Midterm exam, Statistical Inference 11: (2016 Spring): [+40points]
Name: Shih Jia-Han

® Proofs must be understandable to the instructor.

® Avoid typos and undefined notations in your proofs.

Q1 [+5] Prove or disprove (with a counter example) the following statements.

1) [+3] The unique Bayes estimator is minimax.
Answer:

Assume that
X ~Bin(n, p), p~Beta(a,b)= p|x~Beta(x+a,n—x+Db).
Therefore, the Bayes estimator of p can be written as

X—a

o, =E X)=——,
» = E(PIX) n+a+b

which is an unique Bayes estimator for arbitrary a, b. Then consider the risk

function of o,

R(p,m:E{[ x+a p)} Y E[{(a+x)-(a+bsn)p¥]

n+a+b :(n+a+bf
:%E([(x—npﬂ{a(l—p)—bp}]z)
(n+a+b)
=————[np(1-p)+{a(l-p)-bp¥ 1.
(n+a+b)
Solve for
%fﬂ:o:n—znp—z(a+b){a—(a+b)p}=0
={2(a+b)*-2n}p+n-2a(a+b)=0.
That is
{(a+b)2=n - a=+n/2
2a(a+b)=n " |p=+/n/2
Thus, let
s _x—\/ﬁ/2
M onsdn



Therefore, for all arbitrary a, b, &, isan unique Bayes estimator but

SUpR( p, &, ) >SUpR( p, 8, ).
p p
Hence unique Bayes estimator is not minimax. [ ]

2) [+2] The unique Bayes estimator is admissible.

Answer:

Let o, be an unique Bayes estimator of #. Assume ¢, is not admissible, that
is there exist ¢’ such that R(8,5")<R(8,9,).Since o, isa Bayes estimator,
we have

R(6,0")<R(6,6,)<R(6,0),forall ¢.
Therefore, 6’ is also a Bayes estimator which contradict to the unigqueness.

Hence the unique Bayes estimator is admissible. []



d
Q2 [+3]. Let X,.,X,~ with E[X,]=¢, and Var[X,]=c® . Derive the

n

asymptotic distribution of n{h(X)—h(&)} when h'(&)=0 and h"(&)=0. (with
proof)

Answer:

By a Taylor expansion, we have
h(X)=h(&)+( f—f)h’(§)+%( X=£)h"(&)+0,(IX-&F)
= n{h( X)—h(é)}=%h”(§)n( X =&)Y +n0,(|X-¢F).

By the Central Limit Theorem,

\/ﬁ(i—g)iN(o, 02):>ﬂ()?—§)i>N(0,1)
O

:%(Y—g)ziljle:n(X—g)zlazgjle, as n— o,
By the Weak Law of Large Number,
)?—§—p>0,as n—co.
By the Slusky’s Theorem,
n(X—&) =n(X—E)2(X—£)=0,(1)(X—£)—0,as n—oo.

Combining the results above, again, by the Slusky’s Theorem, we have

n{h(i)—h(ﬁ)}i@

oyt ,as n—oo. [



Q3 [+12]. Consider an exponential family

X=Xy X)) ~ pn(X)=e><P{ZS:77iTi(X)—A(n)}h(X),

i=1
where p, is the density with respect to some measure, and let n~z(n), where

7 is the prior density with respect to the Lebesgue measure. Let m(x) be the

marginal density of X.

(1) [+10]Express E{immx} by m(x), h(x),and their derivatives.

EUN A
Answer:
Since
:{2 8T(J>()Jpn( )_ap(x) 8Iog)r(1j(x) ou(X).
Therefore,

] i m(x)

{S aT(X)} ( aT(X)Jpn(X)”(U),]
ot

—m(lx)j@n a( )} (x)2(n)dn

- m(lx)japgi_x’nw)dn— s e o
m(x)a = [n0mman - s FTE [, n( o
_ 1 am(x) dlogh(x)
m(x) ox; oX;
_0logm(x) dlogh(x)

OX. OX.

] ]



(2) [+2] Let T,(x)=x 1i=1...,p. Express the Bayes estimator of 7 by

m(x), h(x), and their derivatives.

Answer:

Since T.(x)=x, i=1...,p, by the formula above, we have

izl g oX, OX. oX.

i ] ]
dlogm(x) dlogh(x)
OX. ox.

J J

E{Z .5T(X)|x}:6|09m(x)_a|ogh(x)

= E[n;|x]=

Hence the Bayes estimator of 7, is

dlogm(x) dlogh(x)

for i=1...,p.



Q4 [+10]. Let X ~Bin(n,p) and g(p)=p be the estimand.

1) [+3]Show that &(X)= X/n isaminimax estimator under some loss function

(also calculate the risk under the loss function).
Answer:

Let the loss function

(p-9)°
L(S, p)="P=2)
(0P =)

Suppose the prior distribution of p follows U(0,1). The Bayes estimator is

i 1 X n-x h X+1— Nex—
| p-p'(1-p)dp [p*(1-p)dp
0

53 P=P) s
! p(11_ o) p*(1-p)™"dp {p“(l— p)™dp
I'(x+1)I'(n—x)
B '(n+1) _X
r(x)C(n-x) n’
I'(n)

And the risk function is

R ,fj: 1 E( _EJZZ;E - ZZMZEI
(pn p(1-p) \"n) “p(1-p)n’ (x=rp) p(1-p)n® n

The risk function does not depend on p. Therefore, 6(X)=X/n is a Bayes

estimator with constant risk, that is, &(X)= X/n isa minimax estimator.



