ̂2 = MSRes(full).



Note: 1. If the model is adequate (unbiased),
∑n

i=1 B2
i = 0

=⇒ Cp ≈ (n − p)σ2/σ2 − (n − 2p) = p, ideally.

2. Special case: p = K + 1, full model (unbiased).

Cp ≡ (n − K − 1) − (n − 2(K + 1)) = K + 1 = p.



3. If the model is biased,
∑n

i=1 B2
i > 0.

Cp ≈
(n − p)σ2 +

∑

B2
i

σ2
− (n − 2p) =

bias2

σ2
+

pσ2

σ2

= (bias2 +

n
∑

i=1

Var ŷi )/σ
2

= MSEp/σ
2.

... we want to choose a model with Cp ≈ p (such that

bias ≈ 0) and p as small as possible (such that predicted

variance is small).



Ex.(Cont’d)

x

x
xx

x

x

x

x

x

x

x

p

xx
x

x

1 2 3 4 K+1

(14)

(12)

Cp Cp = p

∑

B2
i /σ2

∑

Var ŷi/σ
2

Theoretically E (Cp) ≥ p, but due to random variation Cp may

be < p. �



4) PRESSp.

Recall

PRESSp =

n
∑

i=1

(yi−ŷ(i))
2 =

n
∑

i=1

(

ei

1 − hii

)2

, in a p-term model.

The model with smaller PRESSp values are preferrable.



Computational Techniques

I Best Subset Regressions.

1) Specify M = number of best subsets considered.

2) According to the above criteria, give a list of the selected

best subsets for each p.

Note: 1. Not all 2K equations are considered, so may leave

out sensible ones.

2. Unless K is small, otherwise, it is impossible to

make a detailed examination of all possible

regressions.

Read pp. 270-277 in text.



II Stepwise-Type Procedures

(1) Stepwise regression:

i) Fit a simple linear regression for each of the K variables.

Test: slope=0. (i.e. y = β0 + ǫ versus y = β0 + βkxk + ǫ.)

Compute Fk = SS(βk |β0)
SSRes(βk ,β0)/(n−2) , k = 1, 2, . . . , K .

The regressor with the largest F value is the candidate for first

addition. Without loss of generality, assume

F1 = maxk Fk = F ⋆. If F ⋆ > F1,n−2;α ≡ FIN , add into the

model; otherwise, stop with no variable entering the model.



ii) Suppose now y = β0 + β1x1 + ǫ.

Compute the partial-F statistics for each k 6= 1.

Fk|1 =
SS(βk |β1, β1)

MSRes(βk , β1, β0)
=

(

β̂k

s.e.(β̂k )

)2

= t2
k , k 6= 1.

If F2|1 = maxk Fk|·, then test

H0 :





β1

β2



 = 0 ( versus full: y = β0 + β1x1 + β2x2 + ǫ).

x2 enters the model if the test is significant; otherwise, stop.



iii) Suppose now y = β0 + β1x1 + β2x2 + ǫ.

Examine whether any of the other variables already in the

model should be dropped.

Compute F2|1 and F1|2.

Let F ⋆ = min(F2|1,F1|2). If F ⋆ < FOUT , insignificant, then

the corresponding variable is removed from the model.

iv) Examine the next candidate for addition, then examine any of

the variables already in the model should be deleted.



Note: 1. The stepwise regression allows an x-variable brought into

the model at an early stage to be dropped subsequently

if it is no longer helpful in conjunction with variables

added at the later stages.

2. The partial F test can be replaced by t-test

(
... F1,ν = t2

ν ).

3. The test values for the partial F ′s are often called ”F to

enter” and ”F to remove”.



Ex. Hald Cement Data (Cont’d). K = 4, n = 13.

1) F1|− = 12.6,F2|− = 21.96,F3|− = 4.4,F ⋆

4|− = 22.8. First to

enter? x4? y = β0 + β4x4 + ǫ ?

F ⋆ = 22.8 > F1,,11;.05 = 4.84, ... x4 enters.

2) Next to enter? F·|4=?

F ⋆

1|4 = 108.22,F2|4 = 0.17,F3|4 = 40.29. x1?

( Is y = β0 + β4x4 + β1x1 + ǫ significant?)

Test H0 =





β4

β1



 = 0 in y = β0 + β4x4 + β1x1 + ǫ.

F ⋆ = 176.63, significant! ... x1 enters.



3) Next to exit? y = β0 + β1x1 + β4x4 + ǫ, x1 or x4?

F4|1 = 159.30,F ⋆

1|4 = 108.22 > F1,10;.05 = 4.96. Both are

significant. ... no exit.

4) Next to enter? F·|14=?

