MS_Regress - The MATLAB Package for
Markov Regime Switching Models

Marcelo Perlin*
marceloperlin@gmail.com

November 24, 2010

WORKING PAPER

Abstract

Markov state switching models are a type of specification which
allows for the transition of states as an intrinsic property of the econo-
metric model. Such type of statistical representations are well known
and utilised in different problems in the field of economics and finance.
This paper gives an overview of MS_Regress, a MATLAB toolbox spe-
cially designed for the estimation, simulation and forecasting of a gen-
eral markov regime switching model. The package was written in an
intuitive manner so that the user have at its reach a large number of
different markov switching specifications, without any change in the
original code. This document introduces the main functionality of the
package with the help of several empirical examples.

*PhD Student at Reading University, ICMA Centre.

1 Introduction

The purpose of this document is to introduce the user to the function-
ality of MS_Regress packageﬂ The document is organised as follows,
first I give a brief exposition on the topic of regime switching models
and the further sections of the paper are related to the introduction
to the features of the package along with illustrative examples.

2 Overview of the package

The MS_Regress package was written for the estimation, simulation
and forecasting of a general markov switching model. The functional-
ity of the code is build around three functions:

MS_Regress_Fit - Function for estimating a MS model
MS_Regress_For - Function for forecasting a regime switching model
MS_Regress_Sim - Function for simulating a MS model

Each of these functions have a similar interface. Within the pack-
age there are several example scripts that show the functionality of
each of the three main functions. In this paper, special attention is
given to the fitting function (MS_Regress_Fit) since this is the one
most likely to the used.

3 Installation of the package

The installation of the package is quite straightforward. All you need
to do is to tell Matlab to place the files from the m_Files folder in the
search path. This is done with the command:

addpath('m Files'");

Once Matlab recognises the path of the package, the functions will

IThe package is still under development to accommodate new features. The up
to date version can be downloaded from http://www.mathworks.com/matlabcentral/
fileexchange/15789. I also wrote a lighter version of the package in R. The code
is available within the Rmetrics project (https://r-forge.r-project.org/projects/
rmetrics/, search for fMarkovSwitching). Please be aware that the R version is no longer
being maintained.

http://www.mathworks.com/matlabcentral/fileexchange/15789
http://www.mathworks.com/matlabcentral/fileexchange/15789
https://r-forge.r-project.org/projects/rmetrics/
https://r-forge.r-project.org/projects/rmetrics/

be available to the user. After the use of the package, it is advised
(but not necessary) to remove the files from the search path. This is
accomplished with:

rmpath ('mFiles");

These commands are already included in all example scripts. These
scripts were written so that they can run without any modification.
They are a good starting point in learning the interface of the package.
Next I give a brief introduction to markov regime switching models.

4 Markov regime switching models

Markov regime switching models are a type of specifications of which
the selling point is the flexibility in handling processes driven by het-
erogeneous states of the world. In this section I give a brief exposition
on the subject. For further technical details, the reader is advised to
check the main literature on the subject. Technical details regard-
ing markov regime switching models can be found in Hamilton! [1994],
Kim and Nelson [1999], Wang| [2003]. For introductory material on
the subject, see Hamilton [2005], Brooks| [2002], |Alexander| [2008] and
Tsay| [2002] among others.

I start by presenting the simplest regime switching model. Con-
sider the following process given by:

Yt = s, + € (1)

where S; = 1..k and ¢ follows a Normal distribution with zero
mean and variance given by a?gt. Note that for the model given in
Equation[I] the intercept is switching states given an indicator variable
S¢. This means that if there are k states, there will be k values for
p and o2, If there is only one state of the world (S; = 1), formula
takes the shape of y; = 1 + € and can be treated as a simple linear
regression model under general conditions.

Assuming now that the model in [I| has two states (kK = 2). An
alternative representation is:

Yy = 1 + € for State 1 (2)
Yr = Ho + & for State 2 (3)

where:

e ~ (0,0%) for State 1 (4)
e ~ (0,03) for State 2 (5)

This representation clearly implies two different processes for the
dependent variable y;. When the state of the world for time ¢ is 1
(2), then the expectation of the dependent variable is u1 (u2) and the
volatility of the innovations is 02 (03).

For example one can think of ¥, as a vector of log returns for a
financial assetﬂ The value of p1 can be though of as the expected
return on a a bull market state, which implies a positive trend for
financial prices and consequently a positive log return for ;. The
lower value po can be read as the expected log return for the bear
market state, which then implies a negative trend in prices.

The different volatilities (02 and 03) in each state represent the
higher uncertainty regarding the predictive power of the model is each
state of the world. Going back to my example, one could expect that
the bear market state is more volatile than the bull market. This
implies that prices go down faster than they go up. El Therefore, it
would be intuitive to expect that U2Bear is higher than U%UU.Note that
I do not identify the states (e.g. bull market is state 1). In general,
the S; variable simply index the states, where the interpretation is
given by looking at parameter’s values.

