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NOTE1: Please write down the derivation of your answer very clearly for all 

questions. The score will be reduced if you only write the answer or if the 

derivation is not clear. The score will be given even when your answer has a 

minor mistake but the derivations are clearly stated. 
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Q1. [+10] Let )()(~,,1   xfxpXX
iid

n , where f is a known symmetric pdf s.t. 
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1)( fXVar  . Consider testing 0:0 H  under the local alternatives 

nhn /  for a real number h . 
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distribution of the t-statistics nnn Xnt /  under the local alternatives. 

Answer: 

Under the local alternatives, by the CLT, we have 

)1,0(
)(

N
Xn d

f

nn 





,   as n . 

By the Taylor expansion, 

hn
p

n  ,   as n , 

and the fact that sample variance will converge in probability to population 

variance 

1
p

f

n 



,   as n . 

Then by Slusky’s theorem, 
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Hence we have derived the asymptotic distribution of t-statistics nt  under the 

local alternatives.  
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(ii) [+4] Derive the asymptotic distribution of the sign statistics 2

nSn  under the 

local alternatives, where 
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Answer: 

Under the local alternatives,  
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where 2/1)0( F  due to that f  is a known symmetric probability density 

function. Then consider the Taylor expansion of )( nF   around 0, 

)0()0()( fFF nn   . 

Thus, we obtain 
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where variance is derived as 
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Hence we have derived the asymptotic distribution of sign test statistics 2

nSn  

under the local alternatives.  
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(iii) [+2] Derive the Pitman ARE tse ,  

Answer: 

The Pitman ARE is 
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(iv) [+2] Let f  be the pdf of )1,0(N .  

Compute the Pitman ARE and interpret the value of ARE. 

Answer: 

If )1,0(~ Nf , we have 
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Then the Pitman ARE is 
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tse . 

The test based on nt  is 2/  more efficient than the test based on 2

nS . 
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Q2 [+12] Kolmogorov-Smirnov test 

To answer the questions below, please define symbols and notations by yourself. 

(i) [+1] Define the Kolmogorov-Smirnov statistic ( nT ) for testing 

0100 :    vs.: FFHFFH  .  

Answer: 

Suppose FXXX
dii

n

...

21 ~,,,  , the Kolmogorov-Smirnov (K-S) statistics for 

testing 0100 :    vs.: FFHFFH   is defined as 

|)()(ˆ|sup 0
R

tFtFnT n
t

n 


,   where 



n

i

in tXI
n

tF
1

)(
1

)(ˆ . 

(ii) [+2] Explain how to compute the critical value ( 1,ns ) for level   test when 

0F  is continuous. 

Answer: 

When 0F  is continuous, the K-S statistics is distribution free. Therefore, consider 

the simple uniform distribution ( )1,0(~,,,
...

21 UUUU
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n ), the K-S statistics 

follows 
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The algorithm of computing the critical value 1,ns  such that    )Pr( 1,nn sT  

is given as follows: 

Algorithm  (compute the critical value) 

Step 1.  Generate )1,0(~,,,
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21 UUUU
dii

n

  . 

Step 2.  Order the samples 
  )()2()1( ,,, nUUU . 

Step 3.  Compute the K-S statistics 
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Step 4.  Repeat Step 1 – 3 k  times with large k  ( k,,2,1   ). 

Step 5.  Order the K-S statistics )()2()1( ,,, k

nnn TTT  . 

Step 6.  Approximate 1,ns  by 1  percentile of )()2()1( ,,, k

nnn TTT  . 
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(iii) [+3] Show that the test is pointwise consistent in power for 0FF  .  

Answer: 

Since the statement 0FF   is the same as that there exists 0t  such that 

)()( 000 tFtF  . It is also equivalent to 0|)()(|sup 0
R
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Hence we have shown that the K-S test is pointwise consistent in power for 

0FF  . 

(iv) [+3] Based on data )10,8,6,4,2(X , perform a level 05.0  test 

0100 :    vs.: FFHFFH   for 10)U(0,0 F  using the asymptotic critical value 

4.105.01 s . 

Answer: 

We order the data as 10,8,6,4,2 )5()4()3()2()1(  XXXXX  and the CDF of 

uniform distribution )100,(U  is 
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Then the K-S test statistics is derived as follows: 
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Since  1,5 4.12.0 nsT , we do not reject the null hypothesis  : 00 FFH  . 
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(v) [+3] Based on the above data, draw the 95% confidence band for F . Check 

whether the null distribution 10)U(0,0 F  is inside the confidence band or not. 

