HW\#1 Survival Analysis I

NAME: JIA-HAN SHIH

Problem 1.

Please derive the mean and variance under the Weilbull distribution.

Solution 1.

Let random variable T follow the Weilbull distribution with survival function

$$
S_{T}(t)=\exp \left\{-(\lambda t)^{v}\right\}, \quad \lambda>0, v>0, t \geq 0 .
$$

Its probability density function is

$$
f_{T}(t)=-\frac{d}{d t} S_{T}(t)=v \lambda^{\nu} t^{\nu-1} \exp \left\{-(\lambda t)^{\nu}\right\} .
$$

By straightforward calculations, the k-th moment of T is

$$
E\left(T^{k}\right)=\int_{0}^{\infty} t^{k} v \lambda^{\nu} t^{\nu-1} \exp \left\{-(\lambda t)^{\nu}\right\} d t=\int_{0}^{\infty} v \lambda^{\nu} t^{k+\nu-1} \exp \left\{-(\lambda t)^{\nu}\right\} d t .
$$

We consider a change of variable $x=t^{\nu} \quad\left(t=x^{1 / v}\right)$ and then $d x=v t^{\nu-1} d t$. Thus, the integral becomes

$$
\begin{aligned}
\int_{0}^{\infty} \lambda^{v} x^{k / v} \exp \left\{-\lambda^{v} x\right\} d x & =\lambda^{\nu} \int_{0}^{\infty} x^{k / v+1-1} \exp \left\{-\lambda^{\nu} x\right\} d x=\lambda^{\nu} \frac{\Gamma(k / v+1)}{\left(\lambda^{v}\right)^{k / v+1}} \\
& =\frac{\Gamma(k / v+1)}{\lambda^{k}} .
\end{aligned}
$$

Then second equality follows from the gamma integral. Then, the mean and variance are

$$
\begin{gathered}
E(T)=\frac{\Gamma(1 / v+1)}{\lambda} \text { and } \\
\operatorname{var}(T)=E\left(T^{2}\right)-\{E(T)\}^{2}=\frac{\Gamma(2 / v+1)-\{\Gamma(1 / v+1)\}^{2}}{\lambda^{2}},
\end{gathered}
$$

respectively. On the other hand, the median of the Weibull distribution is obtained by solving

$$
\exp \left\{-\left(\lambda t_{0.5}\right)^{\nu}\right\}=1 / 2 \Rightarrow t_{0.5}=\frac{(\log 2)^{1 / v}}{\lambda}
$$

Problem 2.

Suppose the median survival times of male and female are 70 and 80 , respectively. Please derive the mean survival times of male and female (including parameters λ and β) under the Weibull model by specifying a reasonable v.

Solution 2. Under the Weilbull model, human survival time follows

$$
S_{T}(t \mid x)=\exp \left\{-(\lambda t)^{v} e^{\beta x}\right\}, \quad \lambda>0, v>0, \beta \in \mathrm{R}, t \geq 0
$$

where the covariate $x=1$ indicates male and $x=0$ indicates female. The formulas in Problem 1 can be applied with λ replaced by $\lambda e^{\beta x / \nu}$. Here, we set the shape parameter $v=2$ for convenience (see NOTE).

If the median survival times for male and female are 70 and 80 , respectively. We have

$$
80=\frac{(\log 2)^{1 / 2}}{\lambda} \quad \text { and } \quad 70=\frac{(\log 2)^{1 / 2}}{\lambda e^{\beta / 2}} .
$$

Solving these two equations, we obtain

$$
\lambda=\frac{(\log 2)^{1 / 2}}{80}=0.0104 \quad \text { and } \quad \beta=\log (\log 2)-2 \log (70 \lambda)=0.2671
$$

Then, the mean survival times for male and female are

$$
\frac{\Gamma(1 / 2+1)}{\lambda e^{\beta / 2}}=74.51 \quad \text { and } \quad \frac{\Gamma(1 / 2+1)}{\lambda}=85.16,
$$

respectively. These results seem more reasonable than the exponential model.

NOTE: The hazard function of the Weibull distribution is

$$
h_{T}(t)=\frac{f_{T}(t)}{S_{T}(t)}=\nu \lambda^{\nu} t^{\nu-1} .
$$

Thus, if $v>1$, the hazard function is increasing in t. This may represent that the probability of a person dies in old age is higher than he (or she) dies in young age.

