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Chapter 5. Transformation and Weighting to

Correct Model Inadequacy



y = β0 + β1x1 + β2x2 + · · · + βkxk + ǫ.

One may consider making transformation on the response variable

if some of the basic assumptions are invalid. Practically, decide on

a transformation, go ahead to fit it then examine the residuals in

the metric of the transformed variable.



e.g. Check f (yi ) − f̂ (yi) in f (y) = Xβ + ǫ for normality, etc.

Also all tests and confidence statements must be made in the

transformed space. e.g. f (y) is predicted by f̂ (y), then

ŷ = f −1(f̂ (y)).



Note: 1. Usually, no mathematical equivalence between

parameters of the two models.

2. There is no formal analysis to find a transformation.

Inoformal plots of the data will reveal the need for some

’special’ and ’well known’ transformations.



Variance-Stabilizing Transformation

Q: When is Var(ǫi ) 6= σ2 (from ei vs. ŷi plots)?

Ans: Var(y) may depend on E (y), e.g. in Poisson distribution,

Var(y) = E (y).

Let η = E (y), σy = (Var(y))1/2 = g(η). We want to find a

transformation y ′ = h(y) such that Var(y ′) = constant.



Idea: (Delta method.) y ∼ N(η, σ2
y ), then

y ′ = h(y) ∼ N(h(η), σ2
y (h′(η))2).

Thus

Var(y ′) = σ2
y (h′(η))2 = (g(η)h′(η))2 = constant.

... Try to find h such that

h′(y) ∝ 1

g(y)
or h(y) =

∫
(g(y))−1dy .



e.g.: 1) σy ∝ constant. y ′ = y .

2) σy ∝
√

E (y) (σy ∝ √
η), y ≥ 0 (Poisson, e.g.),

y ′ = h(y) =
√

y .

3) σy ∝ E (y) = η, y > 0, y ′ = ln y .

4) σy ∝ (E (y))2 = η2, y ′ = 1/y .

5) σy ∝
√

E (y)(1 − E (y))(=
√

η(1 − η)),

(0 ≤ y ≤ 1, ny ∼ binomial), y ′ = sin−1 √y .

((sin−1 y)′ = 1/
√

1 − y2). �



Linearize the Model

In yi vs. xi plots, certain curvatures are presented. One may

consider to use some ’linearizable’ functions.

See Table 5.4 on p. 165.
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May consider (1) y = β0 + β1x + β2x
2 + ǫ or

(2) ** y = β0 + β1

(
1
x

)
+ ǫ.



Power Transformation: Box-Cox Method

For y > 0, consider y ′ = yλ. λ =? MLE.

If y(n)/y(1) is considerably large (long-tail), we may consider a

transformation

z = y (λ) =





(yλ − 1)/λ, λ 6= 0

ln y , λ = 0

Then y (λ) is continuous and differentiable in λ.



Consider

z = Xβ + ǫ, ǫ ∼ N(0, σ2I ).

Then the likelihood function of (λ,β, σ2) is

l(λ,β, σ2|z) =

(
1√

2πσ2

)n

exp{− 1

2σ2
(z − Xβ)′(z − Xβ)},

based on the transformed data z1, . . . , zn.



Note that the likelihood function based on the original data

y1, . . . , yn is

ly(λ,β, σ2) = f (y|λ,β, σ2)

∝ (σ2)−n/2

× exp{− 1

2σ2
(y(λ) − Xβ)′(y(λ) − Xβ)}|J(λ)|,

where J(λ) =

(
∂zi

∂yj

)
=

(
∂y

(λ)
i

∂yj

)
= diag

(
∂y

(λ)
i

∂yi

)
.



Now

dy (λ)

dy
=





yλ−1, λ 6= 0

1/y , λ = 0
. ... |J(λ)| =





∏n
i=1 yλ−1

i , λ 6= 0
∏n

i=1 y−1
i , λ = 0.

Ly(λ,β, σ2) = log ly(λ,β, σ2)

∝ −n

2
log σ2 − 1

2σ2
(y(λ) − Xβ)′(y(λ) − Xβ) + log |J(λ)|.

Then maximize Ly(λ,β, σ2) with respect to β, σ2 for given λ.



For fixed λ, Ly(λ,β, σ2) is maximized at

β̂ = (X ′X )−1X ′y(λ) and σ̂2 = (y(λ) − X β̂)′(y(λ) − X β̂)/n,

and

Ly(λ, β̂, σ̂2) = −n

2
log(y(λ) − X β̂)′(y(λ) − X β̂)/n

−(y(λ) − X β̂)′(y(λ) − X β̂)/(2σ̂2) + log |J(λ)|

= −n

2
log y(λ)′(I − H)y(λ)/n − n

2
+

n

2
log |J(λ)|2/n.



Finally, we need to find λ such that Lmax(λ) = Ly(λ, β̂, σ̂2) is

maximized. Note that

Lmax(λ) =





−n
2 log

y(λ)′(I−H)y(λ)

n(
Qn

i=1 yλ−1
i )

2/n , λ 6= 0

−n
2 log

(lny)′(I−H)(lny)

n(
Qn

i=1 y−1
i )

2/n , λ = 0

=





−n
2 log

y(λ)′(I−H)y(λ)

n[(
Qn

i=1 yi )1/n]
2(λ−1) , λ 6= 0

−n
2 log

(lny)′(I−H)(lny)

n[(
Qn

i=1 yi )1/n]
−2 , λ = 0



Let

vi =





y
(λ)
i /(

.
y)λ−1 =

yλ
i
−1

λ
.
y

λ−1 , λ 6= 0

.
y ln yi , λ = 0,

where
.
y= (

∏n
i=1 yi )

1/n, geometric mean of y1, . . . , yn. Hence,

Lmax(λ) = −n

2
log

v′(I − H)v

n
,

and it is maximized as v′(I − H)v is minimized.

