Homework\#5 Statistical Inference II

Name: Jia-Han Shih

Problem 1.9 [p.391]

In Example 1.7, let $\delta^{*}(X)=X / n$ with probability $1-\varepsilon$ and $\delta^{*}(X)=1 / 2$ with probability ε. Determine the risk function of δ^{*} and show that for $\varepsilon=1 /(n+1)$, its risk is constant and less than $\sup R(p, X / n)$.

Solution:

The risk function of δ^{*} with $\varepsilon=1 /(n+1)$ is

$$
\begin{aligned}
& R\left(p, \delta^{*}\right)=E\left(\delta^{*}-p\right)^{2}=E\left(\frac{X}{n}-p\right)^{2} \frac{n}{n+1}+E\left(\frac{1}{2}-p\right)^{2} \frac{1}{n+1} \\
& =\frac{E(X-n p)^{2}}{n^{2}} \cdot \frac{n}{n+1}+\frac{p^{2}-p+\frac{1}{4}}{n+1}=\frac{p-p^{2}+p^{2}-p+\frac{1}{4}}{n+1}=\frac{1}{4(n+1)} .
\end{aligned}
$$

The risk function of X / n is

$$
R\left(p, \frac{X}{n}\right)=E\left(\frac{X}{n}-p\right)^{2}=\frac{E(X-n p)^{2}}{n^{2}}=\frac{p(1-p)}{n} .
$$

Since

$$
\frac{d}{d p} R\left(p, \frac{X}{n}\right)=0 \Rightarrow 1-2 p=0 \Rightarrow p=\frac{1}{2}, \text { and } \frac{d^{2}}{d p^{2}} R\left(p, \frac{X}{n}\right)=-\frac{2}{n}<0 .
$$

Therefore, we have

$$
\sup R\left(p, \frac{X}{n}\right)=\left.\frac{p(1-p)}{n}\right|_{p=\frac{1}{2}}=\frac{1}{4 n} .
$$

Thus, we have shown the desired result

$$
R\left(p, \delta^{*}\right)=\frac{1}{4(n+1)}<\frac{1}{4 n}=\sup R\left(p, \frac{X}{n}\right)
$$

Problem 1.10 [p.391]

Find the bias of minimax estimator (1.11) and discuss its direction.

Solution:

The minimax estimator (1.11) is

$$
\delta=\frac{X+\sqrt{n} / 2}{n+\sqrt{n}} .
$$

The bias of δ is

$$
E\left(\frac{X+\sqrt{n} / 2}{n+\sqrt{n}}-p\right)=\frac{1}{n+\sqrt{n}} E\left(X+\frac{\sqrt{n}}{2}-n p-\sqrt{n} p\right)=\frac{\sqrt{n} / 2-\sqrt{n} p}{n+\sqrt{n}}=\frac{1 / 2-p}{1+\sqrt{n}} .
$$

Then we have the following results,

$$
\frac{d}{d p} \operatorname{Bias}(\delta)=\frac{-1}{1+\sqrt{n}}<0 \text {, and } \operatorname{Bias}(\delta)=\frac{1 / 2-p}{1+\sqrt{n}} \rightarrow 0 \text {, as } n \rightarrow \infty \text {. }
$$

Furthermore, we have the following conclusions:

1. If $p>1 / 2$, then $\operatorname{Bias}(\delta)<0$.
2. If $p<1 / 2$, then $\operatorname{Bias}(\delta)>0$.

Problem 1.11 [p.391]

In Example 1.7,
(a) determine c_{n} and show that $c_{n} \rightarrow 0$, as $n \rightarrow \infty$,

Solution:

To solve c_{n}, we have

$$
\begin{aligned}
R\left(p, \frac{X}{n}\right)=R(p, \delta) & \Rightarrow \frac{p(1-p)}{n}=\frac{1}{4(1+\sqrt{n})^{2}} \Rightarrow n=\left(p-p^{2}\right)(2+2 \sqrt{n})^{2} \\
& \Rightarrow(2+2 \sqrt{n})^{2} p^{2}-(2+2 \sqrt{n})^{2} p+n=0 \\
& \Rightarrow p^{2}-p+\frac{n}{(2+2 \sqrt{n})^{2}}=0 \\
& \Rightarrow p=\frac{1 \pm \sqrt{1-\frac{4 n}{(2+2 \sqrt{n})^{2}}}}{2} \Rightarrow p=\frac{1 \pm \sqrt{1-\frac{n}{n+2 \sqrt{n}+1}}}{2} \\
& \Rightarrow p=\frac{1 \pm \frac{\sqrt{1+2 \sqrt{n}}}{1+\sqrt{n}}}{2} .
\end{aligned}
$$

