
Validation of Regression Models

Chapter 10. Validation of Regression Models

SKIP!



Multicollinearity

Chapter 11. Multicollinearity



y = Xβ + ǫ, β̂ = (X ′X )−1X ′y, if (X ′X ) is non-singular.

Q: When is X ′X singular?

Ans: When at least one column of X is linearly dependent on the

other columns. We say that collinearity (or multicollinearity)

exists among the columns of X .



Def: The data are said to be ill-conditioned if there is a ”linear

dependency” in the columns of X . �

i.e.
det(X ′X ) ≈ 0

Var(β̂i ) large







Inadequate data.

Read Section 11.2 for sources of multicollinearity.



Effects of Multicollinearity

Centering and Scaling Data: Consider

Y
√

Syy = β1

√

S11X1 + · · · + βk

√

SkkXk + ǫ′,

where Yi = (yi − ȳ)/
√

Syy , Xji = (xji − x̄j)/
√

Sjj ,

j = 1, . . . , k; i = 1, . . . , n. Thus, we have

Y = α1X1 + · · · + αkXk + ǫ′′, where αj = βj(
Sjj

Syy

)1/2,

j = 1, . . . , k.



... α = (α1, . . . , αk)′ can be estimated through the normal

equations
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, in correlation form.

Here

rij =
Sij

√

SiiSjj

= corr(xi , xj), and riy =
Siy

√

SiiSyy

= corr(xi , y).



Then β̂i = α̂i (Syy/Sii)
1/2, i = 1, . . . , k and

β̂0 = ȳ − α̂1x̄1 − · · · − α̂k x̄k .

Note: People in some fields argue that α̂1, . . . , α̂k are more

meaningful in interpreting the regression.



Ex. k = 2, y = β1x1 + β2x2 + ǫ (centered and scaled).

X ′X =





1 r12

r12 1





and

C = (X ′X )−1 =





(1 − r2
12

)−1 −r12/(1 − r2
12

)

(1 − r2
12)

−1



 .

... β̂1 =
r1y − r12r2y

1 − r2
12

, β̂2 =
r2y − r12r1y

1 − r2
12

.

Var(β̂1) = Var(β̂2) = σ2/(1 − r2
12),

and Cov(β̂1, β̂2) = −σ2r12/(1 − r2
12).

If |r12| → 1 (x1, x2 possess strong multicollinearity), then the LSE

of β have large variances and covariance.



For k > 2,

Cjj =
1

1 − R2
j

, j = 1, . . . , k, (Exercise)

where R2
j is the coefficient of multiple determination from the

regression of xj on the remaining k − 1 regressors.

... R2
j → 1 if xj has strong linear relationship with some subsets of

the other regressors.

Thus, Var(β̂j ) → large.



Consider

E (β̂ − β)′(β̂ − β) = expected squared distance =

k
∑

j=1

E (β̂j − βj)
2

=

k
∑

J=1

Var(β̂j ) = σ2tr(X ′X )−1 = σ2

k
∑

j=1

1

λj

,

where λj ’s are the eigenvalues of X ′X .

Strong multicollinearity causes at least one λj to be small, thus,

E (β̂ − β)′(β̂ − β) will be large. Moreover,

E (β̂′β̂) = β′β + σ2 tr(X ′X )−1 ≥ β′β.

Hence, the vector β̂ is generally longer then β. �



Detecting Multicollinearity

1. Scatter plots of (xi , xj). Examine the correlation matrix –

only pairs of regressors.

1 By experience or prior knowledge.

i) β̂i has different sign from anticipated.

ii) Important explanatory variable yields small t-statistic.

iii) Sensitive of deletion of a row or a column from X .



2. Check VIF ’s (Variance Inflation Factors).

If xj is orthogonal to all other columns of X , ∀j ,

X ′X =











S11 0

Sjj
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or R = I .

... Var(β̂j ) = σ2/Sjj . Consider

VIFj = Var(β̂j )/

(

σ2

Sjj

)

, j = 1, . . . , k.