So far I haven’t said how exactly the switching from one state to the
other happens. For instance, how is that one should know which state
of the world is for each point in time. Suppose that we had assumed
a deterministic transition of states where state 1 is true for time ¢
when a exogenous time series z; is positive. This greatly simplifies
the model as each state is observable and, therefore, we can treat the
model given before as a regression with dummy variables. This would
take the shape of y; = D(p1 +€1¢) + (1 — Dy)(p2 + €14), where Dy is
the dummy variable taking value of 1 if z; > 0 and 0 otherwise.

2The log return is the geometric change of the price. Formally, if P, is the price of a
particular asset for time ¢, then log(P;/P;—1) is the log return for time ¢.

3The usual explanation for this effect is that traders react faster to bad news when
comparing to good news. This can also be explained by the presence of limit loss orders,
which will sell at market prices once a particular threshold in the prices has been breached.
When used by a significant amount of traders and at different threshold levels, these limit
loss orders will create a cascade effect, therefore accelerating the downfall of prices.

For a markov regime switching model, the transition of states is
stochastic (and not deterministic). This means that one is never sure
whether there will be a switch of state or not. But, the dynamics be-
hind the switching process is know and driven by a transition matrix.
This matrix will control the probabilities of making a switch from one
state to the other. It can be represented as:

P11 --- Pik
P=| : - (6)
Pk1 .- Dkk

For |§|7 the elementlﬂ in row ¢, column j (p;;) controls the probability
of a switch from state j to state 7. For example, consider that for some
time t the state of the world is 2. This means that the probability of a
switch from state 2 to state 1 between time ¢ and t+ 1 will be given by
p12. Likewise, a probability of staying in state 2 is determined by pos.
This is one of the central points of the structure of a markov regime
switching model, that is, the switching of the states of the world is
a stochastic process itseliﬂ Usually the transition probabilities are
assumed constant and this is also the case for MS_Regress. But it
is possible to allow it to vary over time. This is called the TVTP
(time varying transition probabilities) model. See |Wang [2003] for
more details in this type of specification.

A general MS model can be estimated by maximum likelihood us-
ing Hamilton’s filter and iterative algorithms. For further details on
markov chains and on the estimation of markov regime switching mod-
els, the reader is advised to check the main literature on the subject,
Hamilton| [1994] and Kim and Nelson, [1999].

When thinking in computational terms, a (univariateﬁ) markov
switching model can be represented in a generalised notation. Con-
sider the following formula:

Ng, Nnps,

Y=Y Bitis+ Y siTip + € (7)
=1 i=1

4The ordering of the elements in the matrix is a matter of notation. It is not uncommon
to find different notations in the literature.

5In fact, the probabilities of each regime over time can be represented as a AR process,
[Hamiltonl 1994]

®The package also has support for multivariate models but, for sake of simplicity, I
restrict the introduction in the topic for univariate specifications, only.

€t ~ P((I)St) (8)

This representation can nest a high variety of univariate markov
switching specifications. The first term in [7] is the sum of switching
parameters of the models. The function Ng, and N,g, simply counts
the number of switching (and non switching) coefficients, respectively.
The term P(®) is the assumed probability density function of the
innovations.

When translating the structure in [7] and [§] into a computational
framework, the required information one would need in order to set
up its own specification is the explained (y;) and the explanatory data
(24,), the location (and number) of parameters that will switch states
and the shape of the probability density function for the innovations.
The MS_Regress package has a very intuitive way of addressing such
structure, which makes it a handy package for this type of specifica-
tions. Next I present the interface of the package.

5 Estimating markov switching mod-
els with MS_Regress

This MATLAB package is quite flexible when it comes to the specifica-
tion of the markov switching model the user is estimating. The central
point of this flexibility resides in the input argument S, which controls
for where to include markov switching effects. The package can esti-
mate univariate and multivariate markov switching models but, the
interface is slightly different between the cases. Let’s first begin with
the univariate interface.

5.1 Interface to univariate modelling

When in the MATLAB environment, the way to call the fitting func-
tion of the package isﬂ

1 Spec_Out=MS_Regress_Fit (dep, indep, k, S, advOpt)

The first variable Spec_Out is the output structure which contains
all the information regarding the estimated model. Variable dep is

"Special thanks to Florian Knorm for providing a latex package for Matlab code (avail-
able at http://www.mathworks.com/matlabcentral/fileexchange/8015/).

http://www.mathworks.com/matlabcentral/fileexchange/8015/

the dependent variable and it can either be a vector (univariate) or a
matrix (multivariate model). The input indep represents the inde-
pendent variables. For the case of a univariate model, it is represented
as a matrix with columns equal to the number of regressors. For the
case of a multivariate model, this variable is a cell arrayﬂ The last
three inputs, k, S and advOpt are, respectively, the number of states
in the model, the locations of the switching parameters and advanced
options fed to the algorithm. Further details on these are given next,
with the help of an example.

