
Homework#5 Statistical Inference II 

Name: Jia-Han Shih 

Problem 1.9 [p.391] 

In Example 1.7, let nXX /)(*   with probability 1  and 2/1)(* X  with 

probability  . Determine the risk function of *  and show that for )1/(1  n , its 

risk is constant and less than )/,(sup nXpR . 

Solution: 

The risk function of *  with )1/(1  n  is 
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The risk function of nX /  is  
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Therefore, we have  
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Thus, we have shown the desired result 
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Problem 1.10 [p.391] 

Find the bias of minimax estimator (1.11) and discuss its direction. 

Solution: 

The minimax estimator (1.11) is 
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The bias of   is  
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Then we have the following results, 
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Furthermore, we have the following conclusions: 

1.  If 2/1p , then 0)( Bias . 

2.  If 2/1p , then 0)( Bias . 

 

  



Problem 1.11 [p.391] 

In Example 1.7, 

(a)  determine nc  and show that 0nc , as n , 

Solution: 

To solve nc , we have 
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Therefore, we obtain  
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Taking limit for n  goes to infinite, 
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Then we have shown that  

0nc , as n . 

  



(b)  show that 1/)2/1( nn rR , as n . 

Solution: 

In Example 1.7, we have  
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Therefore, we have 
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Taking limit for n  goes to infinite, 
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Then we have proven that 

1/)2/1( nn rR , as n . 

 

  



Problem 1.12 [p.391] 

In Example 1.7, graph the risk function of nX /  and the minimax estimator (1.11) for 

16,9,4,1n , and indicate the relative position of the two graphs for large values of n . 

Solution: 

As in problem 1.11, the risk function of nX /  and the minimax estimator   are 

n

pp )1( 
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n
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respectively. Then we can plot the risk function for 16,9,4,1n  by R (Figure 1). 

 

 

Fig. 1  The risk functions of nX /  and   for 16,9,4,1n . 

  



For the case of large value of n , I set 10000n  (Figure 2). Figure 1 and 2 reveal that 

the interval of the risk of nX /  greater than the risk of   shrink as n  goes larger. 

When n  goes to infinite, the interval will shrink to the point 2/1p . 

 

Fig. 2  The risk function of nX /  and   for 10000n . 

 

  



Problem 1.13 [p.391] 

(a)  Find two points 10 10  pp  such that the estimator (1.11) for 1n  is Bayes 

with respect to a distribution   for which 1)Pr()Pr( 10  pppp . 

Solution: 

With 1n , the estimator in (1.11) is 
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Also, we have )(Ber~| ppX , that is 

ppX  )|1Pr(  and ppX  1)|0Pr( . 

Now, consider a discrete prior  

app  )Pr( 0  and app  1)Pr( 1  with 10 10  pp , 10  a . 

To obtain the posterior distribution, we need calculate the following conditional 

probabilities 
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Then let the posterior mean equal to  , we have 
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Solve these two equation, we have 
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For all discrete prior that I defined previously satisfy the above two equation then its 

Bayes estimator is equal to  . For example, let 2/1a , we have 

.
1

2/3

10

2

1

2

0









pp

pp
 

The solution is  
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Hence we have found two points 10 10  pp  such that the estimator (1.11) for 

1n  is Bayes with respect to a distribution   for which 



1)Pr()Pr( 10  pppp . 

(b)  For 1n , show that (1.11) is a minimax estimator of p even if it is known that 

10 ppp  . 

Solution: 

The risk function of   is 
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The estimator   has constant risk. By (a), we have already shown that it is a Bayes 

estimator. Therefore,   is a minimax estimator. 

 

 

  



(c)  In (b), find the values 0p  and 1p  for which 01 pp   is as small as possible. 

Solution: 

We need to find  0p  and 1p  minimize 01 pp   and satisfy equations in (a), that is 
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By the second equation, we have  
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Taking it into the first equation, we have 
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Therefore, the solution of 1p  is 
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Since 10 pp  , we obtain 
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Then  2/11p  and  2/10p . 

  



Problem 6.12 

Show that the efficiency (6.27) tends to 0 as  || a . 

Solution: 

Equation 6.27 is 
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Define  ax , and letting x , we have 
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Consider the limits separately, the first term is 
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By L’Hospital rule, the second term is 
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The speed of the first term goes to zero (exponential) is faster than the speed of second 

term goes to infinite. Therefore, we have 
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Thus, we have proven that 
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