Note: 1. VIFj is a measure of how much σ2/Sjj is inflated by

columns of X to xj . It’s the combined effect of the

dependencies among the relationship of other

regressors on the variance of β̂j .

2. For centered and scaled data, Sjj = 1 (in R),

VIFj = Cjj =
1

1 − R2
j

, j = 1, . . . , k.

Cjj → 1(R2
j → 0) orthogonal.

3. A large VIF (> 5 or 10) indicates a strong multi-

collinearity.



3. Eigensystem analysis of X ′X .

(1) Let λ1, λ2, . . . , λp be the eigenvalues of X ′X . Then one or

more of the λj ’s will be ≈ 0, if there is one or more near-linear

dependencies in the data. Let

κ =
λmax

λmin

= condition number of X ′X

κj =
λmax

λj

= condition indices of X ′X for j = 1, . . . , k .



Note: 1. κ measures the spread in the eigenvalue spectrum of

X ′X .

2. κ ≤ 100, okay;

100 < κ < 1000, moderate to strong multicollinearity;

κ ≥ 1000, severe multicollinearity.



3. If λj ≈ 0 then the elements of the associated eigenvector

tj = (tj1, . . . , tjk)′ describe the nature of the linear

dependence. i.e.
∑k

i=1
tjixi ≈ 0, some of tji ≈ 0. Find

the linear relationship, e.g. x1 ≈ t⋆
2x2 + t⋆

4x4.



(2) (Belsley’s Method.)

1. Decompose X ′X such that X ′X = TΛT ′ where

T ′T = TT ′ = Ik and Λ = diag(λ1, . . . , λk).

Note: 1. T = (t1, . . . , tk) and tj is the eigenvector associated

with λj .



2. Singular value decomposition of X :

Xn×k = Un×kDT ′,

where T ′T = Ik and U is an n × k matrix whose columns are the

eigenvectors associated with the k nonzero eigenvalues of XX ′

such that U ′U = Ik , D = diag(µ1, . . . , µk), µj ’s are called the

singular values of X .

Note: 1. X ′X = TDU ′UDT ′ = TD2T ′, ... D2 = Λ, µj =
√

λj .

2. There will be one small singular value for each

near-linear dependence.



Let

ηj =
µmax

µj

, j = 1, . . . , k, condition indices of X ;

η =
µmax

µmin

= condition number of X .

Note: 1. This approach deals directly with the data matrix X .

2. The algorithms for singular-value decomposition are

more stable numerically than those for eigensystem

analysis.



Recall Var(β̂) = σ2(X ′X )−1 = σ2TΛ−1T ′ or

Var(β̂j ) = σ2

k
∑

i=1

t2
ji

µ2
i

= σ2

k
∑

i=1

t2
ji

λi

= σ2Cjj .

... VIFj =

k
∑

i=1

t2
ji

µ2
i

=

k
∑

i=1

t2
ji

λi

.

Thus, one or more small µ2
i (or λi ) can inflate Var(β̂j )

dramatically.



4. Variance-decomposition proportions.

πij =
t2
ji/µ

2
i

VIFj

, i = 1, . . . , k, for each j = 1, . . . , k.

Note: 1. πij measures the multicollinearity = proportion of

Var(β̂j ) contributed by the i th singular value.



2. ηj > 30 and πij > 0.5 are recommended guidelines for

detecting multicollinearity. It indicates that the

corresponding regressors are of possible multicollinearity.

x1 x2 . . . . . . xk

λ1 η1 π11 π12 . . . . . . π1k

...
... π21 π22 . . . . . .

≥ ≤
...

...
...

...
...

...
... 30

...

λk ηk πk1 πk2 . . . . . . πkk

↓ ↓ . . .

0 ∞
∑

= 1 . . .



6. |X ′X | → 0. (0 ≤ |X ′X | ≤ 1) or 100[|X ′X |−1/2 − 1] large.

Note: |X ′X |−1/2 is the size of the confidence region enlarged

due to multicollinearity. (|X ′X | = 1 if X is orthogonal.)



