Chapter 10. Validation of Regression Models

SKIP!

Chapter 11. Multicollinearity

$$\mathbf{y} = X \boldsymbol{eta} + \boldsymbol{\epsilon}, \quad \hat{\boldsymbol{eta}} = (X'X)^{-1}X'\mathbf{y}, ext{ if } (X'X) ext{ is non-singular}.$$

Q: When is X'X singular?

<u>Ans</u>: When at least one column of X is *linearly dependent* on the other columns. We say that **collinearity** (or **multicollinearity**) exists among the columns of X.

<u>**Def**</u>: The data are said to be **ill-conditioned** if there is a "linear dependency" in the columns of X.

i.e. $\left. \begin{array}{c} \det(X'X) \approx 0 \\ Var(\hat{\beta}_i) & \text{large} \end{array} \right\}$ Inadequate data.

Read Section 11.2 for sources of multicollinearity.

Centering and Scaling Data: Consider

$$\mathbf{Y}\sqrt{S_{yy}} = \beta_1 \sqrt{S_{11}} \mathbf{X}_1 + \dots + \beta_k \sqrt{S_{kk}} \mathbf{X}_k + \boldsymbol{\epsilon}',$$

where
$$Y_i = (y_i - \bar{y})/\sqrt{S_{yy}}$$
, $X_{ji} = (x_{ji} - \bar{x}_j)/\sqrt{S_{jj}}$,
 $j = 1, \dots, k; i = 1, \dots, n$. Thus, we have

$$\mathbf{Y} = \alpha_1 \mathbf{X}_1 + \dots + \alpha_k \mathbf{X}_k + \epsilon'', \text{ where } \alpha_j = \beta_j (\frac{S_{jj}}{S_{yy}})^{1/2},$$

白 ト イヨト イヨト

 $j=1,\ldots,k.$

 $\therefore \boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_k)'$ can be estimated through the normal equations

$$\left(\begin{array}{ccc} 1 & \cdots & r_{ij} \\ \vdots & 1 & \vdots \\ r_{ij} & \cdots & 1 \end{array}\right) \left(\begin{array}{c} \hat{\alpha}_1 \\ \vdots \\ \hat{\alpha}_k \end{array}\right) = \left(\begin{array}{c} r_{1y} \\ \vdots \\ r_{ky} \end{array}\right), \text{ in correlation form.}$$

Here

$$r_{ij} = rac{S_{ij}}{\sqrt{S_{ii}S_{jj}}} = corr(x_i, x_j), ext{ and } r_{iy} = rac{S_{iy}}{\sqrt{S_{ii}S_{yy}}} = corr(x_i, y).$$

▲口▼▲□▼▲目▼▲目▼ 目 ろくの

Then
$$\hat{\beta}_i = \hat{\alpha}_i (S_{yy}/S_{ii})^{1/2}, i = 1, \dots, k$$
 and
 $\hat{\beta}_0 = \bar{y} - \hat{\alpha}_1 \bar{x}_1 - \dots - \hat{\alpha}_k \bar{x}_k.$

<u>Note</u>: People in some fields argue that $\hat{\alpha}_1, \ldots, \hat{\alpha}_k$ are more meaningful in interpreting the regression.

<u>Ex.</u> k = 2, $y = \beta_1 x_1 + \beta_2 x_2 + \epsilon$ (centered and scaled).

$$X'X = \left(\begin{array}{rrr} 1 & r_{12} \\ r_{12} & 1 \end{array}\right)$$

and

$$C = (X'X)^{-1} = \begin{pmatrix} (1 - r_{12}^2)^{-1} & -r_{12}/(1 - r_{12}^2) \\ (1 - r_{12}^2)^{-1} \end{pmatrix}$$

$$\therefore \quad \hat{\beta}_1 = \frac{r_{1y} - r_{12}r_{2y}}{1 - r_{12}^2}, \quad \hat{\beta}_2 = \frac{r_{2y} - r_{12}r_{1y}}{1 - r_{12}^2}.$$

$$Var(\hat{\beta}_1) = Var(\hat{\beta}_2) = \sigma^2/(1 - r_{12}^2),$$

and $Cov(\hat{\beta}_1, \hat{\beta}_2) = -\sigma^2 r_{12}/(1 - r_{12}^2).$

If $|r_{12}| \rightarrow 1$ (x_1, x_2 possess strong multicollinearity), then the LSE of β have large variances and covariance. For k > 2,

$$C_{jj} = \frac{1}{1 - R_j^2}, j = 1, \dots, k,$$
 (Exercise)

where R_j^2 is the coefficient of multiple determination from the regression of x_i on the remaining k - 1 regressors.

