
HW#2  Survival Analysis I 

NAME:  JIA-HAN SHIH 

Problem 1.  (Exercise 2, p.30) 

Weibull regression: Let iiiT   xα0log , where )exp()Pr( x

i ex   for 

 x . 

(1)  Derive the survival function )|( itS x  and the hazard function )|( ith x . 

Solution (1). 

By straightforward calculations, we have 
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We obtained the desired results. 

 

(2)  Show that the model can be expressed as )exp()()|( 0 ii thth xβx  . 

Solution (2). 

The hazard function obtained in (1) can be expressed as 
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where /αβ   and )/exp()/1()( 0

1/1

0    tth  is the baseline hazard function. 



(3)  Show )|Pr(),|Pr( iiiii wTtTwtT xx   for 10   and 0w . What does 

this inequality imply? 

Solution (3). 

By straightforward calculations, 
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Thus, it suffices to show the last inequality holds for all 10   and 0w . Consider the 

case of tw , we have 
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The above inequality holds since 1/ tw  and  /11 . Then we obtain the desired result 

by multiplying /1t  to both sides of the inequality. The case of wt   can be proven in the a 

similar fashion. 

This inequality implies that for any object with life time distribution following iT . Its 

survival probability at time w  is larger than its survival probability at time wt   given it 

survived at time t . This can be interpreted as the aging property. For surviving the same 

amount of time, the early survival probability is larger than the late survival probability. 

 



Problem 2. 

Obtain 63 training samples from Lung in compound.Cox package.  

(1)  Is there any tie in the data? Explain it. 

Solution (1). 

Attached below is 63 training samples from Lung in compound.Cox package 

0.231023 2.508251 2.937294 4.719472 4.846686 5.280528 7.557756 7.887789 9.438944 9.636964 

10.82508 10.89109 11.25413 12.21122 13.86139 13.86139 14.12541 14.40818 14.68647 16.20462 

16.46865 16.46865 16.89769 17.9538 18.21782 18.44884 18.64686 18.67987 19.83498 20.03300 

20.06601 20.16502 20.33003 20.56106 20.62706 20.82508 21.51815 22.21122 22.73927 26.27063 

26.33663 26.53465 26.83168 26.93069 26.99670 27.02970 27.12871 27.78878 27.79426 29.07591 

29.63696 29.66997 30.9901 31.35314 32.14521 32.64026 35.93802 36.27063 36.69967 40.85809 

41.32013 45.28053 49.27393        

For the tie at time 13.86139, both of these two events are censored. For the tie at time 

16.46865, one event is death and another is censored. There are no two or more events of 

death at the same time. Thus, the no tie assumption is hold under this data set. 

(2)  Detail computation of the log-rank test for comparing two groups ( 33ERBB  versus 

33ERBB ). 

Solution (2). 

We define 33ERBB  and 33ERBB  as 1x  and 0x , respectively. Let it  be the 

event time and i  be the censoring indicator. We also define 1in  and 0in  as the number of 

1x  and 0x  at-risk at time it , respectively. Now, one can derive the log-rank test 

statistic and its variance as 
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The log-rank test for no effect on gene 3ERBB  is based on )var(/22 SSz  . The p-value is 

computed as )Pr( 22

1df z , where 2

1df  is the chi-squared distribution with 1 degree of 

freedom. Detail computation of the log-rank test is summarized in Table 1. The log-rank test 

statistic is 3.89044 with p-value 0.0486. Thus, we reject the null hypothesis that there is no 

effect on gene 3ERBB  at level 05.0 . 

Table 1.  Detail computation of the log-rank test statistic (display only 1i ). 
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0.2310231 1 43 20 0.68254 0.31746 0.21668 