When multicollinearity occurs, one can

1) Add prior information.

e.g. In y = β0 + β1x1 + β2x2 + ǫ. ’Known’ (x1, x2) are highly

correlated, i.e. β1 = cβ2.

=⇒ Let z = x1 + cx2 and consider y = β0 + β1z + ǫ.



2) Combine models. yi = β0 + β1xi1 + β2xi2 + ǫi ,

(xi1, xi2) collinear.

i) Use previous information of (y⋆
i , x⋆

i2) to fit

y⋆
i = β⋆

0 + β⋆
2x⋆

i2 + ǫ⋆
i =⇒ get β̂⋆

0 , β̂⋆
2 .

ii) Let ỹi = yi − β̂⋆
0 − β̂⋆

2xi2 and consider ỹi = β′

0 + β1xi1 + ǫ′i .



3) Delete collinear variables. Must check for model adequacy, etc.

4) Principle component analysis.

5) Make transformation on x ’s to eliminate correlations.

6) Take more data.

7) Bayesian approach.



Homework 10: (Page 365) 11.2, 11.3, 11.4, 11.5, 11.12.

Due: Jan. 16, 2009.



Ridge Regression

Intended to overcome ”ill-conditioned” solutions.

=⇒ Find out how the ill-conditioning occurs, and add specific

additional information to the problem to remove the

ill-conditioning.



Motivation: Find a ”biased” estimator of β that has a much

smaller variance than the LSE.

Let θ > 0 (usually θ ∈ (0, 1)). Define the ridge regression estimate

β̂R of β as the solution to

(X ′X + θI )β̂R = X ′y or β̂R = (X ′X + θI )−1X ′y.



Note: 1. Here the data are centered and scaled.

2. β̂R = (X ′X + θI )−1(X ′X )(X ′X )−1X ′y = Zθβ̂. (β̂R = β̂

when θ = 0.)

3. θ is called the biasing parameter since E (β̂R) = Zθβ is

biased.

4. Var(β̂R) = σ2(X ′X + θI )−1X ′X (X ′X + θI )−1.



Result: There exists a θ⋆ > 0 such that MSEθ⋆(β̂R) < MSE (β̂) if

β′β is bounded.

Q: θ⋆ depends on σ2 and β. θ⋆ =???



Solutions:

1. Ridge trace: plot of β̂jR(θ) versus θ, for each j = 1, . . . , k.

10 θ∗
θ

β̂1R(θ)

β̂kR(θ)

At a certain value of θ, the system will stabilize. �



Note that

SSRes(β̂R) = (y − X β̂R)′(y − X β̂R)

= (y − X β̂)′(y − β̂) + (β̂R − β̂)′X ′X (β̂R − β̂)

SSRes ↑ in θ.

Large θ =⇒ ridge trace gets stable, but with large SSRes .

So θ can’t be too large.

... Select a reasonable small θ at which β̂R are stable.

Note: Usually, the ridge estimates do a better job of predicting

future observations than LSE.



2. θ⋆ = pσ̂2/(β̂′β̂), where σ̂2 = MSRes based on LSE.

Note that

θ⋆ =
σ̂2

(β̂′β̂)/p
−→

σ2

σ2
β

,

sample variance prior variance

sensible from a Bayesian point of view (as β ∼ N(0, σ2
β I )).



3. Iterative procedure. Let θ⋆
0 = pσ̂2/(β̂′β̂) =⇒ β̂R(θ⋆

0).

Compute θ⋆
j+1

= pσ̂2/(β̂′

R(θ⋆
j )β̂R(θ⋆

j )), j = 0, 1, 2, . . .

until ’convergence’ !

i.e. Stop until |θ⋆
j+1

− θ⋆
j |/θ

⋆
j ≤ δ.

e.g. δ = 20(tr(X ′X )−1/k)−1.3 is suggested.



Justification:

1 Bayesian regression analysis: β ∼ π(β) prior distribution,

β̂ = ?

2 LSE with restriction: Known β′β ≤ c2, β̂ = ?