Therefore, we obtain

$$
c_{n}=\frac{\sqrt{1+2 \sqrt{n}}}{1+\sqrt{n}} .
$$

Taking limit for n goes to infinite,

$$
\lim _{n \rightarrow \infty} c_{n}=\lim _{n \rightarrow \infty} \sqrt{1-\frac{n}{n+2 \sqrt{n}+1}}=\sqrt{1-1}=0 .
$$

Then we have shown that

$$
c_{n} \rightarrow 0, \text { as } n \rightarrow \infty .
$$

(b) show that $R_{n}(1 / 2) / r_{n} \rightarrow 1$, as $n \rightarrow \infty$.

Solution:

In Example 1.7, we have

$$
R_{n}\left(\frac{1}{2}\right)=\frac{1}{4 n}, \text { and } r_{n}=\frac{1}{4(1+\sqrt{n})^{2}} .
$$

Therefore, we have

$$
\frac{R_{n}\left(\frac{1}{2}\right)}{r_{n}}=\frac{4(1+\sqrt{n})^{2}}{4 n}=\frac{n+2 \sqrt{n}+1}{n}
$$

Taking limit for n goes to infinite,

$$
\lim _{n \rightarrow \infty} \frac{R_{n}\left(\frac{1}{2}\right)}{r_{n}}=\lim _{n \rightarrow \infty} \frac{n+2 \sqrt{n}+1}{n}=1 .
$$

Then we have proven that

$$
R_{n}(1 / 2) / r_{n} \rightarrow 1 \text {, as } n \rightarrow \infty .
$$

Problem 1.12 [p.391]

In Example 1.7, graph the risk function of X / n and the minimax estimator (1.11) for $n=1,4,9,16$, and indicate the relative position of the two graphs for large values of n.

Solution:

As in problem 1.11, the risk function of X / n and the minimax estimator δ are

$$
\frac{p(1-p)}{n}, \text { and } \frac{1}{4(1+\sqrt{n})^{2}},
$$

respectively. Then we can plot the risk function for $n=1,4,9,16$ by R (Figure 1).

Fig. 1 The risk functions of X / n and δ for $n=1,4,9,16$.

For the case of large value of n, I set $n=10000$ (Figure 2). Figure 1 and 2 reveal that the interval of the risk of X / n greater than the risk of δ shrink as n goes larger. When n goes to infinite, the interval will shrink to the point $p=1 / 2$.

Fig. 2 The risk function of X / n and δ for $n=10000$.

Problem 1.13 [p.391]

(a) Find two points $0<p_{0}<p_{1}<1$ such that the estimator (1.11) for $n=1$ is Bayes with respect to a distribution Λ for which $\operatorname{Pr}\left(p=p_{0}\right)+\operatorname{Pr}\left(p=p_{1}\right)=1$.

Solution:

With $n=1$, the estimator in (1.11) is

$$
\delta=\left\{\begin{array}{ll}
3 / 4 & \text { if } X=1 \\
1 / 4 & \text { if } X=0
\end{array} .\right.
$$

Also, we have $X \mid p \sim \operatorname{Ber}(p)$, that is

$$
\operatorname{Pr}(X=1 \mid p)=p \text { and } \operatorname{Pr}(X=0 \mid p)=1-p
$$

Now, consider a discrete prior

$$
\operatorname{Pr}\left(p=p_{0}\right)=a \text { and } \operatorname{Pr}\left(p=p_{1}\right)=1-a \text { with } 0<p_{0}<p_{1}<1,0<a<1 .
$$

To obtain the posterior distribution, we need calculate the following conditional probabilities

