Validation of Regression Models

Chapter 10. Validation of Regression Models

SKIP!



Multicollinearity

Chapter 11. Multicollinearity



y=XB+e€ B=(X'X)"1X"y, if (X'X) is non-singular.

Q: When is XX singular?
Ans: When at least one column of X is linearly dependent on the
other columns. We say that collinearity (or multicollinearity)

exists among the columns of X.



Def: The data are said to be ill-conditioned if there is a "linear

dependency” in the columns of X. O

_ det(X'X) =0
ie. ~ Inadequate data.
Var(;)  large

Read Section 11.2 for sources of multicollinearity.



Effects of Multicollinearity

Centering and Scaling Data:  Consider
Y\/Syy = B1vVSuXi+ -+ BV Sk Xk + €
where Y; = (y; — ¥)/\/Syy: = (x5i = Xi)/\/ Sijs

j=1,...,k;i=1,...,n Thus, we have

Y =a1 Xy + -+ apXg + 6”, where aj = ﬁj( JJ )1/2
y

j=1,...k



., ) can be estimated through the normal

Loa=(ag,..
equations
1 rij as ry
1 : = : , in correlation form.
rij 1 dk rky
Here
5," Si
rj = —L_ = corr(xj, xj), and ry, = —_ = corr(xi, y).-
5,','Sjj SiiSyy



Then B,’ == (/)\é,'(Syy/Si,')l/2, I = 1, PN k and
fo=y —a1xy — - — QX
Note: People in some fields argue that &1, ..., &, are more

meaningful in interpreting the regression.



Ex. k=2, y=[1x1+ faxz + € (centered and scaled).

1 r
X,X _ 12
rn» 1

and

(1—r)™" —r2/(1—r)

C=(X'X)"=
2\—1
(1—r)
5 Ty —hnohy 5y —rnany
= e N
12 12

Var(B1) = Var(B2) = 02/(1 — &),
and Cov(f1, B2) = —0%r2/(1 — r3).
If |r12] — 1 (x1, x2 possess strong multicollinearity), then the LSE

of B have large variances and covariance.



For k > 2,

1

G =1 Rl =
J

1,...,k, (Exercise)

where RJ-2 is the coefficient of multiple determination from the

regression of x; on the remaining k — 1 regressors.

Rj2 — 1 if x; has strong linear relationship with some subsets of

the other regressors.

Thus, Var(53;) — large.



Consider

E(B—pB)(B—B) = expected squared distance = Z E(3 — 3)?

j=1
= : % = (X'X)~ -1
= Z arﬁj = o%tr ;)\_’

J=1

where \;'s are the eigenvalues of X'X.

Strong multicollinearity causes at least one \; to be small, thus,

E(B — B)(B — B) will be large. Moreover,
E(BB)=pB8+0” tr(X'X)™' > 3/B.
Hence, the vector ,@ is generally longer then 3. O



Detecting Multicollinearity

1. Scatter plots of (x;,x;). Examine the correlation matrix —

only pairs of regressors.

@ By experience or prior knowledge.
i) f: has different sign from anticipated.
ii) Important explanatory variable yields small t-statistic.

i) Sensitive of deletion of a row or a column from X.



2. Check VIF's (Variance Inflation Factors).

If x; is orthogonal to all other columns of X, Vj,

. Var(Bj) = 0%/Sj;. Consider

2
VIF; = Var(B;)/ <g—> J=1,... .k
gl



Note: 1. VIF; is a measure of how much 02/S;; is inflated by
columns of X to x;. It's the combined effect of the
dependencies among the relationship of other
regressors on the variance of Bj-

2. For centered and scaled data, S;; =1 (in R),

1

VIFJ’:ij:il—R?’j:
J

1,... k.

Cj — 1(F\’j2 — 0) orthogonal.
3. A large VIF (> 5 or 10) indicates a strong multi-

collinearity.



3. Eigensystem analysis of X’X.

(1) Let A1, A2,..., A be the eigenvalues of X' X. Then one or
more of the A;’s will be ~ 0, if there is one or more near-linear

dependencies in the data. Let

)\m X “ .
Kk = )\—a = condition number of X’'X
)\max . .y / .
Kj = SV condition indices of X'X for j =1,..., k.
Jj



Note: 1. x measures the spread in the eigenvalue spectrum of
X'X.
2. k <100, okay;
100 < k < 1000, moderate to strong multicollinearity;

k > 1000, severe multicollinearity.



3. If A\j = 0 then the elements of the associated eigenvector
tj = (tj1,..., tj) describe the nature of the linear
dependence. i.e. Zf-‘zl tjix; =~ 0, some of t;; ~ 0. Find

the linear relationship, e.g. x1 = t3x2 + t)Xa.



(2) (Belsley's Method.)
1. Decompose X’X such that X’X = TAT’ where
T'T = TT' = Iy and A = diag()1, ..., \e).

Note: 1. T = (t1,...,tx) and t; is the eigenvector associated

with )\J'.



