Transformation and Weighting to Correct Model Inadequacy

Chapter 5. Transformation and Weighting to Correct Model Inadequacy

$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + \epsilon.$

One may consider making transformation on the response variable if some of the basic assumptions are invalid. Practically, decide on a transformation, go ahead to fit it then examine the residuals in the metric of the *transformed* variable. **e.g.** Check $f(y_i) - \widehat{f(y_i)}$ in $f(y) = X\beta + \epsilon$ for normality, etc. Also all tests and confidence statements must be made in the *transformed* space. e.g. f(y) is predicted by $\widehat{f(y)}$, then $\hat{y} = f^{-1}(\widehat{f(y)})$.

- <u>Note</u>: 1. Usually, no mathematical equivalence between parameters of the two models.
 - There is **no** formal analysis to find a transformation.
 Inoformal plots of the data will reveal the need for some 'special' and 'well known' transformations.

<u>Q</u>: When is $Var(\epsilon_i) \neq \sigma^2$ (from e_i vs. \hat{y}_i plots)? <u>Ans</u>: Var(y) may depend on E(y), e.g. in Poisson distribution, Var(y) = E(y).

Let $\eta = E(y)$, $\sigma_y = (Var(y))^{1/2} = g(\eta)$. We want to find a transformation y' = h(y) such that Var(y') = constant.

ゆ くしょくしょ しょうくら

<u>Idea</u>: (Delta method.) $y \sim N(\eta, \sigma_y^2)$, then

$$y' = h(y) \sim N(h(\eta), \sigma_y^2(h'(\eta))^2).$$

Thus

$$Var(y') = \sigma_y^2(h'(\eta))^2 = (g(\eta)h'(\eta))^2 = \text{ constant.}$$

 \therefore Try to find *h* such that

$$h'(y) \propto rac{1}{g(y)}$$
 or $h(y) = \int (g(y))^{-1} dy.$

▲口 ▶ ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶

e.g.: 1)
$$\sigma_y \propto \text{constant. } y' = y.$$

2) $\sigma_y \propto \sqrt{E(y)} \ (\sigma_y \propto \sqrt{\eta}), y \ge 0$ (Poisson, e.g.),
 $y' = h(y) = \sqrt{y}.$
3) $\sigma_y \propto E(y) = \eta, y > 0, y' = \ln y.$
4) $\sigma_y \propto (E(y))^2 = \eta^2, y' = 1/y.$
5) $\sigma_y \propto \sqrt{E(y)(1 - E(y))} (= \sqrt{\eta(1 - \eta)}),$
 $(0 \le y \le 1, ny \sim \text{binomial}), y' = \sin^{-1} \sqrt{y}.$
 $((\sin^{-1} y)' = 1/\sqrt{1 - y^2}).$

In y_i vs. x_i plots, certain curvatures are presented. One may consider to use some '*linearizable*' functions. See Table 5.4 on p. 165. e.g.

May consider (1) $y = \beta_0 + \beta_1 x + \beta_2 x^2 + \epsilon$ or

(2) **
$$y = \beta_0 + \beta_1 \left(\frac{1}{x}\right) + \epsilon.$$

For
$$y > 0$$
, consider $y' = y^{\lambda}$. $\lambda = ?$ MLE.
If $y_{(n)}/y_{(1)}$ is considerably large (*long-tail*), we may consider a transformation

$$z = y^{(\lambda)} = \left\{ egin{array}{cc} (y^{\lambda} - 1)/\lambda, & \lambda
eq 0 \ & \ \ln y, & \lambda = 0 \end{array}
ight.$$

Then $y^{(\lambda)}$ is continuous and differentiable in λ .

Consider

$$\mathbf{z} = X\boldsymbol{\beta} + \boldsymbol{\epsilon}, \ \boldsymbol{\epsilon} \sim N(0, \sigma^2 I).$$

Then the likelihood function of $(\lambda, \beta, \sigma^2)$ is

$$I(\lambda,\beta,\sigma^2|\mathbf{z}) = \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n \exp\{-\frac{1}{2\sigma^2}(\mathbf{z}-X\beta)'(\mathbf{z}-X\beta)\},\$$

based on the *transformed* data z_1, \ldots, z_n .

