HW\#6 Survival analysis II

Name: Shih Jia-Han

Summary of section2.1 and section2.2 in

Emura T \& Chen YH (2014), Gene selection for survival data under dependent censoring, a copula-based approach, Statistical Methods in Medical Research, DOI: 10.1177/0962280214533378

Section2.1 is talk about the univariate selection for censored survival data. In univariate selection, a Cox regression based on univariate models

$$
h\left(t \mid x_{i j}\right)=h_{0 j}(t) e^{\beta_{j} x_{j}}, \quad j=1, \cdots, p
$$

and there is an assumption
Assumption I: The survival time T and censoring time U are conditionally independent given a gene $x_{i j}$ for all $j=1, \cdots, p$.

Even when the previous model is incorrect, the univariate estimate $\hat{\beta}_{j}$ still possesses a valid meaning under Assumption I. This result proved that Assumption I is more important than the previous model in applying univariate selection.

In section2.2, there is a more reasonable assumption is the conditional independent in which T and U are conditionally independent given all components of \mathbf{x}. And Figure 1 shows an example of how Assumption I fails to hold. Then the result of analysis shows that the conditional independence yields dependency between T and U given only x_{j}, and thus Assumption I does not hold.

So in general, T and U may be dependent for any given x_{j} with an unknown dependence structure.

Detail derivation of Eq. (2)

The Laplace transform of a random vector \mathbf{x} is defined as $\varphi(\mathbf{u})=E\left\{\exp \left(-\mathbf{u}^{\prime} \mathbf{x}\right)\right\}$. Hence,

$$
\begin{gathered}
\varphi_{\boldsymbol{\beta}_{(-j)}, \boldsymbol{\gamma}_{(-j)}}(u, v)=E\left\{\exp \left(-u e^{\boldsymbol{\beta}_{(-j)} \mathbf{x}_{(-j)}}\right) \exp \left(-v e^{\boldsymbol{\gamma}_{(-j)}^{\prime} \mathbf{x}_{(-j)}}\right) \mid x_{j}\right\}, \\
\varphi_{\boldsymbol{\beta}_{(-j)}}(u)=E\left\{\exp \left(-u e^{\boldsymbol{\beta}_{(-j)}^{\prime} \mathbf{x}_{(-j)}}\right) \mid x_{j}\right\}=\varphi_{\boldsymbol{\beta}_{(-j)} \boldsymbol{\gamma}_{(-j)}}(u, 0), \\
\varphi_{\gamma_{(-j)}}(u)=E\left\{\exp \left(-u e^{\boldsymbol{\gamma}_{(-j)} \mathbf{x}_{(-j)}}\right) \mid x_{j}\right\}=\varphi_{\boldsymbol{\beta}_{(-j)} \boldsymbol{\gamma}_{(-j)}}(0, u)
\end{gathered}
$$

are the Laplace transform for some random vectors.
Then we have

$$
\begin{aligned}
& P\left(T>t, U>u \mid x_{j}\right) \\
= & E\left\{P(T>t, U>u \mid \mathbf{x}) \mid x_{j}\right\} \\
= & E\left\{P(T>t \mid \mathbf{x}) P(U>u \mid \mathbf{x}) \mid x_{j}\right\} \\
= & E\left[\exp \left\{-\Lambda_{T}(t) e^{\beta^{\prime} \mathbf{x}}\right\} \exp \left\{-\Lambda_{U}(u) e^{\gamma^{\prime} \mathbf{x}}\right\} \mid x_{j}\right] \\
= & E\left[\exp \left\{-\Lambda_{T}(t) e^{\beta_{j} x_{j}} e^{\boldsymbol{\beta}_{(-j)}^{\prime} \mathbf{x}_{(-j)}}\right\} \exp \left\{-\Lambda_{U}(u) e^{\gamma_{j} x_{j}} e^{\gamma_{(-j)}^{\prime} \mathbf{x}_{(-j)}}\right\} \mid x_{j}\right] \\
= & \varphi_{\beta_{(-j)}, \gamma_{(-j)}}\left\{\Lambda_{T}(t) e^{\beta_{j} x_{j}}, \Lambda_{U}(u) e^{\gamma_{j} x_{j}}\right\},
\end{aligned}
$$

