Homework\#4 Statistical Inference II

Name: Jia-Han Shih

Problem 3.1 [p.501]

Let X have the binomial distribution $\operatorname{Bin}(n, p), 0 \leq p \leq 1$. Determine the MLE of p.
(a) By using usual calculus method determining the maximum of a function.

Solution:

The likelihood function is

$$
L(p \mid x)=\binom{n}{x} p^{x} q^{n-x}=\frac{n!}{x!(n-x)!} p^{x}(1-p)^{n-x} .
$$

Therefore, the log-likelihood function is

$$
\log L(p \mid x)=\log \left\{\frac{n!}{x!(n-x)!}\right\}+x \log p+(n-x) \log (1-p)
$$

Then find the critical point by solving the first derivative of log-likelihood function equals to zero

$$
\begin{aligned}
& \frac{d}{d p} \log L(p \mid x)=0 \\
& \Rightarrow \frac{d}{d p}\left[\log \left\{\frac{n!}{x!(n-x)!}\right\}+x \log p+(n-x) \log (1-p)\right]=0 \\
& \Rightarrow \frac{x}{p}-\frac{n-x}{1-p}=0 \Rightarrow \frac{x-x p-n p+x p}{p(1-p)}=0 \Rightarrow x-n p=0 \\
& \Rightarrow \hat{p}=\frac{x}{n}
\end{aligned}
$$

We need to check the critical point is maximum or not by the second derivative of log-likelihood function

$$
\frac{d^{2}}{d p^{2}} \log L(p \mid x)=\frac{d}{d p}\left(\frac{x}{p}-\frac{n-x}{1-p}\right)=-\frac{x}{p^{2}}-\frac{n-x}{(1-p)^{2}}<0 .
$$

Therefore, $\hat{p}=\frac{x}{n}$ maximize the log-likelihood function. In other words, $\hat{p}=\frac{x}{n}$ is the MLE of p.
(b) By showing that $p^{x} q^{n-x} \leq\left(\frac{x}{n}\right)^{x}\left(\frac{n-x}{n}\right)^{n-x}$.
[Hint: (b) Apply the fact that the geometric mean is equal to or less than arithmetic means to n numbers of which x are equal to $n p / x$ and $n-x$ equal to $n q /(n-x)]$

Solution:

According to the hint, by the inequality of geometric mean and arithmetic mean, we have

$$
\begin{aligned}
& \left\{\left(\frac{p}{x}\right)^{x}\left(\frac{q}{n-x}\right)^{n-x}\right\}^{\frac{1}{n}} \leq \frac{\overbrace{\frac{p}{x}+\cdots+\frac{p}{x}}^{x}+\overbrace{\frac{q}{n-x}+\cdots+\frac{q}{n-x}}^{n-x}}{n} \\
& \Rightarrow\left\{\left(\frac{p}{x}\right)^{x}\left(\frac{q}{n-x}\right)^{n-x}\right\}^{\frac{1}{n}} \leq \frac{1}{n} \\
& \Rightarrow\left(\frac{p}{x}\right)^{x}\left(\frac{q}{n-x}\right)^{n-x} \leq\left(\frac{1}{n}\right)^{n} \\
& \Rightarrow p^{x} q^{n-x} \leq\left(\frac{x}{n}\right)^{x}\left(\frac{n-x}{n}\right)^{n-x} .
\end{aligned}
$$

Therefore, the likelihood function follows the inequality

$$
L(p \mid x)=\binom{n}{x} p^{x} q^{n-x} \leq\binom{ n}{x}\left(\frac{x}{n}\right)^{x}\left(\frac{n-x}{n}\right)^{n-x}=L(\hat{p} \mid x),
$$

where $\hat{p}=\frac{x}{n}$. Therefore, $\hat{p}=\frac{x}{n}$ maximize the log-likelihood function. In other words, $\hat{p}=\frac{x}{n}$ is the MLE of p.

Problem 3.2 [p.501]

In the preceding problem (Problem 3.1), show that the MLE does not exist when p is restricted to $0<p<1$ and when $x=0$ or $x=n$.