$$
\begin{aligned}
\operatorname{Pr}\left(p=p_{0} \mid X=1\right) & =\frac{\operatorname{Pr}\left(p=p_{0}, X=1\right)}{\operatorname{Pr}(X=1)} \\
& =\frac{\operatorname{Pr}\left(X=1 \mid p=p_{0}\right) \operatorname{Pr}\left(p=p_{0}\right)}{\operatorname{Pr}\left(X=1 \mid p=p_{0}\right) \operatorname{Pr}\left(p=p_{0}\right)+\operatorname{Pr}\left(X=1 \mid p=p_{1}\right) \operatorname{Pr}\left(p=p_{1}\right)} \\
& =\frac{a p_{0}}{a p_{0}+(1-a) p_{1}} . \\
\operatorname{Pr}\left(p=p_{1} \mid X=1\right) & =\frac{\operatorname{Pr}\left(p=p_{1}, X=1\right)}{\operatorname{Pr}(X=1)} \\
& =\frac{\operatorname{Pr}\left(X=1 \mid p=p_{1}\right) \operatorname{Pr}\left(p=p_{1}\right)}{\operatorname{Pr}\left(X=1 \mid p=p_{0}\right) \operatorname{Pr}\left(p=p_{0}\right)+\operatorname{Pr}\left(X=1 \mid p=p_{1}\right) \operatorname{Pr}\left(p=p_{1}\right)} \\
& =\frac{(1-a) p_{1}}{a p_{0}+(1-a) p_{1}} .
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Pr}\left(p=p_{0} \mid X=0\right) & =\frac{\operatorname{Pr}\left(p=p_{0}, X=0\right)}{\operatorname{Pr}(X=0)} \\
& =\frac{\operatorname{Pr}\left(X=0 \mid p=p_{0}\right) \operatorname{Pr}\left(p=p_{0}\right)}{\operatorname{Pr}\left(X=0 \mid p=p_{0}\right) \operatorname{Pr}\left(p=p_{0}\right)+\operatorname{Pr}\left(X=0 \mid p=p_{1}\right) \operatorname{Pr}\left(p=p_{1}\right)} \\
& =\frac{a\left(1-p_{0}\right)}{a\left(1-p_{0}\right)+(1-a)\left(1-p_{1}\right)} . \\
\operatorname{Pr}\left(p=p_{1} \mid X=0\right) & =\frac{\operatorname{Pr}\left(p=p_{1}, X=0\right)}{\operatorname{Pr}(X=0)} \\
& =\frac{\operatorname{Pr}\left(X=0 \mid p=p_{1}\right) \operatorname{Pr}\left(p=p_{1}\right)}{\operatorname{Pr}\left(X=0 \mid p=p_{0}\right) \operatorname{Pr}\left(p=p_{0}\right)+\operatorname{Pr}\left(X=0 \mid p=p_{1}\right) \operatorname{Pr}\left(p=p_{1}\right)} \\
& =\frac{(1-a)\left(1-p_{1}\right)}{a\left(1-p_{0}\right)+(1-a)\left(1-p_{1}\right)} .
\end{aligned}
$$

Then let the posterior mean equal to δ, we have

$$
\begin{gathered}
E(p \mid X=1)=\frac{3}{4} \Rightarrow \frac{a p_{0}^{2}+(1-a) p_{1}^{2}}{a p_{0}+(1-a) p_{1}}=\frac{3}{4}, \\
E(p \mid X=1)=\frac{3}{4} \Rightarrow \frac{a\left(1-p_{0}\right) p_{0}+(1-a)\left(1-p_{1}\right) p_{1}}{a\left(1-p_{0}\right)+(1-a)\left(1-p_{1}\right)}=\frac{1}{4} .
\end{gathered}
$$

Solve these two equation, we have

$$
\left\{\begin{array}{c}
a p_{0}^{2}+(1-a) p_{1}^{2}=3 / 4 \\
a p_{0}+(1-a) p_{1}=1 / 2
\end{array} .\right.
$$

For all discrete prior that I defined previously satisfy the above two equation then its

Bayes estimator is equal to δ. For example, let $a=1 / 2$, we have

$$
\left\{\begin{array}{c}
p_{0}^{2}+p_{1}^{2}=3 / 2 \\
p_{0}+p_{1}=1
\end{array}\right.
$$

The solution is

$$
p_{0}=\frac{2-\sqrt{2}}{4} \text { and } p_{1}=\frac{2+\sqrt{2}}{4}
$$

Hence we have found two points $0<p_{0}<p_{1}<1$ such that the estimator (1.11) for $n=1$ is Bayes with respect to a distribution Λ for which
$\operatorname{Pr}\left(p=p_{0}\right)+\operatorname{Pr}\left(p=p_{1}\right)=1$.
(b) For $n=1$, show that (1.11) is a minimax estimator of p even if it is known that $p_{0} \leq p \leq p_{1}$.

Solution:

The risk function of δ is

$$
\begin{aligned}
E\left(\frac{2 X+1}{4}-p\right)^{2} & =E\left(\frac{4 X^{2}+4 X+1}{16}+p^{2}-\left(X+\frac{1}{2}\right) p\right)^{2} \\
& =\frac{E\left(X^{2}\right)}{4}+\frac{E(X)}{4}+\frac{1}{4}+p^{2}-E(X) p-\frac{p}{2} \\
& =\frac{p}{4}+\frac{p}{4}+\frac{1}{4}+p^{2}-p^{2}-\frac{p}{2} \\
& =\frac{1}{4} .
\end{aligned}
$$

The estimator δ has constant risk. By (a), we have already shown that it is a Bayes estimator. Therefore, δ is a minimax estimator.
(c) In (b), find the values p_{0} and p_{1} for which $p_{1}-p_{0}$ is as small as possible.