Consider the following case of a model with two explanatory vari-
ables (z14 , x2;) where the innovations follow a Gaussian (Normal)
distribution and the input argument S, which is passed to the fit-
ting function MS_Regress_Fit.m, is equal to S=[1 1 1]. Given this
configuration, the model is represented as:

Yt = B1,5, 71, + B2,5, T2, + € 9)
€ ~ N(Ov U%‘t) (10)

Where:

S¢: The state at time t, that is,5; = 1..k , where k is the number
of states.

agt: The variance of the innovation at state .S;.

Bi,s,: Beta coefficient for explanatory variable ¢ at state S; where 4
goes from 1 to 2.

e+: Residual vector which follows a particular distribution (in this case
Normal).

Now, changing the input argument to S=[1 1 0], the model is:

Yy = B1,5, 71, + B2,5, T2, + € (11)
e ~ N(0,0?%) (12)

Notes that that with S=[1 1 0], the variance term is no longer
switching states. Now, with the switching argument as S=[0 1 17,
the model is:

yr = Brz1e + Bo,5,%2t + & (13)

8Details on multivariate models are given later on the paper.

7

€ ~ N(O> O-g't) (14)

With this change in the input argument S, only the second coef-
ficient and the model’s variance are switching according to the tran-
sition probabilities. That is, the first coefficient (1) does not change
states. Therefore, the logic is clear: the first elements of S control the
switching dynamic of the mean equation, while the last term controls
the switching dynamic of the residual vector, including distribution
parameters. For an example with extra distribution parameters, con-
sider the following definition for a model with GED (generalised error
distribution) innovations and with input S=[1 1 1 1]. This config-
uration yields:

Y = B1,5,%1,t + B2,5, T2, + € (15)
et ~ GED(0,0%,, Ks,) (16)

In this setup, the new parameter K will also switch states. This
coeflicient is part of the GED distribution and should not be con-
fused with the k& (number of states in the model). If we had set
S=[1 1 1 0], the model would switch in all coefficients, except in
the K parameter. As an example for the markov switching fitting
function, consider that there is a variable called logRet in MATLAB’S
workspace. This is the log returns of a particular asset. Consider the
input of the following options at MS_Regress Fit ():

o)

% Defining inputs

dep=logRet;

constVec=ones (length(dep),1);
indep=constVec;

k=2;

s=[1 11;
advOpt.distrib="Normal';
advOpt.std.method=1;

© 0w N O o W N =

<)

10 % Calling fitting function
11 Spec_Out=MS_Regress_Fit (dep, indep, k, S, advOpt)

For the last piece of code, the vector dep is the dependent vari-
able. The term constVec is a vector full of ones (the constant), & is
the number of states and S defines the location of the switching pa-
rameters. The model represented in computational terms in the last

piece of Mat 1ab code is equivalent to the model with only a constant
term and two states given previously in the paper (see Equation .

The input structure advOpt determines advanced information of
the model, in this case, the distribution assumption and the method
for calculating the standard errors. More details regarding the use of
advOpt can be found in a later section of the paper.

The inputs given before are related to the estimation, based on
Gaussian maximum likelihood, of the equations:

State 1 (S; = 1) (17)

=5 +e (18)

€ ~ N(0,0?) (19)

State 2 (S; = 2) (20)

Yt = P2 + € (21)

et ~ N(0,03) (22)

with:
P— (P11 P21 > (23)
P12 P22

as the transition matrix, which controls the probability of a switch
from state j (column j) to state i (row 7). The sum of each column in
P is equal to one, since they represent full probabilities of the process
for each state.

Another flexibility of the package is that, since I wrote it for dealing
with a generic type of regression, you can set any kind of explanatory
variable in the model as long as they are observed (you have it avail-
able for the whole time period studied). This includes autoregressive
components, constants or just plain regression on other variables.

If you run the script Example MS_Regress_Fit.m with MATLAB
version 7.10.0.499 (R2010a), this is the output you should be getting
if you have all the proper packages installed (optimisation, statistics).