Solution:

For the case $x=0$, the likelihood function is

$$
L(p \mid x=0)=\binom{n}{0} p^{0} q^{n-0}=(1-p)^{n} .
$$

The log-likelihood function is

$$
\log L(p \mid x=0)=n \log (1-p) .
$$

The first derivative of the log-likelihood function is

$$
\frac{d}{d p} \log L(p \mid x=0)=-\frac{n}{1-p}<0
$$

This implies $L(p \mid x=0)$ is a decreasing function of p. Because there does not exist a minimum value in the open interval $(0,1)$. Therefore, the MLE does not exist for the case p is restricted to $0<p<1$ and when $x=0$.

Similarly, for the case $x=n$, the likelihood function is

$$
L(p \mid x=n)=\binom{n}{n} p^{n} q^{n-n}=p^{n}
$$

The log-likelihood function is

$$
\log L(p \mid x=n)=n \log p .
$$

The first derivative of the log-likelihood function is

$$
\frac{d}{d p} \log L(p \mid x=n)=\frac{n}{p}>0 .
$$

This implies $L(p \mid x=n)$ is an increasing function of p. Because there does not exist a maximum value in the open interval $(0,1)$. Therefore, the MLE does not exist for the case p is restricted to $0<p<1$ and when $x=n$.

Problem 3.3 [p.501]

Let X_{1}, \cdots, X_{n} be iid according to $N\left(\xi, \sigma^{2}\right)$. Determine the MLE of
(a) ξ when σ is known.

Solution:

The likelihood function is

$$
\begin{aligned}
& L\left(\xi \mid x_{1}, \cdots, x_{n}\right)=\prod_{i=1}^{n} f\left(x_{i} \mid \xi\right)=\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{\frac{-1}{2 \sigma^{2}}\left(x_{i}-\xi\right)^{2}\right\} \\
& =(2 \pi)^{-\frac{n}{2}} \sigma^{-n} \prod_{i=1}^{n} \exp \left\{\frac{-1}{2 \sigma^{2}}\left(x_{i}-\xi\right)^{2}\right\} .
\end{aligned}
$$

The log-likelihood function is

$$
\log L\left(\xi \mid x_{1}, \cdots, x_{n}\right)=-\frac{n}{2} \log (2 \pi)-n \log \sigma-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\xi\right)^{2} .
$$

Then find the critical point by solving the first derivative of log-likelihood function equals to zero (with respect to ξ)

$$
\begin{aligned}
& \frac{d}{d \xi} \log L\left(\xi \mid x_{1}, \cdots, x_{n}\right)=0 \\
& \Rightarrow \frac{d}{d \xi}\left\{-\frac{n}{2} \log (2 \pi)-n \log \sigma-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\xi\right)^{2}\right\}=0 \\
& \Rightarrow \frac{1}{\sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\xi\right)=0 \Rightarrow \sum_{i=1}^{n} x_{i}-n \xi=0 \\
& \Rightarrow \hat{\xi}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
\end{aligned}
$$

We need to check the critical point is maximum or not by the second derivative of log-likelihood function

$$
\frac{d^{2}}{d \xi^{2}} \log L\left(\xi \mid x_{1}, \cdots, x_{n}\right)=\frac{d}{d \xi}\left\{\frac{1}{\sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\xi\right)\right\}=-\frac{n}{\sigma^{2}}<0 .
$$

Therefore, $\hat{\xi}=\frac{1}{n} \sum_{i=1}^{n} X_{i}=\bar{X}$ maximize the log-likelihood function. Thus, $\hat{\xi}=\bar{X}$ is the MLE of ξ when σ is known.
(b) σ when ξ is known.