:. $R_j^2 \rightarrow 1$ if x_j has strong linear relationship with some subsets of the other regressors.

Thus, $Var(\hat{\beta}_j) \rightarrow large.$

Consider

 $E(\hat{\beta} - \beta)'(\hat{\beta} - \beta) = \text{expected squared distance} = \sum_{j=1}^{k} E(\hat{\beta}_j - \beta_j)^2$ $= \sum_{j=1}^{k} Var(\hat{\beta}_j) = \sigma^2 tr(X'X)^{-1} = \sigma^2 \sum_{j=1}^{k} \frac{1}{\lambda_j},$

where λ_j 's are the eigenvalues of X'X.

Strong multicollinearity causes at least one λ_j to be small, thus, $E(\hat{\beta} - \beta)'(\hat{\beta} - \beta)$ will be large. Moreover,

$$E(\hat{\beta}'\hat{\beta}) = \beta'\beta + \sigma^2 tr(X'X)^{-1} \ge \beta'\beta.$$

Hence, the vector $\hat{\beta}$ is generally longer then β .

- Scatter plots of (x_i, x_j). Examine the correlation matrix only pairs of regressors.
- By experience or prior knowledge.
 - i) $\hat{\beta}_i$ has different sign from anticipated.
 - ii) Important explanatory variable yields small *t*-statistic.
 - iii) Sensitive of deletion of a row or a column from X.

2. Check VIF's (Variance Inflation Factors).

If \mathbf{x}_j is orthogonal to all other columns of X, $\forall j$,

$$X'X = \left(egin{array}{cc} S_{11} & 0 \ & S_{jj} \ & 0 & S_{kk} \end{array}
ight)$$
 or $R = I.$

:. $Var(\hat{\beta}_j) = \sigma^2 / S_{jj}$. Consider

$$VIF_j = Var(\hat{\beta}_j) / \left(\frac{\sigma^2}{S_{jj}}\right), j = 1, \dots, k.$$

- **<u>Note</u>**: 1. VIF_j is a measure of how much σ^2/S_{jj} is inflated by columns of X to \mathbf{x}_j . It's the combined effect of the dependencies among the relationship of other regressors on the variance of $\hat{\beta}_j$.
 - 2. For centered and scaled data, $S_{jj} = 1$ (in R),

$$VIF_j = C_{jj} = \frac{1}{1 - R_j^2}, j = 1, \dots, k.$$

 $C_{jj}
ightarrow 1(R_j^2
ightarrow 0)$ orthogonal.

 A large VIF (> 5 or 10) indicates a strong multicollinearity.

- 3. Eigensystem analysis of X'X.
 - Let λ₁, λ₂,..., λ_p be the eigenvalues of X'X. Then one or more of the λ_j's will be ≈ 0, if there is one or more near-linear dependencies in the data. Let

$$\kappa = \frac{\lambda_{\max}}{\lambda_{\min}} = \text{ condition number of } X'X$$

$$\kappa_j = \frac{\lambda_{\max}}{\lambda_j} = \text{ condition indices of } X'X \text{ for } j = 1, \dots, k.$$

- **Note**: 1. κ measures the spread in the eigenvalue spectrum of X'X.
 - 2. $\kappa \leq$ 100, okay;

 $100 < \kappa < 1000$, moderate to strong multicollinearity; $\kappa \geq 1000$, severe multicollinearity.

If λ_j ≈ 0 then the elements of the associated eigenvector
 t_j = (t_{j1},..., t_{jk})' describe the nature of the linear dependence. i.e. ∑_{i=1}^k t_{ji}x_i ≈ 0, some of t_{ji} ≈ 0. Find the linear relationship, e.g. x₁ ≈ t₂^{*}x₂ + t₄^{*}x₄.

(2) (Belsley's Method.)

1. Decompose X'X such that $X'X = T\Lambda T'$ where $T'T = TT' = I_k$ and $\Lambda = diag(\lambda_1, \dots, \lambda_k)$.