F ⋆

2|14 = 5.03,F3|14 = 4.24, x2?

Test significance for y = β0 + β1x1 + β4x4 + β2x2 + ǫ. Overall

F = 166.83, significant! x2 enters.



5) Next to exit? x1, x2 or x4?

F1|24 = 154.01,F2|14 = 5.03,F ⋆

4|12 = 1.86 < F1,9;.05 = 5.12,

insignificant!

... x4 should be removed from the model.

... y = β0 + β1x1 + β2x2 + ǫ.

6) Next to enter? Only x3? F3|12 = 1.83 < 5.12, insignificant!

No entrance!



7) Exit? x1 or x2?

F ⋆

1|2 = 146.52,F2|1 = 208.58, significant! No exit!

y = β0 + β1x1 + β2x2 + ǫ,

Overall F = 229.5, significant! Done!

ŷ = 52.58 + 1.468x1 + 0.662x2.

�

Note: x4 entered the model in the earliest stage, but was out later!



(2) Forward selection. Only the most recent entrance is tested.

i) F ⋆
1|− = maxk Fk|−, k = 1, say. Significant! x1 is added.

ii) Find maxk 6=1 Fk|1, say k = 2. x2 enters?

Test y = β0 + β1x1 + β2x2 + ǫ. Overall F (x1, x2) say.

Significant!

Test H0 : β2 = 0 in y = β0 + β1x1 + β2x2 + ǫ.

F2|1, significant. =⇒ x2 enters. (Partial-F .)

iii) Check maxk 6=1,2 Fk|12, say k = 3, x3?

Overall significant, and F3|12 significant, enters!

iv)
...

Until no entrance!



Ex.(Cont’d).

1) F ⋆

4|− = 22.8 = maxk Fk|− > F1,11;.05 = 4.84, significant!

y = β0 + β4x4 + ǫ.

2) F ⋆

1|4 = 108.22 is the largest. x1?

(i) Test H0 : (β1, β4) = (0, 0) vs. H1 : β1 6= 0 or β4 6= 0,

significant!

(ii) Partial F = F1|4, significant, ... x1 enters.

3) F ⋆

2|14 = 5.03 > F3|14 = 4.24, x2 ?

(i) Overall: significant! (ii) F2|14 < F1,9;.05 = 5.12,

insignificant. No entrance!

Stop! y = β0 + β1x1 + β4x4 + ǫ. �



Note: 1. Only the last possible entrance is tested.

2. Not recommended unless it is specially desired never to

remove variables that were retained in the model.



(3) Backward elimination.

i) Include all variables in the model.

ii) Find F ⋆ = mink F
k|all others, say k = K . xK removed?

If F ⋆ < FOUT , insignificant, xK is eliminated.

iii) Model y = β0 + β1x1 + · · · + βk−1xk−1 + ǫ, overall significant!

Go to ii) until no variable is deleted.



Ex.(Cont’d).

1) y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + ǫ.

2) F ⋆

1|234 = 4.34,F2|134 = 0.5,F ⋆

3|124 = .02,F4|123 = .04. x3?

.02 < F1,8;.05 = 5.32, insignificant, ... remove x3.

3) y = β0 + β1x1 + β2x2 + β4x4 + ǫ. Overall

F = 166.83 > F3,9;.05, significant!

4) F1|24 = 154.01,F2|14 = 5.03,F ⋆

4|12 = 1.86 < F1,9;.05 = 5.12,

insignificant. x4 removed.

5) y = β0 + β1x1 + β2x2 + ǫ. F = 229.5, significant!

6) F1|2 = 146.52,F ⋆

2|1 = 208.58 > F1,10;.05, significant!

No deletion!

y = β0 + β1x1 + β2x2 + ǫ, done! �



Note: Once a variable has been removed, it is gone forever. Thus,

all alternative models using the eliminated variables are not

considered for possible examination.



Significance levels.

1 If a large α is selected, more x-variables would be admitted

(Large rejection region).

2 Most often, use the same α in testing for entrance and exit.

3 One may like to set the ’exit α’ > ’entry α’ to ’protect’

predictors already in the model.

4 One may always use FIN = FOUT = 4.



Note: 1. All the procedures discussed do not necessarily select the

best model, but an acceptable one.

2. Run the stepwise regression procedure to determine the

number of variables used, say q. Do all possible sets

of size q, and choose the best one.

Ex. Two competitive models for q = 2. x1, x2 or x1, x4 ???

Need apriori consideration or the experimenter’s judgement. �



Homework 9: (Page 300) 9.1, 9.2, 9.7, 9.8, 9.12, 9.13, 9.17,

9.18, 9.19, 9.20.

Due: Jan. 7, 2009.