**%x%x% Numerical Optimization Converged x*#*#*#*%

Final log Likelihood: 2487.1985
Number of estimated parameters: 10

oos W N e

Type of Switching Model: Univariate

© 0w N o

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

Distribution Assumption —-> Normal
Method SE calculation —> 1

%x%x% Final Parameters for Equation #1 *x*%
—-——> Non Switching Parameters <---

Non Switching Parameter for Eq. #1, Indep column 2
Value: 0.4798
Std Error (p. value): 0.0269 (0.00)

Non Switching Parameter for Eq. #1, Indep column 3
Value: 0.1564
Std Error (p. value): 0.0333 (0.00)

-——> Switching Parameters (Distribution Parameters)

State 1
Model's Variance: 0.0003
Std Error (p. value): 0.0000 (0.00)
State 2
Model's Variance: 0.0008
Std Error (p. value): 0.0001 (0.00)
—-——> Switching Parameters (Regressors) <-—-
Switching Parameters for Equation #1 - Indep column 1
State 1
Value: 0.0003
Std Error (p. value): 0.0007 (0.66)
State 2
Value: 0.0006
Std Error (p. value): 0.0017 (0.75)

—-——> Transition Prob Matrix (std. error, p-value)

0.99 (0.03,0.00) 0.02 (0.01,0.04)
0.01 (0.00,0.06) 0.98 (0.02,0.00)

—-——> Expected Duration of Regimes <-—-—

Expected duration of Regime #1: 109.27 time periods
Expected duration of Regime #2: 43.57 time periods

10

5.2 Interface to multivariate modelling

By now it should be clear the use of input argument S. The mul-
tivariate interface I built for this package has the same intuition as
in the univariate case and consists of basically a group of inputs in
cell array notation, where the elements iterates over the equations in
the system. An example should make it clear. Consider the following
model:

Y1t = B1,1,8, * T1,t + Br,2,5, * Top + €1 (24)
Y26 = B2,1,5, * T3¢ + €2 (25)
with

1t~ N(0,07g,) (26)
€24 ~ N (0,035, (27)

Sy =1,2 (28)
cov(€y,€24) =0 (29)

This last system of 2 equations is translated in the package’s no-
tation as:

1 % Defining input variables
2 dep=y;

3 indep{l}=[xl x2];

4 indep{2}=x3;

5 k=2;

6 S{1}=[1 1 11;

7 s{2}=1[1 11;

8

9

% Calling fitting function
Spec_Out=MS_Regress_Fit (dep, indep, k,S);

Jun
(=}

For the last piece of code, variable y is a matrix with two columns.
As one can see, the inputs have the same shape as for the univariate
case, but they are iterated over the equations of the system by using
cell arraysﬂ All options to univariate modelling, including reduced

9For those not familiarised with Matlab, cell arrays are a type of flexible structure that
can accommodate any kind of data. They are similar to the use of ‘lists’ in R.

11

estimation, are also available for the multivariate case. For further de-
tails see the script Example MS_ Regress_Fit MultiVar.m, which
can be found in the package’s zip ﬁle@

5.3 Estimating regime switching vector autore-
gressive models (MS - VAR)

The package also comes with a simple wrapper function for estimating
a general autoregressive markov switching modeﬂ

For example, consider a matrix consisting of two time series (Y; =
[y1,+ y2.¢]) that follows this particular autoregressive system:

Yi=Bs, @Y1+« (30)

with:
€ ~ N(Oa ESt) (31)

2
s, =< DLs OLS) (32)

0128 O35,

This model translates into the package’s notation as:

o)

% Defining input
dep=logRet (:,1:2);
nLag=1;

k=2;

advOpt .diagCovMat=0;

o)

% Calling fitting function
Spec_Out=MS_VAR_Fit (dep,nlag, k, advOpt) ;

(o e

As one can see, the input structure is similar to MS_Regress_Fit.
The new inputs, nLag and advOpt.diagCovMat are respectively
the number of lags in the system and the use of a full matrix as the
covariance matrix2

10The download is available at
http://www.mathworks.com/matlabcentral/fileexchange/15789

HNote that in the current version of the package (July 2010), moving average terms
and error correction models are not supported.

12This implies that all elements in the covariance matrix are estimated from the data.
If advOpt .diagCovMat=1, then only the elements in the diagonal (the variances) are
estimated and the rest (the non diagonal elements, the covariances) are all set to zero.

12

http://www.mathworks.com/matlabcentral/fileexchange/15789

5.4 The output from the estimation function

The estimation function MS_Regress_Fit returns a structure with all
the information regarding your model. This comprises of the following
fields:

e Coeff: A Structure with the fields:
— Coeff.p: The transition probability matrix

— Coeff.nS_Param: All non switching betas (iterated over equa-
tions (cells) and independent variables (rows))

— Coeff.S_Param: All switching betas (iterated over equations
(cells), over independent variables (rows) and states (columns))

— Coeff.covMat: Covariance matrix (iterated over states (cell)).

e filtProb: The filtered probabilities of regimes (iterated over the
states (columns))

e LL: Final log likelihood of model

e k: Number of states

e param: All estimated parameters in vector notation

e S: Switching flag control (iterating over equations (cell))

e advOpt: advanced options fed to algorithm (see next section for
details)

e condMean: Conditional mean calculated[r_g] by the model

e condStd: Conditional standard deviation calculated™] by the
model.

e resid: Residuals from the model (iterating over equations (columns))
e stateDur: Expected duration of each state

e smoothProb: Smoothed probabilities of regimes (iterated over
the states (columns))

e n1Obs: Number of observations (rows) in the model
e Number_Parameters: Number of estimated parameters

o Coeff SE: A structure with all standard errors of coefficients
(same fields as Coeff)

13These are calculated based only on filtered probabilities prior to time t.
1These are also calculated with information prior to time t.