Solution:

Similarly, find the critical point by solving the first derivative of log-likelihood function equals to zero (with respect to σ)

$$
\begin{aligned}
& \frac{d}{d \sigma} \log L\left(\sigma \mid x_{1}, \cdots, x_{n}\right)=0 \\
& \Rightarrow \frac{d}{d \sigma}\left\{-\frac{n}{2} \log (2 \pi)-n \log \sigma-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\xi\right)^{2}\right\}=0 \\
& \Rightarrow-\frac{n}{\sigma}+\frac{1}{\sigma^{3}} \sum_{i=1}^{n}\left(x_{i}-\xi\right)^{2}=0 \Rightarrow \frac{1}{\sigma^{3}} \sum_{i=1}^{n}\left(x_{i}-\xi\right)^{2}=\frac{n}{\sigma} \\
& \Rightarrow \hat{\sigma}=\left\{\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\xi\right)^{2}\right\}^{\frac{1}{2}} .
\end{aligned}
$$

We need to check the critical point is maximum or not by the second derivative of log-likelihood function

$$
\begin{aligned}
& \left.\frac{d^{2}}{d \sigma^{2}} \log L\left(\sigma \mid x_{1}, \cdots, x_{n}\right)\right|_{\sigma=\hat{\sigma}}=\left.\frac{d}{d \sigma}\left\{-\frac{n}{\sigma}+\frac{1}{\sigma^{3}} \sum_{i=1}^{n}\left(x_{i}-\xi\right)^{2}\right\}\right|_{\sigma=\hat{\sigma}} \\
& =\frac{n}{\sigma^{2}}-\left.\frac{3}{\sigma^{4}} \sum_{i=1}^{n}\left(x_{i}-\xi\right)^{2}\right|_{\sigma=\hat{\sigma}}=\frac{n}{\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\xi\right)^{2}}-\frac{3}{\left\{\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\xi\right)^{2}\right\}^{2}} \sum_{i=1}^{n}\left(x_{i}-\xi\right)^{2} \\
& =\frac{n^{2}}{\sum_{i=1}^{n}\left(x_{i}-\xi\right)^{2}}-\frac{3 n^{2}}{\sum_{i=1}^{n}\left(x_{i}-\xi\right)^{2}}=\frac{-2 n^{2}}{\sum_{i=1}^{n}\left(x_{i}-\xi\right)^{2}}<0 .
\end{aligned}
$$

Therefore, $\hat{\sigma}=\left\{\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\xi\right)^{2}\right\}^{\frac{1}{2}} \quad$ maximize the log-likelihood function. Thus, $\hat{\sigma}=\left\{\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\xi\right)^{2}\right\}^{\frac{1}{2}}$ is the MLE of σ when ξ is known.
(c) (ξ, σ) when both unknown.

Solution:

By (a) and (b), we have to solve

$$
\left\{\begin{array} { l }
{ \frac { d } { d \xi } \operatorname { l o g } L (\xi , \sigma | x _ { 1 } , \cdots , x _ { n }) = 0 . } \\
{ \frac { d } { d \sigma } \operatorname { l o g } L (\xi , \sigma | x _ { 1 } , \cdots , x _ { n }) = 0 . }
\end{array} \Rightarrow \left\{\begin{array}{l}
\frac{1}{\sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\xi\right)=0 . \\
-\frac{n}{\sigma}+\frac{1}{\sigma^{3}} \sum_{i=1}^{n}\left(x_{i}-\xi\right)^{2}=0 .
\end{array}\right.\right.
$$

As in (a), we have

$$
\hat{\xi}=\bar{X} .
$$

Then we replace ξ by $\hat{\xi}$ to solve σ. Again, similar with (b), we have

$$
\hat{\sigma}=\left\{\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}\right\}^{\frac{1}{2}} .
$$

We need to check the critical point is maximum or not by the second derivative of log-likelihood function

$$
\begin{aligned}
& \left.\frac{d^{2}}{d \xi^{2}} \log L\left(\xi, \sigma \mid x_{1}, \cdots, x_{n}\right)\right|_{(\xi, \sigma)=(\xi, \hat{\sigma})} \\
& =\left.\frac{d}{d \xi}\left\{\frac{1}{\sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\xi\right)\right\}\right|_{(\xi, \sigma)=(\xi, \hat{\sigma})}=-\frac{n}{\hat{\sigma}^{2}}<0 .
\end{aligned}
$$