<u>Note</u>: 1. $T = (\mathbf{t}_1, \dots, \mathbf{t}_k)$ and \mathbf{t}_j is the eigenvector associated with λ_j . 2. Singular value decomposition of X:

$$X_{n\times k}=U_{n\times k}DT',$$

where $T'T = I_k$ and U is an $n \times k$ matrix whose columns are the *eigenvectors* associated with the k nonzero eigenvalues of XX' such that $U'U = I_k$, $D = diag(\mu_1, \ldots, \mu_k)$, μ_j 's are called the *singular values* of X.

<u>Note</u>: 1. $X'X = TDU'UDT' = TD^2T'$, $\therefore D^2 = \Lambda$, $\mu_j = \sqrt{\lambda_j}$.

2. There will be one small singular value for *each* near-linear dependence.

Let

$$\eta_j = \frac{\mu_{max}}{\mu_j}, j = 1, \dots, k, \text{ condition indices of } X;$$

$$\eta = \frac{\mu_{max}}{\mu_{min}} = \text{ condition number of } X.$$

<u>Note</u>: 1. This approach deals directly with the data matrix X.
2. The algorithms for singular-value decomposition are more stable numerically than those for eigensystem analysis.

Recall $Var(\hat{\beta}) = \sigma^2 (X'X)^{-1} = \sigma^2 T \Lambda^{-1} T'$ or

$$Var(\hat{\beta}_j) = \sigma^2 \sum_{i=1}^k \frac{t_{ji}^2}{\mu_i^2} = \sigma^2 \sum_{i=1}^k \frac{t_{ji}^2}{\lambda_i} = \sigma^2 C_{jj}.$$

:.
$$VIF_j = \sum_{i=1}^k \frac{t_{ji}^2}{\mu_i^2} = \sum_{i=1}^k \frac{t_{ji}^2}{\lambda_i}.$$

Thus, one or more small μ_i^2 (or λ_i) can inflate $Var(\hat{\beta}_j)$ dramatically.

4. Variance-decomposition proportions.

$$\pi_{ij}=rac{t_{ji}^2/\mu_i^2}{VIF_j}, \hspace{0.2cm} i=1,\ldots,k, \hspace{0.2cm} ext{for each } j=1,\ldots,k.$$

<u>Note</u>: 1. π_{ij} measures the multicollinearity = proportion of $Var(\hat{\beta}_j)$ contributed by the i^{th} singular value.

2. $\eta_j > 30$ and $\pi_{ij} > 0.5$ are recommended guidelines for detecting multicollinearity. It indicates that the corresponding regressors are of possible multicollinearity.

T

		<i>x</i> ₁	<i>x</i> ₂	 	x _k
λ_1	η_1	π_{11}	π_{12}	 	π_{1k}
÷	÷	π_{21}	π_{22}	 	
\geq	\leq			÷	
÷	÷	:		÷	
÷	30	÷			
λ_k	η_k	π_{k1}	π_{k2}	 	π_{kk}
\downarrow	\downarrow				
0	∞	$\sum = 1$			

6. $|X'X| \to 0. \ (0 \le |X'X| \le 1)$ or $100[|X'X|^{-1/2} - 1]$ large.

<u>Note</u>: $|X'X|^{-1/2}$ is the size of the confidence region enlarged due to multicollinearity. (|X'X| = 1 if X is orthogonal.) When multicollinearity occurs, one can

1) Add prior information.

e.g. In $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$. 'Known' (x_1, x_2) are highly correlated, i.e. $\beta_1 = c\beta_2$. \implies Let $z = x_1 + cx_2$ and consider $y = \beta_0 + \beta_1 z + \epsilon$. 2) Combine models. $y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i$, (x_{i1}, x_{i2}) collinear.

i) Use *previous* information of (y_i^{*}, x_i^{*}) to fit y_i^{*} = β₀^{*} + β₂^{*}x_i^{*} + ϵ_i^{*} ⇒ get β̂₀^{*}, β̂₂^{*}.
ii) Let ỹ_i = y_i - β̂₀^{*} - β̂₂^{*}x_i² and consider ỹ_i = β'₀ + β₁x_i + ϵ'_i.