Thus, to find the MLE of λ is the same as to find the λ such that

SSRes(λ) = v′(I − H)v is minimized based on v = Xβ + ǫ.



... The appropriate procedure is to use

v =





yλ
−1

λ
.
y

λ−1 , λ 6= 0

.
y ln y, λ = 0.

and

min
λ

SSRes(λ) = min
λ

v′(I − H)v.

Usually, choose λ ∈ (−2, 2) and plot SSRes(λ) versus λ.
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Interval Estimates of λ

For large n, Lmax(λ̂) − Lmax(λ)
d−→ 1

2χ2
1.

... an approximate 100(1 − α)% confidence interval for λ is

{λ : Lmax(λ̂) − Lmax(λ) ≤ 1

2
χ2

1;α}

= {λ : Lmax(λ) ≥ Lmax(λ̂) − 1

2
χ2

1;α}.

Or find λ such that

log
SSRes(λ)

n
≤ log

SSRes(λ̂)

n
+

χ2
1;α

n

⇐⇒ SSRes(λ) ≤ SSRes(λ̂)eχ2
1;α/n.



Note: 1. ex ≈ 1 + x if x is small.

2. χ2
1 = z2 ≈ tν , large ν(= n − p). ... eχ2

1;α/n can be

replaced by

(i) 1 + t2
ν:α/2/ν;

(ii)1 + z2(α/2)/ν;

(iii) 1 + χ2
1;α/ν;

(iv) 1 + χ2
1;α/n;

(v) 1 + z2(α/2)/n.



Generalized and Weighted Least Squares

In y = Xβ + ǫ, if E (ǫ) = 0, var(ǫ) = σ2V , where V is nonsigular,

symmetric and posiitively definite. Then there exists a nonsigular,

symmetric matrix Kn×n such that V = K ′K = KK .

Def: The matrix K is often called the square root of V .



Note that y = Xβ + ǫ is same as K−1y = K−1Xβ + K−1ǫ.

Let z = K−1y, B = K−1X and g = K−1ǫ, then it is equivalent to

z = Bβ + g,

where E (g) = K−1E (ǫ) = 0, and

Var(g) = K−1Var(ǫ)(K−1)′ = σ2K−1VK−1 = σ2K−1(KK )K−1 = σ2I .



So, the LSE of β is the one minimizing S(β) =
∑n

i=1 g2
i = g′g or

β̂ = (B ′B)−1B ′z = (X ′K−1K−1X )−1X ′K−1K−1y

= (X ′(KK )−1X )−1X ′(KK )−1y

= (X ′V−1X )−1X ′V−1y, Generalized LSE of β.



Note: 1. E (β̂) = β.

2. Var(β̂) = σ2(X ′V−1X )−1.

3. SSR(β) = β̂′B ′z = y′V−1X (X ′V−1X )−1X ′V−1y,

df = p.

4. SSRes = z′z − β̂′B ′z

= y′V−1y − y′V−1X (X ′V−1X )−1X ′V−1y,

df = n − p.

5. z′z = y′V−1y, df = n.



Special Case: V =




1/w1 · · · · · · 0

0 1/w2 · 0
...

...
...

...

0 · · · · · · 1/wn




, i.e. ǫi

uncorrelated, but with unequal variances.



Let W = V−1 = diag(wi), then

β̂ = (X ′WX )−1X ′W y ≡ solution of min. weighted least squares,

which minimizes

g′g = ǫ′K−1K−1ǫ = ǫV−1ǫ =

n∑

i=1

wi ǫ
2
i .

i.e. min
∑n

i=1 wi (yi − β0 − β1x1i − · · · − βkxki )
2. ... β̂ is also called

the weighted LSE, WLSE.



Note: 1. wi must be known or gained from prior knowledge.

2. Sometimes, wi = 1/xi , or Var(ǫi ) ∝ xi revealed from the

residual plots.

3. The OLSE (ordinary LSE = (X ′X )−1X ′y) is unbiased,

but no longer a minimum variance estimator if V 6= I , for

Var(β̂OLSE ) = (X ′X )−1X ′Var(y)X (X ′X )−1

= σ2(X ′X )−1X ′VX (X ′X )−1,

and Var(β̂WLSE ) = σ2(X ′V−1X )−1.



Note: In general, V is unknown and therefore must be estimated.

There are n(n + 1)/2 distinct elements in V , it would be

impossible to reliably estimate all of them on the basis of n

observations. However, if there exist known relationships

involving very few parameters in V , then estimation

precedures becomes available.



In the diagonal case, V = diag(σ2
i ), an estimator of

σ(2) = (σ2
1 , · · · , σ2

n) is σ̂(2) = (σ̂2
1, · · · , σ̂2

n)
′ such that

e(2) =




e2
1
...

e2
n


 = M(2)σ̂(2),

where M(2) = (m2
ij) with I − H = (mij ).



Idea: ... e = (I − H)ǫ, i.e. ei =
∑n

j=1 mijǫj , i = 1, . . . , n,

... e2
i =

n∑

j=1

n∑

l=1

mijmil ǫjǫl and E (e2
i ) =

n∑

j=1

m2
ijE (ǫ2

j ), i = 1, . . . , n.

Hence, σ2
i can be estimated by replacing E (e2

i ) by e2
i .



Note: These estimators are known as to be MINQUE (Minimized

norm Quadratic Unbiased estimator). A major problem is that σ̂2
i

can be negative.



Homework 6: (Page 185) 5.2, 5.7, 5.10, 5.12, 5.13, 5.14,

5.15, 5.16.

Due: Dec. 12, 2008.