$$
\begin{aligned}
& \left.\frac{d^{2}}{d \sigma^{2}} \log L\left(\xi, \sigma \mid x_{1}, \cdots, x_{n}\right)\right|_{(\xi, \sigma)=(\hat{\xi}, \hat{\sigma})}=\left.\frac{d}{d \sigma}\left\{-\frac{n}{\sigma}+\frac{1}{\sigma^{3}} \sum_{i=1}^{n}\left(x_{i}-\xi\right)^{2}\right\}\right|_{(\xi, \sigma)=(\xi, \hat{\sigma})} \\
& =\frac{n}{\sigma^{2}}-\left.\frac{3}{\sigma^{4}} \sum_{i=1}^{n}\left(x_{i}-\xi\right)^{2}\right|_{(\xi, \sigma)=(\xi, \hat{\sigma})}=\frac{n}{\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}-\frac{3}{\left\{\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}\right\}^{2}} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \\
& =\frac{n^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}-\frac{3 n^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=\frac{-2 n^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}<0 .
\end{aligned}
$$

Therefore, $(\hat{\xi}, \hat{\sigma})=\left(\bar{X}, \frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}\right)$ is the MLE of (ξ, σ).

Problem 3.4 [p. 501]

Suppose X_{1}, \cdots, X_{n} are iid as $N(\xi, 1)$ with $\xi>0$. Show that the MLE is \bar{X} when $\bar{X}>0$ and does not exist when $\bar{X} \leq 0$.

Solution:

The likelihood function is

$$
\begin{aligned}
& L\left(\xi \mid x_{1}, \cdots, x_{n}\right)=\prod_{i=1}^{n} f\left(x_{i} \mid \xi\right)=\prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi}} \exp \left\{\frac{-1}{2}\left(x_{i}-\xi\right)^{2}\right\} \\
& =(2 \pi)^{-\frac{n}{2}} \prod_{i=1}^{n} \exp \left\{\frac{-1}{2}\left(x_{i}-\xi\right)^{2}\right\} .
\end{aligned}
$$

The log-likelihood function is

$$
\log L\left(\xi \mid x_{1}, \cdots, x_{n}\right)=-\frac{n}{2} \log (2 \pi)-\frac{1}{2} \sum_{i=1}^{n}\left(x_{i}-\xi\right)^{2} .
$$

Then find the critical point by solving the first derivative of log-likelihood function equals to zero

$$
\begin{aligned}
& \frac{d}{d \xi} \log L\left(\xi \mid x_{1}, \cdots, x_{n}\right)=0 \\
& \Rightarrow \frac{d}{d \xi}\left\{-\frac{n}{2} \log (2 \pi)-\frac{1}{2} \sum_{i=1}^{n}\left(x_{i}-\xi\right)^{2}\right\}=0 \\
& \Rightarrow \sum_{i=1}^{n}\left(x_{i}-\xi\right)=0 \Rightarrow \sum_{i=1}^{n} x_{i}-n \xi=0 \\
& \Rightarrow \xi=\frac{1}{n} \sum_{i=1}^{n} x_{i}
\end{aligned}
$$

We need to check the critical point is maximum or not by the second derivative of log-likelihood function

$$
\frac{d^{2}}{d \xi^{2}} \log L\left(\xi \mid x_{1}, \cdots, x_{n}\right)=\frac{d}{d \xi}\left\{\sum_{i=1}^{n}\left(x_{i}-\xi\right)\right\}=-n<0
$$

For the case $\bar{X}>0, \hat{\xi}=\frac{1}{n} \sum_{i=1}^{n} X_{i}=\bar{X}$ maximize the log-likelihood function. Thus, $\hat{\xi}=\bar{X}$ is the MLE of ξ when $\bar{X}>0$ is known. For the case $\bar{X} \leq 0$, Because there does not exist a minimum value in the open interval $(0, \infty)$. Therefore, the MLE does not exist with ξ is restricted to $\xi>0$ when $\bar{X} \leq 0$. This is illustrated by Figure 1.

Fig. 1 log-likelihood function with $\bar{X}>0$ and $\bar{X} \leq 0$.