- 3) Delete collinear variables. Must check for model adequacy, etc.
- 4) Principle component analysis.
- 5) Make transformation on x's to eliminate correlations.
- 6) Take more data.
- 7) Bayesian approach.

Homework 10: (Page 365) 11.2, 11.3, 11.4, 11.5, 11.12. Due: Jan. 16, 2009.

3

Intended to overcome "ill-conditioned" solutions.

 \implies Find out how the ill-conditioning occurs, and add specific additional information to the problem to remove the ill-conditioning.

<u>Motivation</u>: Find a "biased" estimator of β that has a much smaller variance than the LSE.

Let $\theta > 0$ (usually $\theta \in (0, 1)$). Define the ridge regression estimate $\hat{\beta}_R$ of β as the solution to

$$(X'X+ heta I)\hat{eta}_R=X'\mathbf{y}$$
 or $\hat{eta}_R=(X'X+ heta I)^{-1}X'\mathbf{y}.$

Note: 1. Here the data are centered and scaled.

2.
$$\hat{\boldsymbol{\beta}}_{R} = (X'X + \theta I)^{-1}(X'X)(X'X)^{-1}X'\mathbf{y} = Z_{\theta}\hat{\boldsymbol{\beta}}.$$
 $(\hat{\boldsymbol{\beta}}_{R} = \hat{\boldsymbol{\beta}}$
when $\theta = 0.$)

3. θ is called the **biasing parameter** since $E(\hat{\beta}_R) = Z_{\theta}\beta$ is biased.

4.
$$Var(\hat{\beta}_R) = \sigma^2 (X'X + \theta I)^{-1} X' X (X'X + \theta I)^{-1}.$$

<u>**Result</u></u>: There exists a \theta^* > 0 such that MSE_{\theta^*}(\hat{\beta}_R) < MSE(\hat{\beta}) if \beta'\beta is bounded.</u>**

Q: θ^* depends on σ^2 and β . $\theta^* = ???$

Solutions:

1. Ridge trace: plot of $\hat{\beta}_{jR}(\theta)$ versus θ , for each j = 1, ..., k.

At a certain value of θ , the system will stabilize.

Note that

$$SS_{Res}(\hat{\beta}_R) = (\mathbf{y} - X\hat{\beta}_R)'(\mathbf{y} - X\hat{\beta}_R)$$

= $(\mathbf{y} - X\hat{\beta})'(\mathbf{y} - \hat{\beta}) + (\hat{\beta}_R - \hat{\beta})'X'X(\hat{\beta}_R - \hat{\beta})$
$$SS_{Res} \uparrow \text{ in } \theta.$$

Large $\theta \implies$ ridge trace gets stable, but with large SS_{Res} . So θ can't be too large.

 \therefore Select a reasonable *small* θ at which $\hat{\beta}_R$ are stable.

<u>Note</u>: Usually, the ridge estimates do a better job of predicting future observations than LSE.

2.
$$\theta^{\star} = p\hat{\sigma^2}/(\hat{\beta}'\hat{\beta})$$
, where $\hat{\sigma^2} = MS_{Res}$ based on LSE.

Note that

sensible from a Bayesian point of view (as $\beta \sim N(0, \sigma_{\beta}^2 I))$.

・ロト ・聞 ト ・言 ト ・言 ト ・ ほ ・ うんの

3. Iterative procedure. Let $\theta_0^{\star} = p\hat{\sigma^2}/(\hat{\beta}'\hat{\beta}) \Longrightarrow \hat{\beta}_R(\theta_0^{\star})$. Compute $\theta_{j+1}^{\star} = p\hat{\sigma^2}/(\hat{\beta}'_R(\theta_j^{\star})\hat{\beta}_R(\theta_j^{\star})), \quad j = 0, 1, 2, \dots$ until 'convergence'!

i.e. Stop until
$$|\theta_{j+1}^{\star} - \theta_{j}^{\star}|/\theta_{j}^{\star} \leq \delta$$
.
e.g. $\delta = 20(tr(X'X)^{-1}/k)^{-1.3}$ is suggested.

Justification:

- Bayesian regression analysis: $eta \sim \pi(eta)$ prior distribution, $\hat{eta} = ?$
- 2 LSE with restriction: Known $\beta'\beta \leq c^2$, $\hat{\beta} = ?$