2. Singular value decomposition of X:

Xn><k = UnkaT/’

where T'T = I, and U is an n x k matrix whose columns are the
eigenvectors associated with the k nonzero eigenvalues of XX’
such that U'U = I, D = diag(pa, ..., uk), ij's are called the

singular values of X.

Note: 1. X'X = TDU'UDT' = TD?T', .. D®> = A, pj = \/A;.
2. There will be one small singular value for each

near-linear dependence.



Let

Tj

Note: 1.

_ Mmax,j =1,...,k, condition indices of X;
Hj
— HEmax _ ondition number of X.
Hmin

This approach deals directly with the data matrix X.

. The algorithms for singular-value decomposition are

more stable numerically than those for eigensystem

analysis.



Recall Var(,é) = 02()(/)()*1 — 2TA LT or

k t2 k t2
A 5 : <
Var(B) = 0*y_ 5 = 0> L =%y

i=1 Hi i—1 M

k12 k t2

— J i

wr-3 8 -5 8

i=1 /’Li i=1 !

Thus, one or more small 12 (or \;) can inflate Var(ﬁj)

dramatically.



4. Variance-decomposition proportions.

27,2
i/

"= viE

=1,...,k, foreach j=1,... k.

Note: 1. 7;; measures the multicollinearity = proportion of

Var(ﬁj) contributed by the it" singular value.



2. 1; > 30 and mj; > 0.5 are recommended guidelines for
detecting multicollinearity. It indicates that the

corresponding regressors are of possible multicollinearity.

X1 Xo ... ... Xk
A1om 1 T2 e oo T1k
21 22

> <

30
Ak Mk Tk TR eene oo Thk
o
0 oof|d. =1




6. |X'X| — 0. (0<|X'X| <1) or 100[|X'X|"1/2 — 1] large.

Note: |X'X|~/2 is the size of the confidence region enlarged

due to multicollinearity. (|X'X|=1if X is orthogonal.)



When multicollinearity occurs, one can

1) Add prior information.

e.g. Iny = 0o+ fix1 + Baxo + €. 'Known' (x1,x2) are highly
correlated, i.e. f1 = cfs.

— Let z = x; + ¢cx2 and consider y = By + $1z + €.



2) Combine models. y; = o + [1xi1 + Poxio + €,
(xj1, xi2) collinear.
i) Use previous information of (y*,x%) to fit
v =05+ B3xty + € = get (5, B3

i) Let yj = y; — B{; — ﬁgx,-g and consider y; = 3| + f1xj1 + €.



3) Delete collinear variables. Must check for model adequacy, etc.
4) Principle component analysis.

5) Make transformation on x's to eliminate correlations.

6) Take more data.

7) Bayesian approach.



Homework 10: (Page 365) 11.2, 11.3, 11.4, 11.5, 11.12.
Due: Jan. 16, 20009.



Ridge Regression

Intended to overcome "ill-conditioned” solutions.
= Find out how the ill-conditioning occurs, and add specific
additional information to the problem to remove the

ill-conditioning.



Motivation: Find a "biased” estimator of 3 that has a much

smaller variance than the LSE.

Let 6 > 0 (usually 8 € (0,1)). Define the ridge regression estimate

BR of 3 as the solution to

(X'X+0NBr =Xy o Br=(XX+60)"XYy.



Note: 1.

Here the data are centered and scaled.

CBr=X'X+0N"HX'X)(X'X) X'y = ZyB8. (Br =7

when 6 = 0.)

. B is called the biasing parameter since E(,@R) = ZyB is

biased.
Var(Br) = o2(X'X + 01) X' X(X'X + 01)~1.



Result: There exists a §* > 0 such that MSEy(8r) < MSE(@) if
3’3 is bounded.

Q: 0* depends on 02 and 3. 0* =777



Solutions:

1. Ridge trace: plot of BJ-R(H) versus 0, for each j =1,... k.

g '
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At a certain value of 6, the system will stabilize. O



Note that

SSres(Br) = (y— XBr)'(y — XBr)
= (y—XB)(y—B)+(Br — BYX'X(Br — B)
SSkes T in 6.

Large § = ridge trace gets stable, but with large SSges.

So # can't be too large.

.. Select a reasonable small § at which BR are stable.

Note: Usually, the ridge estimates do a better job of predicting

future observations than LSE.



2. 0 = pJA2/(,é’[§), where 02 = MSg.s based on LSE.

Note that
. o2 o2
= BB/ H o2’
(B'8)/p og
sample variance prior variance

sensible from a Bayesian point of view (as 8 ~ N(0,0‘%/)).



3. lterative procedure. Let 63 = pa2/( B) = Br(85).
Compute 67, | = pa2/([3R(9*),@R(9*)), j=0,1,2,...
until 'convergence'!
i.e. Stop until |07, — 0%[/0F < 4.

e.g. § = 20(tr(X'X)~1/k)~13 is suggested.



Justification:

© Bayesian regression analysis: 3 ~ 7(3) prior distribution,

~

B=7
© LSE with restriction: Known @/3< c2, B="7