Problem 3.5 [p. 501]

Let X take on the values 0 and 1 with probabilities p and q, respectively. When it is known that $1 / 3 \leq p \leq 2 / 3$.
(a) Find the MLE

Solution:

The probability mass function is

$$
\operatorname{Pr}(X=x)=p^{1-x} q^{x}=p^{1-x}(1-p)^{x}, \quad x=0,1 .
$$

For the case $x=0$, the likelihood function is

$$
L(p \mid x=0)=\operatorname{Pr}(X=0)=p .
$$

The first derivative of the likelihood function is

$$
\frac{d}{d p} L(p \mid x=0)=1>0 .
$$

This implies $L(p \mid x=0)$ is an increasing function of p. Therefore, $\hat{p}=\frac{2}{3}$ is the MLE of p when $x=0$.

Similarly, for the case $x=1$, the likelihood function is

$$
L(p \mid x=1)=\operatorname{Pr}(X=1)=1-p .
$$

The first derivative of the likelihood function is

$$
\frac{d}{d p} L(p \mid x=1)=-1<0 .
$$

This implies $L(p \mid x=1)$ is a decreasing function of p. Therefore, $\hat{p}=\frac{1}{3}$ is the MLE of p when $x=1$.

Therefore, the MLE can be written as

$$
\hat{p}=\left(\frac{1}{3}\right)^{x}\left(\frac{2}{3}\right)^{1-x}=\frac{2}{3}\left(\frac{1}{2}\right)^{x} .
$$

(b) Show that the expected squared error of the MLE is uniformly larger than that

$$
\delta(x)=\frac{1}{2} .
$$

Solution:

The expected squared error of the MLE is

$$
\begin{aligned}
E(\hat{p}-p)^{2} & =E\left\{\frac{2}{3}\left(\frac{1}{2}\right)^{x}-p\right\}^{2}=\frac{4}{9} E\left\{\left(\frac{1}{2}\right)^{2 x}\right\}-\frac{4 p}{3} E\left\{\left(\frac{1}{2}\right)^{x}\right\}+p^{2} \\
& =\frac{4}{9}\left(p+\frac{1-p}{4}\right)-\frac{4 p}{3}\left(p+\frac{1-p}{2}\right)+p^{2} \\
& =\frac{1+3 p-6 p-6 p^{2}+9 p^{2}}{9} \\
& =\frac{3 p^{2}-3 p+1}{9}
\end{aligned}
$$

The expected squared error of $\delta(x)=\frac{1}{2}$ is

$$
E\left(\frac{1}{2}-p\right)^{2}=\frac{4 p^{2}-4 p+1}{4}
$$

Let

$$
g(p)=\frac{3 p^{2}-3 p+1}{9}-\frac{4 p^{2}-4 p+1}{4}=\frac{24 p-24 p^{2}-5}{36} .
$$

To Show that the expected squared error of the MLE is uniformly larger than that $\delta(x)=\frac{1}{2}$ is equivalent to show that $g(p)>0$, for $1 / 3 \leq p \leq 2 / 3$. The boundary of $g(p)$ are

$$
g\left(\frac{1}{3}\right)=g\left(\frac{2}{3}\right)=\frac{1}{108} .
$$

The second derivative of $g(p)$ is

$$
\begin{aligned}
\frac{d^{2}}{d p^{2}} g(p) & =\frac{d^{2}}{d p^{2}}\left(\frac{24 p-24 p^{2}-5}{36}\right)=\frac{d}{d p}\left(\frac{24-48 p}{36}\right) \\
& =-\frac{4}{3}<0 .
\end{aligned}
$$

Therefore, we have shown that $g(p)>0$, for $1 / 3 \leq p \leq 2 / 3$. That is, the expected squared error of the MLE is uniformly larger than that $\delta(x)=\frac{1}{2}$.

Problem 3.13 [p. 502]

Consider a sample X_{1}, \cdots, X_{n} from a Poisson distribution conditioned to be positive, so that

$$
\operatorname{Pr}\left(X_{i}=x\right)=\frac{\theta^{x} e^{-\theta}}{x!\left(1-e^{-\theta}\right)}, \text { for } \theta>0, x=1,2, \cdots
$$

Show that the likelihood equation has a unique root for all values of x.