2.5082508 0 42 20 0.67742 -0.6774 0.21852 

2.9372937 1 42 19 0.68852 0.31148 0.21446 

4.7194719 1 41 19 0.68333 0.31667 0.21639 

5.2805281 1 39 19 0.67241 0.32759 0.22027 

7.8877888 1 37 19 0.66071 0.33929 0.22417 

9.4389439 1 36 19 0.65455 0.34545 0.22612 

10.891089 1 33 19 0.63462 0.36538 0.23188 

11.254125 1 32 19 0.62745 0.37255 0.23376 

14.125413 1 28 19 0.59574 0.40426 0.24083 

14.686469 1 27 18 0.60000 0.40000 0.24000 

16.468647 0 25 18 0.58140 -0.58140 0.24337 

17.953795 0 23 17 0.57500 -0.57500 0.24438 

18.646865 1 21 16 0.56757 0.43243 0.24543 

20.033003 1 18 16 0.52941 0.47059 0.24913 

20.066007 1 17 16 0.51515 0.48485 0.24977 

20.330033 1 16 15 0.51613 0.48387 0.24974 

26.930693 1 10 10 0.50000 0.50000 0.25000 

26.996700 0 9 10 0.47368 -0.47370 0.24931 

31.353135 1 3 7 0.30000 0.70000 0.21000 

   Sum 11.7356 26436.4S  67421.4)var( S  

   89044.3)var(/22  SSz    ( p-value = 0.0486 ) 



(3)  Detail computation of the two Kaplan-Meier survival curves. 

Solution (3). 

Using the same notations as in (2), one can compute the Kaplan-Meier survival curves for two 

groups as  
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Detail computation of two Kaplan-Meier survival curves are given in Tables 2 – 3. Figure 1 

plots two curves and it shows that the grouping based on gene expression 33ERBB  or 

33ERBB  can separate the two survival curves very well. 

 

 

Figure 1.  Two Kaplan-Meier survival curves based on gene expression 33ERBB  or 

33ERBB . 

 



Table 2.  Detail computation of the Kaplan-Meier survival curve on the group 33ERBB  

(display only 1i ). 
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2.508251 20 0.950000 0.950000 

16.468647 18 0.944444 0.897222 

17.953795 17 0.941176 0.844444 

26.996700 10 0.900000 0.760000 

Table 3.  Detail computation of the Kaplan-Meier survival curve on the group 33ERBB  

(display only 1i ). 
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0.231023 43 0.976744 0.976744 

2.937294 42 0.976190 0.953488 

4.719472 41 0.975610 0.930233 

5.280528 39 0.974359 0.906380 

7.887789 37 0.972973 0.881884 

9.438944 36 0.972222 0.857387 

10.89109 33 0.969697 0.831405 

11.25413 32 0.968750 0.805424 

14.12541 28 0.964286 0.776659 

14.68647 27 0.962963 0.747894 

18.64686 21 0.952381 0.712280 

20.03300 18 0.944444 0.672709 

20.06601 17 0.941176 0.633138 

20.33003 16 0.937500 0.593566 

26.93069 10 0.900000 0.534210 

31.35314 3 0.666667 0.356140 

 



(4)  Check (2) and (3) by using the survival package. 

Solution (4). 

We first check the result in (2). The result produced by the survival package is attached below. 

 

This result agrees with the result in (2). 

Next, we check the result in (3). Similarly, the result produced by the survival package is 

attached below. 

 

This result again agrees with the result in (3). 



Figure 2 plots the Kaplan-Meier survival curves by using survival package. It again 

agrees with Figure 1. 

 

 

Figure 2.  Two Kaplan-Meier survival curves based on gene expression 33ERBB  or 

33ERBB  (produced by survival package). 

 

 

(5)  In Lung, which gene most significantly separates the two groups? Show the results of the 

log-rank test and Kaplan-Meier curves for the most significant gene. 

Solution (5). 

We first simply try the top 16 genes (both univariate selection and their proposed method) 

selected in Emura and Chen (2016). After investigation, we separate the two groups based on 

the gene expression 3HCK  or 3HCK . The result of the log-rank test is given below. 



 

This choice produces a lower p-value = 0.0279 which means that it separates more 

significantly than gene 3ERBB  in the aspect of log-rank test.  

However, in the aspect of Kaplan-Meier survival curves (Figure 3), the advantage seems 

not very clear. 

 

 

Figure 3.  Two Kaplan-Meier survival curves based on gene expression 3HCK  or 

3HCK  (produced by survival package). 

