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Chapter 5. Transformation and Weighting to
Correct Model Inadequacy



y = Po+ Pix1 + Paxo + -+ + Bixk + €.

One may consider making transformation on the response variable
if some of the basic assumptions are invalid. Practically, decide on
a transformation, go ahead to fit it then examine the residuals in

the metric of the transformed variable.



—

e.g. Check f(y;) — f(yi) in f(y) = X3 + € for normality, etc.

Also all tests and confidence statements must be made in the

—

transformed space. e.g. f(y) is predicted by f(y), then
y=f1(fy)).



Note: 1. Usually, no mathematical equivalence between
parameters of the two models.
2. There is no formal analysis to find a transformation.
Inoformal plots of the data will reveal the need for some

'special’ and 'well known' transformations.



Variance-Stabilizing Transformation

Q: When is Var(e;) # o2 (from e; vs. §; plots)?
Ans: Var(y) may depend on E(y), e.g. in Poisson distribution,
Var(y) = E(y).

Let n = E(y), o, = (Var(y))Y/?2 = g(n). We want to find a
n y n

transformation y’ = h(y) such that Var(y’) = constant.
y



Idea: (Delta method.) y ~ N(n, 0}2,), then

y' = h(y) ~ N(h(n), o7 (K (n))?).
Thus
Var(y') = o2(H(n))? = (&) ())? = constant.

=~ Try to find h such that

W (y) o< ——

_ -1
oo )= / (e(y) " dy.



e.g.. 1) o, o constant. y' = y.
2) 9, < \/E(y) (9, /7)),y = 0 (Poisson, e.g.),
y'=h(y) =y
3) oy x E(y)=mn,y >0, y'=Iny.
4) oy < (E(y))> =n% ¥y =1/y.
5) oy x VE(y)(1 — E(y))(= v/n(1 —n)),
(0 <y <1, ny ~ binomial), y' =sin"!/y.

((sin™'y) =1//1—y?).




Linearize the Model

In y; vs. x; plots, certain curvatures are presented. One may
consider to use some 'linearizable’ functions.

See Table 5.4 on p. 165.



e.g.

May consider (1) y = By + B1x + Box® +¢ or
(2)** y=060+0i () +e



Power Transformation: Box-Cox Method

For y > 0, consider y/ = y*. A =? MLE.
If ¥(n)/¥(1) is considerably large (long-tail), we may consider a
transformation

A—1)/A, A#£0
z:y()‘) (v )/ #
Iny, A=0

Then y) is continuous and differentiable in .



Consider

z=XB+¢€, e~ N(0,0%).

Then the likelihood function of (A, 3, 5?) is

1 " 1
2 _
0.7 = (= ) el-g(- XB) (2~ X))
based on the transformed data zi, ..., z,.



Note that the likelihood function based on the original data

| T VA

/)’()"1650-2) = f(y|)\,ﬁ,0'2)

o (0_2)—n/2

< exp{ g5y — XBY (Y™ — XB) IO,

. o ()
where J(\) = <g§> = (ag/;/' ) — diag <8eg_ )
J J i




@) AN £0 n oyl £0

dy 1ly, A=0 M.yt A=o.
‘CY()‘a B’ 0-2) = |Og /)’()‘H@a 02)
x —Tloga? — = (yN) — X8)(y? — XB) + log [J(V)
2 202

Then maximize Ly(A, 3,02) with respect to 8,02 for given A.



For fixed A, Ey()\,,B,a2) is maximized at
B=xX)XyN  and 02 = (y - XBY(yM) — XB)/n,

and

Ly B,o?) = —3logy™ — XB)(y™ - XB)/n
—(y™ = XB) (yN — XB)/(202) + log |J(N)|

- _g log yN' (1 — H)y® /n — g + g log [J(A)[*/".



Finally, we need to find A such that Lmax(A) = Ly(\, B,02) is

maximized. Note that

N A—1\2/n>
£m y )\ _ n(HI lyi
ax(A) 1 log (WYY U=H)ny)  \ _ g
n(HI lyiil)z/n ’
o yo' (/- H)y( )
5 [0} n[(l_[i )1/n] (A—1)> )\#0

(ny)(—H)iny) ) _ g

_n
P |Og n[ 1y, 1/n]_2’



Let

A Y A1
yN gt =Y A 20
V,' = >‘y

y Iny;, A =0,
where y= ([]7_; yi)Y/", geometric mean of y, ..., y,. Hence,
Linax(\) = —75 log "I(’_fH)"
and it is maximized as v/(/ — H)v is minimized.
Thus, to find the MLE of A is the same as to find the A such that
SSgkes(A) = V(I — H)v is minimized based on v = X3 + €.