and then

$$
\begin{aligned}
P\left(T>t \mid x_{j}\right) & =E\left\{P(T>t \mid \mathbf{x}) \mid x_{j}\right\} \\
& =E\left[\exp \left\{-\Lambda_{T}(t) e^{\beta^{\prime} \mathbf{x}}\right\} \mid x_{j}\right] \\
& =E\left[\exp \left\{-\Lambda_{T}(t) e^{\beta_{j} x_{j}} e^{\boldsymbol{\beta}_{(-j)} \mathbf{x}_{(-j)}}\right\} \mid x_{j}\right] \\
& =\varphi_{\boldsymbol{\beta}_{(-j)}^{\prime}}\left\{\Lambda_{T}(t) e^{\beta_{j} x_{j}}\right\} .
\end{aligned}
$$

Therefore,

$$
\Lambda_{T}(t) e^{\beta_{j} x_{j}}=\varphi_{\mathbf{\beta}_{(-j)}}^{-1}\left\{P\left(T>t \mid x_{j}\right)\right\}
$$

and similarly,

$$
\Lambda_{U}(u) e^{\gamma_{j} x_{j}}=\varphi_{\gamma_{(-j)}}^{-1}\left\{P\left(U>u \mid x_{j}\right)\right\} .
$$

Hence we can obtain

$$
P\left(T>t, U>u \mid x_{j}\right)=\varphi_{\beta_{(-j)}, v_{(-j)}}\left[\varphi_{\boldsymbol{\beta}_{(-j)}}^{-1}\left\{P\left(T>t \mid x_{j}\right)\right\}, \varphi_{\gamma_{(-j)}}^{-1}\left\{P\left(U>u \mid x_{j}\right)\right\}\right] .
$$

Detail derivation of Eq. (3)

For the special case of $\boldsymbol{\beta}=\boldsymbol{\gamma}$,

$$
\begin{aligned}
& P\left(T>t, U>u \mid x_{j}\right) \\
= & E\left\{P(T>t, U>u \mid \mathbf{x}) \mid x_{j}\right\} \\
= & E\left\{P(T>t \mid \mathbf{x}) P(U>u \mid \mathbf{x}) \mid x_{j}\right\} \\
= & E\left[\exp \left\{-\Lambda_{T}(t) e^{\beta^{\prime} \mathbf{x}}\right\} \exp \left\{-\Lambda_{U}(u) e^{\beta^{\prime} \mathbf{x}}\right\} \mid x_{j}\right] \\
= & E\left(\exp \left[-\left\{\Lambda_{T}(t)+\Lambda_{U}(u)\right\} e^{\beta^{\prime} \mathbf{x}}\right] \mid x_{j}\right) \\
= & E\left(\exp \left[-\left\{\Lambda_{T}(t)+\Lambda_{U}(u)\right\} e^{\beta_{j} x_{j}} e^{\left.\mathbf{\beta}_{(-j)} \mathbf{x}_{(-j)}\right)}\right] \mid x_{j}\right) \\
= & \varphi_{\boldsymbol{\beta}_{(-j)}}\left[\left\{\Lambda_{T}(t)+\Lambda_{U}(u)\right\} e^{\beta_{j} x_{j}}\right] .
\end{aligned}
$$

From the previous result we have

$$
\Lambda_{T}(t) e^{\beta_{j} x_{j}}=\varphi_{\boldsymbol{\beta}_{(-j)}}^{-1}\left\{P\left(T>t \mid x_{j}\right)\right\}
$$

and

$$
\Lambda_{U}(u) e^{\beta_{j} x_{j}}=\varphi_{\boldsymbol{\beta}_{(-j)}}^{-1}\left\{P\left(T>t \mid x_{j}\right)\right\}
$$

Hence we can obtain the Archimedean copula representation

$$
P\left(T>t, U>u \mid x_{j}\right)=\varphi_{\beta_{(-j)}}\left[\varphi_{\beta_{(-j)}}^{-1}\left\{P\left(T>t \mid x_{j}\right)\right\}+\varphi_{\beta_{(-j)}}^{-1}\left\{P\left(U>u \mid x_{j}\right)\right\}\right] .
$$