13

e Coeff pValues: A structure with all parameter’s p-values (same
fields as Coeff)

o AIC: Akaike information criteria of the estimated model

e BIC: Bayesian information criteria for estimated model

These fields should contain all the information you need for further
testing of the model. If you’re missing something, please let me know.

5.5 Using advanced options

When I was writing this markov switching package I always had in
mind that it should be simple and intuitive to use but, at the same
time, be complete in providing different options to the user. In the use
of the fitting function MS_Regress_Fit.m, all the different options
of the algorithm are controlled by the input advOpt. The possible
fields are:

advOpt.distrib: Defines the distribution to be used in the max-
imum likelihood calculation. If advOpt .distrib="'Normal', then
the distribution used is the Gaussian, if advOpt .distrib="t", it is
used the t distribution, with one extra parameter (degrees of freedom).
If this field is equal to 'GED' then the distribution for the error is the
Generalised Error distribution with one extra parameter (K).

advOpt.std_method - Defines the method to be used for the
calculation of the standard errors of the estimated coefficients. More
details for the first three types of covariance matrix can be found at
Hamilton [1994], chapter 5. For the last one it can be found in Newey
and West|[1987]. The options are:

e advOpt.std_method=1: Calculation of the covariance matrix is
performed using the second partial derivatives of log likelihood
function (a.k.a. the Hessian matrix).

e advOpt.std_method=2: Calculation of the covariance matrix is
performed using the first partial derivatives of log likelihood,
that is, the outer product matrix. This methods approximates
the Hessian matrix with the gradient vector and is a robust choice
for when std.method=1 fails to give reasonable valued'}

15The calculation of the Hessian by numerical differentiation is not guaranteed to provide

14

e advOpt.std_method=3: Calculation of the covariance matrix is
performed using White’s method[ﬂ The resulting covariance
matrix is robust to heteroskedasticity of unknown form.

e advOpt.std_method=4: Calculation of the covariance matrix is
performed using Newey and West method. The resulting covari-
ance matrix is robust to heteroskedasticity and serial correlation.

advOpt.useMex: Defines whether to use the mex!’| version of
Hamilton’s filter in the calculation of likelihood function. The advan-
tage in using the mex version is the increase of speed in the fitting
function. But, in order to use it, you’ll need a proper C++ compiler.
Please check next topic for more details.

advOpt.constCoeff: Defines the use of constrained/reduced es-
timation of the model. This is particularly useful when the desired
model has a very particular representation which cannot be addressed
in the usual notation. See the following topic for instructions on how
to use this feature.

advOpt.diagCovMat: Defines the use of a diagonal matrix for
sigma (covariance matrix) in multivariate estimation, only. If
advOpt .diagCovMat=0 then the whole covariance matrix is esti-
mated from the data.

advOpt.printOut: Flag for printing out to screen the model in
the end of estimation.

advOpt.printlter: Flag for printing out numerical iterations of
maximum likelihood estimation.

advOpt.doPlots: Flag for plotting fitted conditional standard
deviations and smoothed probabilities in the end of estimation.

The next table show the possible values for each input in advOpt
and also the default values (if no value is assigned).

areal number. When this happens, the function MS_Regress_Fit will output NaN (Not
a Number) values for the standard errors.

16See (White| [1984] for details.

1"Mex files stands for matlab’s executable file and is a way to interface MATLAB with
other low level programming languages such as C++ and Fortram.

15

Input Argument

Possible
ues

Val-

Default Values

‘Normal’,'t” or

advOpt.distrib ‘GED’ Normal
advOpt.std_method | 1,2,3 or 4 1
advOpt.useMex lor0 0

Any number or

A structure with fields con-

string ‘e’ (see taining string ‘e’. This
advOpt.constCoeff & . means that all coefficients
next topic for .
. are estimated from data (no
details) - .
restrictions on coefficients)
advOpt.diagCovMat | 1 or 0 1
advOpt.printOut lor0 1
advOpt.printlter lor0 1
advOpt.doPlots lor0 1

Table 1: Default Values for input arguments in advOpt.

5.6 Using the mex version of Hamilton’s filter

The filter behind the calculation of the filtered probabilities of the
model is computationally intensive and this may be a pain when deal-
ing with large amounts of data. The MS_Regress package has a mex
version of the likelihood function that performs the heavy duty of the
model, Hamilton’s filter, in a cpp mex file. Depending on the number
of observations in the system, the gain in speed can be higher than
50%, meaning that the mex version of the filter can decrease in half
the time needed to estimate the model.