Note that the likelihood function based on the original data y_1, \ldots, y_n is

$$\begin{split} l\mathbf{y}(\lambda,\boldsymbol{\beta},\sigma^{2}) &= f(\mathbf{y}|\lambda,\boldsymbol{\beta},\sigma^{2}) \\ &\propto (\sigma^{2})^{-n/2} \\ &\times \exp\{-\frac{1}{2\sigma^{2}}(\mathbf{y}^{(\lambda)}-\boldsymbol{X}\boldsymbol{\beta})'(\mathbf{y}^{(\lambda)}-\boldsymbol{X}\boldsymbol{\beta})\}|J(\lambda)|, \end{split}$$

where $J(\lambda) &= \left(\frac{\partial z_{i}}{\partial y_{j}}\right) = \left(\frac{\partial y_{i}^{(\lambda)}}{\partial y_{j}}\right) = diag\left(\frac{\partial y_{i}^{(\lambda)}}{\partial y_{i}}\right). \end{split}$

▲ロ ▶ ▲圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 → ���

Now

$$\frac{dy^{(\lambda)}}{dy} = \begin{cases} y^{\lambda-1}, & \lambda \neq 0\\ 1/y, & \lambda = 0 \end{cases} \quad \therefore |J(\lambda)| = \begin{cases} \prod_{i=1}^{n} y_i^{\lambda-1}, & \lambda \neq 0\\ \prod_{i=1}^{n} y_i^{-1}, & \lambda = 0. \end{cases}$$

$$\begin{aligned} \mathcal{L}_{\mathbf{y}}(\lambda,\boldsymbol{\beta},\sigma^2) &= \log l_{\mathbf{y}}(\lambda,\boldsymbol{\beta},\sigma^2) \\ &\propto -\frac{n}{2}\log\sigma^2 - \frac{1}{2\sigma^2}(\mathbf{y}^{(\lambda)} - \boldsymbol{X}\boldsymbol{\beta})'(\mathbf{y}^{(\lambda)} - \boldsymbol{X}\boldsymbol{\beta}) + \log |J(\lambda)| \end{aligned}$$

Then maximize $\mathcal{L}_{\mathbf{y}}(\lambda, \boldsymbol{\beta}, \sigma^2)$ with respect to $\boldsymbol{\beta}, \sigma^2$ for given λ .

For fixed λ , $\mathcal{L}_{\mathbf{y}}(\lambda, \boldsymbol{\beta}, \sigma^2)$ is maximized at

$$\hat{oldsymbol{eta}} = (X'X)^{-1}X'\mathbf{y}^{(\lambda)} \quad ext{ and } \quad \hat{\sigma^2} = (\mathbf{y}^{(\lambda)} - X\hat{oldsymbol{eta}})'(\mathbf{y}^{(\lambda)} - X\hat{oldsymbol{eta}})/n,$$

and

$$\begin{aligned} \mathcal{L}_{\mathbf{y}}(\lambda, \hat{\beta}, \hat{\sigma^2}) &= -\frac{n}{2} \log(\mathbf{y}^{(\lambda)} - X\hat{\beta})'(\mathbf{y}^{(\lambda)} - X\hat{\beta})/n \\ &- (\mathbf{y}^{(\lambda)} - X\hat{\beta})'(\mathbf{y}^{(\lambda)} - X\hat{\beta})/(2\hat{\sigma^2}) + \log|J(\lambda)| \\ &= -\frac{n}{2} \log \mathbf{y}^{(\lambda)'}(I - H)\mathbf{y}^{(\lambda)}/n - \frac{n}{2} + \frac{n}{2} \log|J(\lambda)|^{2/n}. \end{aligned}$$

・ロト ・聞 ト ・目 ト ・目 ・ ののの

Finally, we need to find λ such that $\mathcal{L}_{max}(\lambda) = \mathcal{L}_{\mathbf{y}}(\lambda, \hat{\boldsymbol{\beta}}, \hat{\sigma^2})$ is maximized. Note that

$$\mathcal{L}_{max}(\lambda) = \begin{cases} -\frac{n}{2}\log\frac{\mathbf{y}^{(\lambda)'}(I-H)\mathbf{y}^{(\lambda)}}{n(\prod_{i=1}^{n}y_{i}^{\lambda-1})^{2/n}}, & \lambda \neq 0\\ -\frac{n}{2}\log\frac{(\ln\mathbf{y})'(I-H)(\ln\mathbf{y})}{n(\prod_{i=1}^{n}y_{i}^{-1})^{2/n}}, & \lambda = 0 \end{cases}$$
$$= \begin{cases} -\frac{n}{2}\log\frac{\mathbf{y}^{(\lambda)'}(I-H)\mathbf{y}^{(\lambda)}}{n[(\prod_{i=1}^{n}y_{i})^{1/n}]^{2(\lambda-1)}}, & \lambda \neq 0\\ -\frac{n}{2}\log\frac{(\ln\mathbf{y})'(I-H)(\ln\mathbf{y})}{n[(\prod_{i=1}^{n}y_{i})^{1/n}]^{-2}}, & \lambda = 0 \end{cases}$$

▲口▼▲□▼▲□▼▲□▼ □ ● ● ●

Let

$$v_i = \begin{cases} \mathbf{y}_i^{(\lambda)} / (\dot{\mathbf{y}})^{\lambda - 1} = \frac{\mathbf{y}_i^{\lambda} - 1}{\lambda \dot{\mathbf{y}}^{\lambda - 1}}, & \lambda \neq 0\\ \dot{\mathbf{y}} \ln y_i, & \lambda = 0, \end{cases}$$

where $\dot{\mathbf{y}} = (\prod_{i=1}^{n} y_i)^{1/n}$, geometric mean of y_1, \ldots, y_n . Hence,

$$\mathcal{L}_{max}(\lambda) = -\frac{n}{2}\log \frac{\mathbf{v}'(I-H)\mathbf{v}}{n},$$

and it is maximized as $\mathbf{v}'(I - H)\mathbf{v}$ is minimized.