2) [+3]Find a minimax estimator under the square loss L(a, p)= p—al.

Answer:

Let
p~Beta(a,b)= p|x~Beta( x+a,n—x+b).
Therefore, the Bayes estimator of p is

X—a
n+a+b

o, =E(p[x)=

Then consider the risk function of o,

R(p,(SA):E{( x+a pj} 1 E[{(a+x)-(a+b+n)p¥]

n+a+b :(n+a+bf

:%E([(x—npﬂ{a(l—p)—bp}]z)
(n+a+b)
—— 1 [mp(1-p)+{a(1-p)-bp¥1
(n+a+b)
Solve for
%ﬁ)zo:>n—2np—2(a+b){a—(a+b)p}=0
={2(a+b)*-2n}p+n-2a(a+b)=0.
That is
{(a+b)2:n _ a=+n/2
2a(a+b)=n " |p=+/n/2
Thus, let
s _x—\/ﬁ/2
T on+dn

Since ¢,, isa Bayes estimator with constant risk then it is a minimax estimator.



3) [+4]ls the following estimator minimax under the square

L(a, p)=l p—af*?
5(X) = X In with probability n/(n+1)
~ | 1/2  with probability 1/(n+1)

[Hint: calculate the risk]

Answer:

2 2
R( p,5)=E(5—p)2=E£5—p] L+E(1—|0j =
n n+l 2 n+1

2 1 2 1
_ECx=npy? PTPT, pop? PTPY, 1
n(n+1) n+1 n+1 n+1 4(n+1)

Consider the minimax estimator o,, in the previous problem, that is

s _x=+/n/2
M onadn

The risk function of ¢,, is
! Jn n
R( P, 6y )m{np(l— P)+{7(1— p)—7 p} ]

1 2
_m{4np(l—p)+n(l—2p) }

1
= m{ Anp —4np*+4np*+n—4np}

n 1
S 4(n+n)? A(L+n )

Since

1 1
= >
4n+4" 4n+4+8Jn

R(p.&) =R(p, 6y ).

Hence & is nota minimax estimator.

loss



iid
Q5 [+10]. Let X,..X,~ f(x|9), 8dQcR, where the usual regularity

conditions are assumed. Let én be an initial estimator of 4.

1. [+3] Define and explain what is the one-step estimator

Answer:

Assume that ¢'(8, )=0, that is, 4, is the MLE of . Then the one-step

estimator is

én ~ én - ! (% ) :
g”( en )
This can be derived by a Taylor expansion (this can also be explained by slope),
A ~ N ~ ~  set n ~ "o
0(6,)~0(8,)+(6,-8)"(8,)=0= 6 zen—%.

If 6

n

is close to én then approximate én by the one-step estimator.

2. [+7]Prove the asymptotic efficiency of the one-step estimator. In the proof,

please explain what conditions are used.

Answer:

Suppose initial estimator §n is +/n -consistent, that is,
Jn(6,-6,)=0,(1),
where 6, is the true parameter. Then the one-step estimator is

azé_wé).
(6,)

NN

By a Taylor expansion, we have
oo ' 2y " 1 Y m *
(6,)=0(6)+(0,-6 )1 (90)+§(9n—90)2€ (6,),

where 6 isbetween @, and 6,.



By the definition of one-step estimator, we have

L 0(4,)
In(8,-6,)="n(6,-6,)- {
f”(é’)

@)@ (G0 @)

=n(6,-6,)- T
L6,

r(8,) ,, o
:f o Vn (- 9){ ueo)_;wn—eo)uen)}

_;[,(9) ey 2 (8a)

Since we have,

a J—
E(glogf(xlao))—o

and

o o ?
var(ﬁlogf(x|00)j:E[%logf(x|90)j =1(6,).
By the Central Limit Theorem,
n d
L r(a,)=n 1> 10g £(x16,)-0 | 5N(0,1(6,)) a8 n—sco.
Jn )

By the Weak Law of Large Number,

L y=_t39 Lis _
—r(9) ==Y log (x| 6 )—>— E(a Iogf(x|9)] 1(6,),

i=1

as n—oo. By the Slusky’s Theorem,

1,
7€(90) d

\/E—~—)N(O, |_1(00)),as n—oo.
L)

By assumption (6, is ~/n -consistent),

~ ~ p
Jn(6,-6,)=0,(1),and 6,-6,—0,as n—>co.

10



Since
1 "N 1 " 1 Y " )
—1(6,)=—0"(6)+—(6,-6,)"(6, ),
n n n

where 6" is between §n and 6. Therefore, we have

L‘%’)—pﬂ,as n— 0.
'(6,)

By the regularity condition provided that ¢”( ) is bounded, we have
L(2”)—p>constant, as Nn— oo,
'(6,)

Then combining the results above, by the Slusky’s Theorem, we have

(8. -6,)>N(0, |_1(t90))+Op(1)x(l—l—%.0-0j: N(0, 17(6,)),

as n—oo. Hence the one-step estimator is efficient. [ ]
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