 



There are total 97 genes in addition with different grouping method (e.g., 33ERBB  

versus 33ERBB  or 23ERBB  versus 23ERBB ). The number of samples in each 

group is also a very important issue to obtain reasonable results. Thus, to find the “most” 

significant gene, it seems that we require a more systematic method. 

 

 



Appendix  R codes for Problem 2 

library(compound.Cox) 

library(survival) 

data(Lung) 

 

# (1) 

sort(Lung$t.vec[Lung$train == "TRUE"]) 

# 13.8613861  

# 16.4686469 

 

# (3) 

t.vec2 = Lung$t.vec[Lung$train == "TRUE" & Lung$ERBB3 < 3] 

d.vec2 = Lung$d.vec[Lung$train == "TRUE" & Lung$ERBB3 < 3] 

data2 = data.frame(cbind(t.vec2,d.vec2)) 

order.data2 = data2[order(data2$t.vec2),] 

n2 = c(20:1) 

n2.d = n2[which(order.data2$d.vec2 == 1)] 

S2.KM = cumprod(1-1/n2.d) 

plot(c(0,order.data2$t.vec2[order.data2$d.vec2 == 1],max(t.vec2)), 

     c(1,S2.KM,S2.KM[length(S2.KM)]),type = "s",ylim = c(0,1), 

     xlim = c(0,max(t.vec2)),ylab = "Survival Probability", 

     xlab = "t (Months)",col = "blue") 

f2 = function(x) { 

   

  for (i in length(data2$t.vec2[data2$d.vec2 == 1]):1) { 

     

    if (x > order.data2$t.vec2[order.data2$d.vec2 == 1][i]) {return(S2.KM[i])} 

     

  } 

   

} 

points(data2$t.vec2[data2$d.vec2 == 0], 

       sapply(data2$t.vec2[data2$d.vec2 == 0],f2), 

       pch = 3,col = "blue") 

 

t.vec1 = Lung$t.vec[Lung$train == "TRUE" & Lung$ERBB3 >= 3] 



d.vec1 = Lung$d.vec[Lung$train == "TRUE" & Lung$ERBB3 >= 3] 

data1 = data.frame(cbind(t.vec1,d.vec1)) 

order.data1 = data1[order(data1$t.vec1),] 

n1 = c(43:1) 

n1.d = n1[which(order.data1$d.vec1 == 1)] 

S1.KM = cumprod(1-1/n1.d) 

lines(c(0,order.data1$t.vec1[order.data1$d.vec1 == 1], 

      max(t.vec1)),c(1,S1.KM,S1.KM[length(S1.KM)]),type = "s",col = "red") 

f1 = function(x) { 

   

  for (i in length(data1$t.vec1[data1$d.vec1 == 1]):1) { 

     

    if (x > order.data1$t.vec1[order.data1$d.vec1 == 1][i]) {return(S1.KM[i])} 

     

  } 

 

} 

points(data1$t.vec1[data1$d.vec1 == 0], 

       sapply(data1$t.vec1[data1$d.vec1 == 0],f1), pch = 3,col = "red") 

legend("bottomleft",c("ERBB3 < 3","ERBB3 >= 3"),col = c("blue","red"),lty = 1) 

 

# (4) 

survdiff(Surv(t.vec,d.vec) ~ ERBB3 < 3,data = Lung,subset = train) 

res = survfit(Surv(t.vec,d.vec) ~ ERBB3 < 3,data = Lung,subset = train) 

summary(res) 

plot(res,mark.time = TRUE, xaxs = "r",ylab = "Survival Probability",xlab = "t (Months)",col 

= c("red","blue")) 

legend("bottomleft",c("ERBB3 < 3","ERBB3 >= 3"),col = c("blue","red"),lty = 1) 

 

# (5) 

 

survdiff(Surv(t.vec,d.vec) ~ HCK < 3,data = Lung,subset = train) 

res = survfit(Surv(t.vec,d.vec) ~ HCK < 3,data = Lung,subset = train) 

summary(res) 

plot(res,mark.time = TRUE, xaxs = "r",ylab = "Survival Probability",xlab = "t (Months)",col 

= c("red","blue")) 

legend("bottomleft",c("HCK < 3","HCK >= 3"),col = c("blue","red"),lty = 1) 