Thus, to find the MLE of λ is the same as to find the λ such that $SS_{Res}(\lambda) = \mathbf{v}'(I - H)\mathbf{v}$ is minimized based on $\mathbf{v} = X\beta + \epsilon$. \therefore The appropriate procedure is to use

$$\mathbf{v} = \begin{cases} \frac{\mathbf{y}^{\lambda} - 1}{\lambda \dot{\mathbf{y}}^{\lambda - 1}}, & \lambda \neq 0\\ \dot{\mathbf{y}} \ln \mathbf{y}, & \lambda = 0. \end{cases}$$

and

$$\min_{\lambda} SS_{Res}(\lambda) = \min_{\lambda} \mathbf{v}'(I - H)\mathbf{v}.$$

Usually, choose $\lambda \in (-2,2)$ and plot $SS_{Res}(\lambda)$ versus λ .

・ロト ・日・・日・・日・・日・

Interval Estimates of λ

For large *n*,
$$\mathcal{L}_{max}(\hat{\lambda}) - \mathcal{L}_{max}(\lambda) \xrightarrow{d} \frac{1}{2}\chi_1^2$$
.

.. an approximate 100(1 - $\alpha)\%$ confidence interval for λ is

$$\begin{aligned} \{\lambda: \ \mathcal{L}_{\max}(\hat{\lambda}) - \mathcal{L}_{\max}(\lambda) \leq \frac{1}{2}\chi^2_{1;\alpha}\} \\ = \ \{\lambda: \ \mathcal{L}_{\max}(\lambda) \geq \mathcal{L}_{\max}(\hat{\lambda}) - \frac{1}{2}\chi^2_{1;\alpha}\}. \end{aligned}$$

Or find λ such that

$$\begin{split} \log \frac{SS_{Res}(\lambda)}{n} &\leq \log \frac{SS_{Res}(\hat{\lambda})}{n} + \frac{\chi^2_{1;\alpha}}{n} \\ \iff SS_{Res}(\lambda) &\leq SS_{Res}(\hat{\lambda}) e^{\chi^2_{1;\alpha}/n}. \end{split}$$

Note: 1. $e^x \approx 1 + x$ if x is small. 2. $\chi_1^2 = z^2 \approx t_{\nu}$, large $\nu (= n - p)$. :. $e^{\chi_{1;\alpha}^2/n}$ can be replaced by (i) $1 + t_{\nu \alpha/2}^2 / \nu$; (ii) $1 + z^2(\alpha/2)/\nu$; (iii) $1 + \chi^2_{1 \cdot \alpha} / \nu$; (iv) $1 + \chi^2_{1:\alpha} / n$; (v) $1 + z^2 (\alpha/2)/n$.

In $\mathbf{y} = X\beta + \epsilon$, if $E(\epsilon) = 0$, $var(\epsilon) = \sigma^2 V$, where V is nonsigular, symmetric and posiitively definite. Then there exists a nonsigular, symmetric matrix $K_{n \times n}$ such that V = K'K = KK.

<u>Def</u>: The matrix K is often called the square root of V.

Note that $\mathbf{y} = X\beta + \epsilon$ is same as $K^{-1}\mathbf{y} = K^{-1}X\beta + K^{-1}\epsilon$. Let $\mathbf{z} = K^{-1}\mathbf{y}$, $B = K^{-1}X$ and $\mathbf{g} = K^{-1}\epsilon$, then it is equivalent to

 $\mathbf{z} = B\boldsymbol{\beta} + \mathbf{g},$

where $E(\mathbf{g}) = K^{-1}E(\epsilon) = 0$, and

 $Var(\mathbf{g}) = K^{-1} Var(\epsilon) (K^{-1})' = \sigma^2 K^{-1} V K^{-1} = \sigma^2 K^{-1} (KK) K^{-1} = \sigma^2 I.$

So, the LSE of β is the one minimizing $S(\beta) = \sum_{i=1}^{n} g_i^2 = \mathbf{g}' \mathbf{g}$ or

$$\hat{\boldsymbol{\beta}} = (B'B)^{-1}B'\mathbf{z} = (X'K^{-1}K^{-1}X)^{-1}X'K^{-1}K^{-1}\mathbf{y}$$

= $(X'(KK)^{-1}X)^{-1}X'(KK)^{-1}\mathbf{y}$
= $(X'V^{-1}X)^{-1}X'V^{-1}\mathbf{y}$, Generalized LSE of $\boldsymbol{\beta}$.

