HW\#5 Survival analysis II

Name: Shih Jia-Han

The distribution of the clayton family is

$$
\bar{G}\left(t_{1}, t_{2}\right)=\left\{\overline{G_{1}}\left(t_{1}\right)^{-v}+\overline{G_{2}}\left(t_{2}\right)^{-v}-1\right\}^{\frac{-1}{v}},
$$

where $G_{1}\left(t_{1}\right) \sim U(0,1)$ and $G_{2}\left(t_{2}\right) \sim U(0,1)$.
Since $G_{1}\left(t_{1}\right) \sim U(0,1)$ and $G_{2}\left(t_{2}\right) \sim U(0,1)$, we have

$$
\bar{G}_{1}\left(t_{1}\right)=1-G_{1}\left(t_{1}\right) \sim 1-U(0,1)=U(0,1)
$$

similarly,

$$
\overline{G_{2}}\left(t_{2}\right) \sim U(0,1)
$$

Here we can use Monte Carlo simulation by the method of Inverse transform to generate the data of clayton family. First, we have

$$
T_{1}=\overline{G_{1}}\left(t_{1}\right) \sim U(0,1)
$$

so we can define

$$
T_{1} \equiv U_{1} \sim U(0,1)
$$

Then since T_{1} and T_{2} are dependent, we need to generate T_{2} by $\overline{G_{2}}\left(t_{2} \mid T_{1}=t_{1}\right)$. By the method of Inverse transform we can obtain

$$
\overline{G_{2}}\left(T_{2} \mid T_{1}=t_{1}\right) \sim U(0,1)
$$

therefore,

$$
T_{2} \equiv\left\{\left(U_{2} t_{1}^{v+1}\right)^{\frac{-v}{v+1}}+1-t_{1}^{-v}\right\}^{\frac{-1}{v}},
$$

where $U_{2} \sim U(0,1)$.
Hence we can generate data T_{1} and T_{2} in this way.

Now, we generate 1000 data and plot the scatter plot with different v to observe the dependence between T_{1} and T_{2}.

From the above figure, we can observe the following result:
if $-1<v<0, T_{1}$ and T_{2} seem to have negative dependence. And the dependence is stronger as $v \rightarrow-1$.
if v is very close to $0, T_{1}$ and T_{2} seem to be nearly independent.
(since v cannot be 0 , so T_{1} and T_{2} cannot be independent.)
if $v>0, T_{1}$ and T_{2} seem to have positive dependence. And the dependence is stronger as v goes larger.

The result is the same as we inferred during class. So it is correct.

R code

```
cf_func=function(n,nu) {
    set.seed(10)
    u1=runif(n)
    u2=runif(n)
    tl=u1
    t2=((u2* 1^^(nu+1))^(-nu/(nu+1))+1-t1^(-nu))^(-1/nu)
    data=cbind(t1,t2)
}
plot(cf_func(1000,-0.99),xlab=expression(t[1]),ylab=expression(t[2]),
    main=expression(paste(nu," = ",-0.99)))
plot(cf_func(1000,-0.5),xlab=expression(t[1]),ylab=expression(t[2]),
    main=expression(paste(nu," = ",-0.5)))
plot(cf_func(1000,-0.01),xlab=expression(t[1]),ylab=expression(t[2]),
    main=expression(paste(nu," = ',-0.01)))
plot(cf_func(1000,0.01),xlab=expression(t[1]),ylab=expression(t[2]),
    main=expression(paste(nu," = ",0.01)))
plot(cf_func(1000,1),xlab=expression(t[1]),ylab=expression(t[2]),
    main=expression(paste(nu," = ",1)))
plot(cf_func(1000,10),xlab=expression(t[1]),ylab=expression(t[2]),
    main=expression(paste(nu," = ",10)))
plot(cf_func(1000,100),xlab=expression(t[1]),ylab=expression(t[2]),
    main=expression(paste(nu," = ",100)))
```