Answer: 

Yes, Figure 1 reveals that 10/)(0 uuF   is inside the 95% confidence band (CB) 

of the K-S statistics based on the data in (iv). 

 

Figure 1.  95% CB of the K-S statistics based on the data in (iv). 
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Q3[+12] Pearson’s 2  Test 

Let ),,;(Multi~),,( 1111  kk ppnYY  . Consider testing the hypothesis 

 1,,1,:     vs.1,,1,: 10  kjpHkjpH jjjj   , 

where j ’s are known. 

(1)[+2] Define Pearson’s 2 -test with level  . 

Answer: 

Pearson’s chi-square statistics is defined as 
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Then a level   Pearson’s chi-square test is  
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(2) [+4] Show that the 2 -test is pointwise consistent in power. 

Answer: 

Since the statement jjp  , for some j  is equivalent to that there exists   

such that  p . Therefore, under the alternative hypothesis ( 1H ), the power is 

.
)/(

Pr

)(
Pr

)(
Pr)(Pr

2

1,

2

2

1,

2
2

1,

1

2

2

1,

1

111



















































 





















kH

kHk

k

j j

jj

HknH

nYn

n

nY

n

nY
Q









 

In addition, we have 
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Hence we have proven that Pearson’s chi-square test is pointwise consistent in 

power. 
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(3) [+6] Derive the asymptotic distribution of the 2 -statistics  

Answer: 

Under the null hypothesis 1,,1,:0  kjpH jj  , we define 
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By multivariate CLT, we obtain 
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It suffices to prove the Claim then we have shown that under the null hypothesis, 

the asymptotic distribution of Pearson’s chi-square statistics follows the chi-

square distribution with degree of freedom k . 

Proof of Claim: 

We have 
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First we consider  
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Finally, by combining the results, we obtain 
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Then we have proven the Claim hence derived the asymptotic distribution of 

Pearson’s chi-square statistics under the null hypothesis.  
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Q4 [+16] Neyman’s Smooth Test 

Let 
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polynomials. Draw the graph of )(xp  including the locations of )0(p , )1(p , 

)(min )1,0( xpx   and )(max )1,0( xpx  . 

(1)[+4] 11   and 02    

Answer: 

If 11   and 02  , we have 
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Therefore, the density is 
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Since )( xp  is increasing in x , we obtain 
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The density is plotted in Figure 2. It shows that the minimum and maximum are 

attained at 0x  and 1x , respectively. 
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(2) [+4] 01   and 12   [no need to calculate the numerical value of )(C ]  

Answer: 

If 01   and 12  , the density is 

})166(5{ 2
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Then we can compute 
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The density is plotted in Figure 3. It shows that the minimum and maximum are 

attained at 2/1x  and 1,0x , respectively. 
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Figure 2.  The density )( xp  under 11   and 02   with minimum and 

maximum attained at 0x  and 1x , respectively. 

 

Figure 3.  The density )( xp  under 01   and 12   with minimum and 

maximum attained at 2/1x  and 1,0x , respectively. 
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(3) [+4] Derive the Neyman’s smooth test statistics.  

Answer: 

Suppose FXXX
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21 ~,,,  , to test )1,0(:0 UFH   vs. )1,0(:1 UFH  . It 

is equivalent to test that 0:0 jH   for all j  vs. 0:1 jH   for some j . 
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The last equality is due to the orthogonality of )(,),(),( 10 xTxTxT k . Under 
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In addition, the orthogonality of )(,),(),( 10 xTxTxT k  also gives the 
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For instance, the Neyman’s smooth test with 1k  and 2k  are 

2

1

2

1

1

1

2

1

2

11
12

)12(3
1

)(
1






























 



 

n

i

i

n

i

i

j

n

i

ij

x
n

n

x
n

xT
n

 

and 

,
6

111
180

2

11
12

)166(5
1

)12(3
1

)(
1

2

11

2

2

1

2

1

2

2

1

2

1

2

1
















































 



 

n

i

i

n

i

i

n

i

i

n

i

ii

n

i

i

j

n

i

ij

x
n

x
n

nx
n

n

xx
n

x
n

xT
n

 

respectively. 
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(4) [+4] How the Neyman’s test statistics is related to the moments of )1,0(U . 

Answer: 

The expressions of the Neyman’s smooth test statistics for 1k  and 2k  are 
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respectively. We reject the null hypothesis if 2
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If the data truly follow the uniform distribution )1,0(U , the Neyman’s smooth 

test statistics will converge to zero, that is, 0T
p

nn ZZ . Then we cannot reject the 

null hypothesis. 

 

 