Currently, Mathworks does not let me include pre-compiled files in
the package so you’ll have to compile the .cpp file before using it. The
file in question is mex_MS_Filter.cpp, which is located at the folder
m_Files. The cpp file was compiled and tested using MATLAB 2010a
and MS VC 2008. You can get the last one freely on the interne@
After installing it, type in MATLAB the command:

1 mex —setup;

Bhttp://www.microsoft.com/express/

16

http://www.microsoft.com/express/

This will take you to a set of steps for configuring your default mex
compiler to MS VC 2008. After that, just use the command:

1 mex mex MS Filter.cpp;

in the directory m_Files and try running the script
Example MS_ Regress_Fit_with MEX.m.

Please note that the .cpp function will NOT compile under MATLAB’s
native LCC. For others C++ compilers, I haven’t tested it, hopefully
it will work.

If you’re having problems compiling it, please email me and I'll
send you the compiled mex file which should work for most of the
cases.

5.7 Using advOpt.constCoeff (constraining co-
efficients)

The MS_Regress package also supports constrained /reduced estima-
tion of the model. This means that, for all the coefficients, you can
choose whether you want to estimate the parameter from the data or
if you want to fix it to a specific value. This feature also holds for
multivariate models.

Consider the following case: you know for sure (or at least have a
theory) that one (or more) of the switching coefficients (say column 2
of indep) has the value of 0.5 when the model is in state 1 and value
of -0.5 when the model is in state 2. You now want to know what are
the maximum likelihood estimates for the other coefficients given this
restriction. The package allow for this particular specification (or any
other as matter of fact) to be set. The interface for using constrained
estimation has the following principles:

1. The parameters are grouped with the notation:
e nS_Param: All non switching coefficients at indep matrix
(which were chosen with argument S)

e S_Param: All switching coefficients at indep matrix (also
chosen with input S)

p: Transition matrix

covMat: Covariance matrix of innovations

df: Degrees of freedom for ¢ distribution (if applicable)

17

e K: Parameter for GED distribution (if applicable)

2. The size of each of these fields are set according to the number of
switching/non switching parameters and the number of states in
the model (value of k). For all of them (except covMat), the cells
iterates over the equations in the system, the columns iterate
the states and the rows iterate the coefficients. For instance, for
nS_Param{iEq}, the element (1,1) of this matrix is the fist non
switching parameters of equation iEgq, the element (2,1) is the
second non switching parameter and so on. For S_ Param{iEq},
the element (1,2) is the parameter of the first switching variable,
at state 2, equation iFq. The sizes of covMat, df and K also
have to respect the choices made at input S. For instance if the
model is switching in the standard deviation of the innovations,
then covMat should have size {1,k}, otherwise it should be a
{1,1} cell. For the case of multivariate models, covMat should
be sized according to the number of equations in the system.

3. The rule for building the fields is, use the string 'e' (as in ‘esti-
mate’) if you want the respective parameter to be estimated from
data or a numeric value if you want the respective parameter to
take that value. For instance, using:

1 advOpt.constCoeff.S Param{1}={0.5 , 'e' ;
2 'e' , 0.1};

you're telling MS_Regress_Fit to set the coefficients of the first
switching parameter of equation 1, in state 1, equal to 0.5, the
second switching parameter, state 2, equal to 0.1 and estimate
the rest of them.

Examples should make the structure on the use of advOpt .constCoeff
clear. Consider the estimation of the following model:

State 1 (S; = 1) (33)

yr =01+ 021 + Boizos + € (34)
e ~ N (0, O'%) (35)

State 2 (S; = 2) (36)

yt = 1+ Br2@1,e + 02 + € (37)

18

€ ~ N(0,09) (38)
with:

P— (P11 P21) (39)

P12 D22

For the previous specification, the restrictions are:

Bi1,1=0
B22 =0

In order to estimate this model, these are the options fed to the fit-
ting function Example MS_Regress _Fit_using_constCoeff.m:

-

% Defining Inputs

=2;

S=[0 1 1 17;

advOpt .distrib="Normal';
advOpt.std.method=1;

o

o)

% Defining constrained parameters
advOpt .constCoeff.nS Param{l}={"e'};
advOpt.constCoeff.S Param{1l}={ 0 ,'e' ; 'e', 0}

© 0w N O O s W N

=
[=}

advOpt .constCoeff.covMat{1l}(1,1)={
advOpt .constCoeff.covMat{2} (1,1)={"

-
e W o o=

advOpt.constCoeff.p={'e','e' ; 'e','e' };

= e
(=23

% Estimate resulting model
Spec_Out=MS_Regress_Fit (dep, indep, k, S, advOpt) ;