. The appropriate procedure is to use

A

Ayy—l A#0
vV =

ylny, A=0.

and

m)\in SSges(A) = m)in V(I — H)v.

Usually, choose A € (—2,2) and plot SSges(A) versus A.



S?Res()‘)

>



Interval Estimates of )\

~

For large n, Lmax(A) — Lmax(N) <, %X%

.. an approximate 100(1 — a)% confidence interval for A is

o 1
{)\ . £max()\) - £max()\) S EX%Q}
a 1
= {)\ . »Cmax()‘) 2 »Cmax()‘) - EX%;CM}

Or find X such that

SSRes(S\) + X%;a
n n

— SSRes()\) < SSReS(S\)eX%;a/”.



Note: 1. e ~ 1+ x if x is small.

2. x2=2>~t, large v(=n—p). .. eXta/" can be

replaced by

( ) 1+ tzl a/2/y
(i1 + 22(ev/2)/v;
(iii) 1 +X%.a/l/'
(IV) 1 + Xl a/n
(v) 1+ 2%(a/2)/n.



Generalized and Weighted Least Squares

In y=XB+e, if E(e) =0, var(e) = 02V, where V is nonsigular,
symmetric and posiitively definite. Then there exists a nonsigular,

symmetric matrix Ky, such that V = K'K = KK.

Def: The matrix K is often called the square root of V.



Note that y = X3 + € is same as Ky = K71 X3 + K~ le.

Let z= K™ ly, B= K 1X and g = K¢, then it is equivalent to
z=BB+g,
where E(g) = K~1E(€) =0, and

Var(g) = K Var(e)(K™1) = 0?K VKL = 62K Y KK)K ™! = o21.



So, the LSE of 3 is the one minimizing S(3) = Y.7_, g = g'g or

B = (BB 'Bz=(X'KKIX)IX'K 1Kk 1y
= (X'(KK) ' X)7'X'(KK) 'y

= (X'V7IX)"IX'V~ly,  Generalized LSE of 3.



Note: 1. E(3) =
2. Var(B) = o2(X'V1X) L.
3. SSp(B) = @ B'z=y VIX(X'VIX)1X'V-1y,
df = p.
4. SSpes =2'z — 3B’z
=y V7 ly -y VIX(X'VIX)"1X' vy,
df =n—p.
5.2Zz=y'V~ly, df =n.

®



]./Wl

0
Special Case: V =

0

uncorrelated, but with unequal variances.

1/W2

1/wy |

, ie. €;



Let W = V~! = diag(w;), then
B = (X'WX)"1X'Wy = solution of min. weighted least squares,
which minimizes

n
gg=eK K le=eVle= Z wi€r.
i=1
ie. min > wi(yi — o — Buxai — - — Brxki)?. - B is also called

the weighted LSE, WLSE.



Note: 1. w; must be known or gained from prior knowledge.
2. Sometimes, w; = 1/x;, or Var(e;) o x; revealed from the
residual plots.
3. The OLSE (ordinary LSE = (X’X)~1X’y) is unbiased,

but no longer a minimum variance estimator if V # [, for

Var(Borse) = (X'X)"1X Var(y)X(X'X) ™

= X' X)X VX (X' X)L,

and Var(Bywise) = o2(X'V-IX)~ L.



Note: In general, V is unknown and therefore must be estimated.
There are n(n+ 1)/2 distinct elements in V/, it would be
impossible to reliably estimate all of them on the basis of n
observations. However, if there exist known relationships
involving very few parameters in V/, then estimation

precedures becomes available.



In the diagonal case, V = diag(c?), an estimator of

—

0-(2) = (0-%, e ’0-’27) is 0'(2) = (0/'\21, e ,O:\2n), SLICh that
e
@ = | | = M@0
e2

n

where M) = (mi) with | — H = (mj;).



Idea: ©* e = (I — H)G, ie. g = Z;:l mjj€;j, i=1,...,n,

n n

" e,-2: E miymiji€;€; and E E m E ...,n.

j=11=1

Hence, 2 can be estimated by replacing E(e?) by e?



Note: These estimators are known as to be MINQUE (Minimized

—

norm Quadratic Unbiased estimator). A major problem is that a,?

can be negative.



Homework 6: (Page 185) 5.2, 5.7, 5.10, 5.12, 5.13, 5.14,
5.15, 5.16.
Due: Dec. 12, 2008.