Solution:

We need to find $\quad p_{0}$ and p_{1} minimize $p_{1}-p_{0}$ and satisfy equations in (a), that is

$$
\left\{\begin{array}{c}
a p_{0}^{2}+(1-a) p_{1}^{2}=3 / 4 \\
a p_{0}+(1-a) p_{1}=1 / 2
\end{array}\right.
$$

By the second equation, we have

$$
p_{0}=\frac{1-2(1-a) p_{1}}{2 a} .
$$

Taking it into the first equation, we have

$$
\begin{aligned}
& \frac{1+4(1-a)^{2} p_{1}^{2}-4(1-a) p_{1}}{4 a}+(1-a) p_{1}^{2}=\frac{3}{4} \\
& \Rightarrow 1+4(1-a)^{2} p_{1}^{2}-4(1-a) p_{1}+4 a(1-a) p_{1}^{2}=3 a \\
& \Rightarrow 4(1-a) p_{1}^{2}-4(1-a) p_{1}+1-3 a=0 \\
& \Rightarrow p_{1}^{2}-p_{1}+\frac{1-3 a}{4-4 a}=0 .
\end{aligned}
$$

Therefore, the solution of p_{1} is

$$
p_{1}=\frac{1 \pm \sqrt{1-4 \cdot 1 \cdot \frac{1-3 a}{4-4 a}}}{2}=\frac{1 \pm \sqrt{\frac{2 a}{1-a}}}{2} .
$$

Since $p_{0} \leq p_{1}$, we obtain

$$
p_{1}=\frac{1+\sqrt{\frac{2 a}{1-a}}}{2} \text { and } p_{0}=\frac{1-\sqrt{\frac{2 a}{1-a}}}{2}
$$

Thus,

$$
p_{1}-p_{0}=2 \sqrt{\frac{2 a}{1-a}} \rightarrow 0, \text { as } a \rightarrow 0
$$

Then $p_{1} \rightarrow 1 / 2^{+}$and $p_{0} \rightarrow 1 / 2^{-}$.

Problem 6.12

Show that the efficiency (6.27) tends to 0 as $|a-\theta| \rightarrow \infty$.

Solution:

Equation 6.27 is

$$
e_{2,1}=\frac{\phi^{2}(a-\theta)}{\Phi(a-\theta)\{1-\Phi(a-\theta)\}} .
$$

Define $x=a-\theta$, and letting $x \rightarrow \infty$, we have

$$
\begin{aligned}
\lim _{(a-\theta) \rightarrow \infty} e_{2,1} & =\lim _{x \rightarrow \infty} e_{2,1}=\lim _{x \rightarrow \infty} \frac{\phi^{2}(x)}{\Phi(x)\{1-\Phi(x)\}} \\
& =\lim _{x \rightarrow \infty} \frac{\phi(x)}{\Phi(x)} \times \lim _{x \rightarrow \infty} \frac{\phi(x)}{1-\Phi(x)} .
\end{aligned}
$$

Consider the limits separately, the first term is

$$
\lim _{x \rightarrow \infty} \frac{\phi(x)}{\Phi(x)}=\lim _{x \rightarrow \infty} \phi(x)=\lim _{x \rightarrow \infty} e^{-\frac{x^{2}}{2}}=0 .
$$

By L'Hospital rule, the second term is

$$
\lim _{x \rightarrow \infty} \frac{\phi(x)}{1-\Phi(x)}=\lim _{x \rightarrow \infty} \frac{-x \phi(x)}{-\phi(x)}=\lim _{x \rightarrow \infty} x=\infty .
$$

The speed of the first term goes to zero (exponential) is faster than the speed of second term goes to infinite. Therefore, we have

$$
\lim _{(a-\theta) \rightarrow \infty} e_{2,1}=\lim _{x \rightarrow \infty} e_{2,1}=0 .
$$

Similarly, we can show that $\lim _{(a-\theta) \rightarrow-\infty} e_{2,1}=\lim _{x \rightarrow-\infty} e_{2,1}=0$.

Thus, we have proven that

$$
\lim _{|a-\theta| \rightarrow \infty} e_{2,1}=0
$$