-
=y

For the previous code, the command
advOpt .constCoeff.nS Param{l}={'e"'};

is telling the function MS_Regress_Fit to estimate the non switch-
ing parameter of the first (and only) equation in the system. The input

advOpt.constCoeff.S Param{l}={ 0 ,'e'; 'e', 0};

fix the switching parameter of indep column 2 to 0 at state 1, in-
dep column 3 equal to 0 at state 2 and estimate the rest of it. The

19

commands:
advOpt.constCoeff.covMat{l}(1,1)={"e'};
and
advOpt.constCoeff.covMat{2}(1,1)={"e'};

defines the estimation of the covariance matrix for both states. The
last input:

advOpt.constCoeff.p={'e','e'; 'e','e'};
directs the fitting function to estimate all of the transition proba-

bilities.
Consider now the next example, where the model is:

State 1 (S; =1) (40)
yr = B1 + 0521 + Poj1was + € (41)
er ~ N(0,0.0004) (42)
State 2 (S; = 2) (43)
yr = B1+ Br2w1s — 0.8x24 + € (44)
e ~ N(0,03) (45)
with:
. 0.95 P21
P= (0.05 pao) (46)

Note that this model has the following restrictions:

f1,1=0.5
P22 =—0.8
o? = 0.0004
p1,1 = 0.95
p1,2 = 0.05

The input arguments for advOpt .constCoeff that represent this
model in MS_Regress_Fit are:

20

advOpt.distrib="Normal';
advOpt.std.method=1;

% Defining restrictions

advOpt .constCoeff.nS Param{1l}={'e'};

advOpt .constCoeff.s Param{1}={0.5, 'e' ; 'e',-0.8};
advOpt .constCoeff.covMat{1l}(1,1)={0.0004};

advOpt .constCoeff.covMat{2}(1,1)={"e'};

advOpt .constCoeff.p={0.95,'e' ; 0.05,'e'};

© 00 N O U s W N =

=R e
N o= O

As one can see, any parameter of the model can be constrained to
a particular value, including the transition matrix’]

6 Hamilton (1989)’s model

The markov switching specification of Hamilton [1989] is naturally
a benchmark in this class of models and I get an unusual amount
of emails regarding matching the results of the paper by using my
package. This section will shed some lights in this issue.

The markov switching model of Hamilton [1989] is specified as:

4
Yt — US, = Z ¢i(yt—i - ,U’Stfi) +e (47)
=1
€ ~ N(0,0?) (48)

As you can see from previous equation, the independent variables
are conditional on the states, an unobserved process. That means
that the regressors, 2?21 ®i(Yy4—i — pi—i), are also unobserved prior
to estimation. My package was not built to deal with this type of
setup but a two step estimation process is identifiable. Consider the
following notation for Hamilton’s Model:

2t =Yt — 1S, (49)

This is equivalent to:

19Be aware that when constraining the transition matrix, the probabilities have to sum
to one in each column.

21

4
2t = Z Gizt—i + €t (50)
i=1
By rearranging [{7] we get:

Yt = Ks; + 2t (51)

where z; are the residuals from this reduced model. The two steps
for the approximation which can be used to estimate Hamilton’s model
are:

1. Estimate using MS_Regress_Fit:

Yt = p1s, + € (52)
e ~ N(0,0%) (53)
S, =1,2 (54)

2. Retrieve the € vector and regress it on four lags:

1
&= Bit—i+twn (55)
i=1
Vg~ N(07 Uz%t) (56)

Note that the parameter agt from last equation will approximate
o2 of Hamilton’s model. Next, I show the estimated parameterﬂ
from Hamilton |[1989] and the parameters from my approximation:

20The GNP data is freely available at http://weber.ucsd.edu/~jhamilto/software.
htm

22

http://weber.ucsd.edu/~jhamilto/software.htm
http://weber.ucsd.edu/~jhamilto/software.htm

Parameter

Hamilton| [1989]

Two-step MS_Regress_Fit

I 1.16 1.101
1o -0.36 -0.48
Pi 0.9 0.906
P22 0.75 0.682
o? 0.866 0.988
b1 0.01 0.126
bo -0.06 0.104
b3 0.25 0.133
4 0.21 -0.104

Table 2: Comparison of parameter’s estimates from Hamilton [1989]. The
same model and data is fitted by a two step procedure with function
The estimates of the coefficients are then compared to
the ones in the paper.

MS_Regress_Fit.

From Table 2, one can see that the parameters are fairly compa-
rable for the markov regime switching part of the model. For the au-
toregressive part, they are not as comparable as for the first part but,
since most of the ¢; are not statistically significant, the approximation
performance is still good. When looking at the regime’s probabilities
(Hamilton| [1994], page 697), it is also clear that they are very similar.
The code for this estimation is available within the package’s zip file
(Script_Hamilton_Comparison.m).

7 Advises for using the package

You probably want to apply the package to you own time series. This
topic will set some advices for using the fitting function.