Note: 1.
$$E(\hat{\beta}) = \beta$$
.
2. $Var(\hat{\beta}) = \sigma^2 (X'V^{-1}X)^{-1}$.
3. $SS_R(\beta) = \hat{\beta}'B'\mathbf{z} = \mathbf{y}'V^{-1}X(X'V^{-1}X)^{-1}X'V^{-1}\mathbf{y}$,
 $df = p$.
4. $SS_{Res} = \mathbf{z}'\mathbf{z} - \hat{\beta}'B'\mathbf{z}$
 $= \mathbf{y}'V^{-1}\mathbf{y} - \mathbf{y}'V^{-1}X(X'V^{-1}X)^{-1}X'V^{-1}\mathbf{y}$,
 $df = n - p$.
5. $\mathbf{z}'\mathbf{z} = \mathbf{y}'V^{-1}\mathbf{y}$, $df = n$.

Special Case:
$$V = \begin{bmatrix} 1/w_1 & \cdots & \cdots & 0 \\ 0 & 1/w_2 & \cdot & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \cdots & 1/w_n \end{bmatrix}$$
, i.e. ϵ_i

uncorrelated, but with unequal variances.

Let
$$W = V^{-1} = diag(w_i)$$
, then

 $\hat{eta} = (X'WX)^{-1}X'Wy \equiv$ solution of min. weighted least squares,

which minimizes

$$\mathbf{g}'\mathbf{g} = \epsilon' \mathcal{K}^{-1} \mathcal{K}^{-1} \epsilon = \epsilon V^{-1} \epsilon = \sum_{i=1}^{n} w_i \epsilon_i^2.$$

i.e. min $\sum_{i=1}^{n} w_i (y_i - \beta_0 - \beta_1 x_{1i} - \dots - \beta_k x_{ki})^2$. $\therefore \hat{\beta}$ is also called the weighted LSE, WLSE.

- **Note**: 1. *w_i* must be known or gained from prior knowledge.
 - 2. Sometimes, $w_i = 1/x_i$, or $Var(\epsilon_i) \propto x_i$ revealed from the residual plots.
 - The OLSE (ordinary LSE = (X'X)⁻¹X'y) is unbiased,
 but no longer a minimum variance estimator if V ≠ I, for

$$Var(\hat{\beta}_{OLSE}) = (X'X)^{-1}X'Var(\mathbf{y})X(X'X)^{-1}$$

= $\sigma^{2}(X'X)^{-1}X'VX(X'X)^{-1},$

and $Var(\hat{\beta}_{WLSE}) = \sigma^2 (X'V^{-1}X)^{-1}$.

<u>Note</u>: In general, V is unknown and therefore must be estimated. There are n(n + 1)/2 distinct elements in V, it would be impossible to reliably estimate all of them on the basis of n observations. However, if there exist known relationships involving very few parameters in V, then estimation precedures becomes available. In the diagonal case, $V = diag(\sigma_i^2)$, an estimator of $\sigma^{(2)} = (\sigma_1^2, \cdots, \sigma_n^2)$ is $\widehat{\sigma^{(2)}} = (\hat{\sigma^2}_1, \cdots, \hat{\sigma^2}_n)'$ such that

$$\mathbf{e}^{(2)} = \left(egin{array}{c} e_1^2 \ dots \ e_n^2 \end{array}
ight) = M^{(2)}\widehat{\sigma^{(2)}},$$

where $M^{(2)} = (m_{ij}^2)$ with $I - H = (m_{ij})$.

Idea:
$$\ddot{\cdot}$$
 $\mathbf{e} = (I - H)\epsilon$, i.e. $e_i = \sum_{j=1}^n m_{ij}\epsilon_j$, $i = 1, \dots, n$,

$$\therefore e_i^2 = \sum_{j=1}^n \sum_{l=1}^n m_{ij} m_{il} \epsilon_j \epsilon_l \quad \text{and} \quad E(e_i^2) = \sum_{j=1}^n m_{ij}^2 E(\epsilon_j^2), \ i = 1, \dots, n.$$

< E ► < E ►

Hence, σ_i^2 can be estimated by replacing $E(e_i^2)$ by e_i^2 .

<u>Note</u>: These estimators are known as to be *MINQUE* (Minimized norm Quadratic Unbiased estimator). A major problem is that $\widehat{\sigma_i^2}$ can be negative.

Homework 6: (Page 185) 5.2, 5.7, 5.10, 5.12, 5.13, 5.14, 5.15, 5.16.

3

Due: Dec. 12, 2008.