Solution:

The probability mass function of the Poisson distribution conditioned to be positive can be written as

$$
\begin{aligned}
\operatorname{Pr}(X=x) & =\frac{\theta^{x} e^{-\theta}}{x!\left(1-e^{-\theta}\right)}=\frac{\theta^{x}}{x!\left(e^{\theta}-1\right)}=\frac{1}{x!} \exp \left\{x \log \theta-\log \left(e^{\theta}-1\right)\right\} \\
& =h(x) \exp \{\eta T(x)-A(\eta)\},
\end{aligned}
$$

where $h(x)=\frac{1}{x!}, \eta=\log \theta, T(x)=x$, and $A(\eta)=\log \left\{\exp \left(e^{\eta}\right)-1\right\}$. Therefore, the Poisson distribution conditioned to be positive is a one-parameter exponential family.

Thus, the likelihood function is

$$
\begin{aligned}
L\left(\eta \mid x_{1}, \cdots, x_{n}\right) & =\prod_{i=1}^{n}\left[h\left(x_{i}\right) \exp \left\{\eta T\left(x_{i}\right)-A(\eta)\right\}\right] \\
& =\left\{\prod_{i=1}^{n} h\left(x_{i}\right)\right\} \exp \left\{\eta \sum_{i=1}^{n} T\left(x_{i}\right)-n A(\eta)\right\} .
\end{aligned}
$$

The log-likelihood function is

$$
\log L\left(\eta \mid x_{1}, \cdots, x_{n}\right)=\log \left\{\prod_{i=1}^{n} h\left(x_{i}\right)\right\}+\left\{\eta \sum_{i=1}^{n} T\left(x_{i}\right)-n A(\eta)\right\} .
$$

The first derivative of log-likelihood function is

$$
\begin{aligned}
\frac{d}{d \eta} \log L\left(\eta \mid x_{1}, \cdots, x_{n}\right) & =\frac{d}{d \eta}\left[\log \left\{\prod_{i=1}^{n} h\left(x_{i}\right)\right\}+\left\{\eta \sum_{i=1}^{n} T\left(x_{i}\right)-n A(\eta)\right\}\right] \\
& =\sum_{i=1}^{n} T\left(x_{i}\right)-n A^{\prime}(\eta) .
\end{aligned}
$$

Taking $\eta \rightarrow-\infty$, we have

$$
\lim _{\eta \rightarrow-\infty}\left(\sum_{i=1}^{n} T\left(x_{i}\right)-n A^{\prime}(\eta)\right)=\sum_{i=1}^{n} T\left(x_{i}\right)-\lim _{\eta \rightarrow-\infty} \frac{n e^{\eta} e^{e^{\eta}}}{e^{e^{\eta}}-1}=\sum_{i=1}^{n} x_{i}-n>0 .
$$

Taking $\eta \rightarrow \infty$, we have

$$
\lim _{\eta \rightarrow \infty}\left(\sum_{i=1}^{n} T\left(x_{i}\right)-n A^{\prime}(\eta)\right)=\sum_{i=1}^{n} T\left(x_{i}\right)-\lim _{\eta \rightarrow \infty} \frac{n e^{\eta} e^{e^{\eta}}}{e^{e^{\eta}}-1}=-\infty<0 .
$$

Furthermore, by the property of exponential family, we have

$$
E_{\eta}(T(X))=A^{\prime}(\eta) \text { and } \frac{d}{d \eta} E_{\eta}(T(X))=A^{\prime \prime}(\eta)=\operatorname{var}_{\eta}(T(X))>0 .
$$

Thus, the first derivative of log-likelihood function can be written as

$$
\sum_{i=1}^{n} T\left(x_{i}\right)-n E_{\eta}(T(X)) .
$$

It is a strictly decreasing function of η because

$$
-\frac{d}{d \eta} E_{\eta}(T(X))=-A^{\prime \prime}(\eta)=-\operatorname{var}_{\eta}(T(X))<0 .
$$

Therefore, there exist a unique root for the likelihood equation

$$
\frac{d}{d \eta} \log L\left(\eta \mid x_{1}, \cdots, x_{n}\right)=0 .
$$

Since $\eta=\log \theta$ is an one-to-one transformation, there also exist a unique root for likelihood equation $\frac{d}{d \theta} \log L\left(\theta \mid x_{1}, \cdots, x_{n}\right)=0$.