1. For a better convergence, always check the scale of your depen-
dent and independent variables. For instance, lets say the ex-
plained variable varies from —0.1 to 0.1, while one of the indepen-
dent varies from —1000 to 1000. If you estimate with this setup
(without any correction) the algorithm may not converge WG]FEI.

21This is usually associated with the algorithm converging to -Inf in the log likelihood
function.

23

In this case just divide the corresponding independent variable
by 1000 so that they are correctly scaled. This gentleman’s (lin-
ear) transformation will help fmincon (the optimisation function)
to find the set of maximum likelihood parameters.

2. Always try to estimate simple models. For instance, don’t try
to estimate any model with £ > 3 and number of explanatory
variables higher than 4. The model’s size (number of parame-
ters) grows exponentially as n and k grows. For instance, in a
univariate framework, if &k = 5, n = 4 (4 explanatory variables)
and you’re switching in all coefficients, then the model has 50
parameters to be estimated from data, which is definitely too
much for a gradient descent method (fmincon function). Don’t
get me wrong, the package will try to estimate it, but the solu-
tion is probably a local maximum and you can’t really trust the
output you get.

3. If using constrained estimation, make reasonable choices for the
restricted coeflicients, otherwise the function will have a hard
time in finding the maximum likelihood estimates.

If after those steps you're still having problems converging to a
solution, send me an email with a nice personal introduction and an
attached zip file containing:

e The scripts you're running (the main .m file). This should be
send with all auxiliary m-files and data. The main program
should run without any problem except the one you’re reporting.

e The error message (if there is one, could be in .txt or just in the
email scope).

8 Reporting a bug
I’'m very happy to hear about any sort of bug in the program. If you
have found one please report it to my email containing:
e Name of functions and lines of alleged bug (if applicable).
e Reason why you think it is a bug.
e Zip file with codes you're running (including data and scripts).
e MATLAB ’s error message (if applicable).
And T’ll happily look into it.

24

9 Citing the package

If you have used the package for research, make sure you cite the code,
not just for acknowledgement but also for replication of results. My
suggested citation is:

Perlin, M. (2009) ‘MS_Regress - A Package for Markov Regime Switch-
ing Models in MATLAB’ Available in
http://www.mathworks.com/matlabcentral/fileexchange/15789.

10 Final remarks

The interest of this paper was in presenting the main features of the
MATLAB package MS_Regress. As one can see, the interface of the
software is quite intuitive and it should be flexible enough to handle
personalised markov switching specifications without any change in
the original code. For any enquiries which are not clear from this
document, fell free to contact me at marceloperlin@gmail.com.

25

http://www.mathworks.com/matlabcentral/fileexchange/15789.
marceloperlin@gmail.com

References

Carol Alexander. Market Risk Analysis: Practical Financial Econo-
metrics. Wiley, 2008.

Chris Brooks. Introduction to FEconometrics. Cambridge University
Press, 2002.

James Hamilton. A new approach to the economic analysis of non-
stationary time series and the business cycle. FEconometrica, 57
(2):357-84, March 1989. URL http://ideas.repec.org/a/ecm/
emetrp/v57y1989i2p357-84.html.

James Hamilton. Time Series Analysis. Princeton University Press,
1994.

James Hamilton. Regime switching models. Palgrave Dictionary of
Economics, 2005.

J. Kim and R. Nelson. State Space Model with Regime Switching:
Classical and Gibbs-Sampling Approaches with Applications. The
MIT Press, 1999.

Whitney K Newey and Kenneth D West. A simple, positive semi-
definite, heteroskedasticity and autocorrelation consistent covari-
ance matrix. Econometrica, 55(3), May 1987. URL http://ideas.
repec.org/a/ecm/emetrp/v55y1987i3p703-08.html.

Ruey Tsay. Analysis of Financial Time Series. John Wiley and Sons,
2002.

Peijie Wang. Financial Econometrics. Taylor and Francis, 2003.

H. White. Asymptotic Theory for Econometricians. New York: Aca-
demic Press, 1984.

26

http://ideas.repec.org/a/ecm/emetrp/v57y1989i2p357-84.html
http://ideas.repec.org/a/ecm/emetrp/v57y1989i2p357-84.html
http://ideas.repec.org/a/ecm/emetrp/v55y1987i3p703-08.html
http://ideas.repec.org/a/ecm/emetrp/v55y1987i3p703-08.html

	Introduction
	Overview of the package
	Installation of the package
	Markov regime switching models
	Estimating markov switching models
	Interface to univariate modelling
	Interface to multivariate modelling
	Estimating regime switching vector autoregressive models (MS - VAR)
	The output from the estimation function
	Using Advanced Options
	Using the mex version of Hamilton's filter
	Using advOpt.constCoeff (constraining coefficients)

	Hamilton (1989)'s model
	Advises for using the package
	Reporting a bug
	Citing the package
	Final remarks

