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Midterm exam, Statistical Inference II: (2016 Spring): [+40points] 

Name:    Shih Jia-Han    

 Proofs must be understandable to the instructor. 

 Avoid typos and undefined notations in your proofs. 

 

Q1 [+5] Prove or disprove (with a counter example) the following statements. 

1) [+3] The unique Bayes estimator is minimax. 

Answer: 

Assume that  

).,(Beta~|),(Beta~),,(Bin~ bxnaxxpbappnX   

Therefore, the Bayes estimator of p  can be written as 
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which is an unique Bayes estimator for arbitrary a , b . Then consider the risk 

function of    
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Therefore, for all arbitrary a , b ,   is an unique Bayes estimator but 

),(sup),(sup M
pp

pRpR   . 

Hence unique Bayes estimator is not minimax. □ 

2) [+2] The unique Bayes estimator is admissible. 

Answer: 

Let   be an unique Bayes estimator of  . Assume   is not admissible, that 

is there exist    such that ),(),(   RR . Since   is a Bayes estimator, 

we have 

),(),(),(  RRR 
 , for all  . 

Therefore,    is also a Bayes estimator which contradict to the uniqueness. 

Hence the unique Bayes estimator is admissible. □ 
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Q2 [+3]. Let 2

1 ][   and  ,][  with  ~,..,   ii

iid

n XVarXEXX . Derive the 

asymptotic distribution of })()({ hXhn   when 0)(  h  and 0)(  h . (with 

proof) 

Answer: 

By a Taylor expansion, we have  
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By the Weak Law of Large Number, 

0
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X  , as n . 

By the Slusky’s Theorem, 
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Combining the results above, again, by the Slusky’s Theorem, we have 
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Q3 [+12]. Consider an exponential family 
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where ηp  is the density with respect to some measure, and let )(~ ηη  , where 

  is the prior density with respect to the Lebesgue measure. Let )( xm  be the 

marginal density of X .  
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(2) [+2] Let pixT ii ,,1)( x . Express the Bayes estimator of i  by 

)( xm , )( xh , and their derivatives. 

Answer: 

Since ii xT )( x , pi ,,1 , by the formula above, we have 
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Hence the Bayes estimator of i  is  
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Q4 [+10]. Let ),(~ pnBinX  and ppg )(  be the estimand.  

1) [+3]Show that nXX /)(   is a minimax estimator under some loss function  

(also calculate the risk under the loss function). 

Answer: 

Let the loss function 
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The risk function does not depend on p . Therefore, nXX /)(   is a Bayes 

estimator with constant risk, that is, nXX /)(   is a minimax estimator.  
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2) [+3]Find a minimax estimator under the square loss 2||),( appaL  . 

Answer: 

Let  
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Therefore, the Bayes estimator of p  is 
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Then consider the risk function of    

].})1({)1([
)(

1

)]})1({)([(
)(

1

]})()({[
)(

1
),(

2

2

2

2

2

2

2

bppapnp
ban

bppanpxE
ban

pnbaxaE
ban

p
ban

ax
EpR










































 

Solve for  

.0)(2}2)(2{

0})(){(220
),(

2 




 

baanpnba

pbaabanpn
p

pR 

 

That is  




















2/

2/

)(2

)( 2

nb

na

nbaa

nba
 

Thus, let  

nn

nx
M






2/
 . 

Since M  is a Bayes estimator with constant risk then it is a minimax estimator. 
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3) [+4]Is the following estimator minimax under the square loss 

2||),( appaL  ? 
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Q5 [+10]. Let )|(  ~,..,1 xfXX
iid

n , R , where the usual regularity 

conditions are assumed. Let n
~

 be an initial estimator of  . 

1. [+3] Define and explain what is the one-step estimator 

Answer: 

Assume that 0)ˆ( 
n , that is, n̂  is the MLE of  . Then the one-step 

estimator is  
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If n
~

 is close to n̂  then approximate n̂  by the one-step estimator. 

2. [+7]Prove the asymptotic efficiency of the one-step estimator. In the proof, 

please explain what conditions are used. 

Answer: 

Suppose initial estimator n
~

 is n -consistent, that is, 
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By the definition of one-step estimator, we have  
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By assumption ( n
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 is n -consistent), 
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Since  
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Then combining the results above, by the Slusky’s Theorem, we have 
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as n . Hence the one-step estimator is efficient. □ 


