
Homework#4 Statistical Inference II 

Name: Jia-Han Shih 

Problem 3.1 [p.501] 

Let X  have the binomial distribution ),(Bin pn , 10  p . Determine the MLE of 

p . 

(a)  By using usual calculus method determining the maximum of a function.  

Solution: 

The likelihood function is 
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Therefore, the log-likelihood function is 
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Then find the critical point by solving the first derivative of log-likelihood function 

equals to zero 
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We need to check the critical point is maximum or not by the second derivative of 

log-likelihood function 
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Therefore, 
n

x
p ˆ  maximize the log-likelihood function. In other words, 

n

x
p ˆ  is the 

MLE of p . 

(b)  By showing that 

xnx

xnx

n

xn

n

x
qp











 








 . 

[Hint: (b) Apply the fact that the geometric mean is equal to or less than arithmetic 

means to n  numbers of which x  are equal to xnp /  and xn  equal to 

)/( xnnq  ] 

Solution: 

According to the hint, by the inequality of geometric mean and arithmetic mean, 

we have 
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Therefore, the likelihood function follows the inequality 
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where 
n

x
p ˆ . Therefore, 

n

x
p ˆ  maximize the log-likelihood function. In other words, 

n

x
p ˆ  is the MLE of p . 

 

  



Problem 3.2 [p.501] 

In the preceding problem (Problem 3.1), show that the MLE does not exist when p  is 

restricted to 10  p  and when 0x  or nx  . 

Solution: 

For the case 0x , the likelihood function is 

.)1(
0

)0|( 00 nn pqp
n

xpL 







   

The log-likelihood function is 

).1log()0|(log pnxpL   

The first derivative of the log-likelihood function is  
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This implies )0|( xpL  is a decreasing function of p . Because there does not exist 

a minimum value in the open interval )1,0( . Therefore, the MLE does not exist for the 

case p  is restricted to 10  p  and when 0x . 

Similarly, for the case nx  , the likelihood function is 
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The log-likelihood function is 

.log)|(log pnnxpL   

 

  



The first derivative of the log-likelihood function is  
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This implies )|( nxpL   is an increasing function of p . Because there does not exist 

a maximum value in the open interval )1,0( . Therefore, the MLE does not exist for the 

case p  is restricted to 10  p  and when nx  . 

 

  



Problem 3.3 [p.501] 

Let nXX ,,1   be iid according to ),( 2N . Determine the MLE of 

(a)    when   is known. 

Solution: 

The likelihood function is 
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The log-likelihood function is 
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Then find the critical point by solving the first derivative of log-likelihood function 

equals to zero (with respect to  ) 

.
1ˆ

00)(
1

0)(
2

1
log)2log(

2

0),,|(log

1

11
2

1

2

2

1






























n

i

i

n

i

i

n

i

i

n

i

i

n

x
n

nxx

xn
n

d

d

xxL
d

d

















 

We need to check the critical point is maximum or not by the second derivative of 

log-likelihood function 

.0)(
1

),,|(log
2

1
212

2










 
 







n
x

d

d
xxL

d

d n

i

in  

  



Therefore, XX
n

n

i

i  
1

1
̂  maximize the log-likelihood function. Thus, X̂  is the 

MLE of   when   is known. 

(b)    when   is known. 

Solution: 

Similarly, find the critical point by solving the first derivative of log-likelihood 

function equals to zero (with respect to  ) 
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We need to check the critical point is maximum or not by the second derivative of 

log-likelihood function 
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Therefore, 
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  is the MLE of   when   is known. 

(c)  ),(   when both unknown. 

Solution: 

By (a) and (b), we have to solve 
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As in (a), we have  

.ˆ X  

Then we replace   by ̂  to solve  . Again, similar with (b), we have 

.)(
1

ˆ
2

1

1

2









 


n

i

i XX
n

  

We need to check the critical point is maximum or not by the second derivative of 

log-likelihood function 
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Problem 3.4 [p. 501] 

Suppose nXX ,,1   are iid as )1,( N  with 0 . Show that the MLE is X  when 

0X  and does not exist when 0X . 

Solution: 

The likelihood function is 
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The log-likelihood function is 
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Then find the critical point by solving the first derivative of log-likelihood function 

equals to zero  
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We need to check the critical point is maximum or not by the second derivative of 

log-likelihood function 
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For the case 0X , XX
n

n

i

i  
1

1
̂  maximize the log-likelihood function. Thus, 

X̂  is the MLE of   when 0X  is known. For the case 0X , Because there 

does not exist a minimum value in the open interval ),0(  . Therefore, the MLE does 

not exist with   is restricted to 0  when 0X . This is illustrated by Figure 1. 

 

Fig.1  log-likelihood function with 0X  and 0X . 

 

 

  



Problem 3.5 [p. 501] 

Let X  take on the values 0 and 1 with probabilities p  and q , respectively. When it 

is known that 3/23/1  p . 

(a)  Find the MLE 

Solution: 

The probability mass function is  
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For the case 0x , the likelihood function is 
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The first derivative of the likelihood function is  
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This implies )0|( xpL  is an increasing function of p . Therefore, 
3

2
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MLE of p  when 0x . 

Similarly, for the case 1x , the likelihood function is 
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The first derivative of the likelihood function is  
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This implies )1|( xpL  is a decreasing function of p . Therefore, 
3

1
ˆ p  is the 

MLE of p  when 1x . 

Therefore, the MLE can be written as 
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(b)  Show that the expected squared error of the MLE is uniformly larger than that 

2

1
)( x . 

Solution: 

The expected squared error of the MLE is  
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The expected squared error of 
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To Show that the expected squared error of the MLE is uniformly larger than that 

2

1
)( x  is equivalent to show that 0)( pg , for 3/23/1  p . The boundary of 

)( pg  are 
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The second derivative of )( pg  is  
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Therefore, we have shown that 0)( pg , for 3/23/1  p .That is, the expected 

squared error of the MLE is uniformly larger than that 
2

1
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Problem 3.13 [p. 502] 

Consider a sample nXX ,,1   from a Poisson distribution conditioned to be positive, so 

that  
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Show that the likelihood equation has a unique root for all values of x . 

Solution: 

The probability mass function of the Poisson distribution conditioned to be 

positive can be written as 
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the Poisson distribution conditioned to be positive is a one-parameter exponential family. 

Thus, the likelihood function is 
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The log-likelihood function is 
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The first derivative of log-likelihood function is  
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Taking  , we have 
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Taking  , we have 
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Furthermore, by the property of exponential family, we have 

)())((  AXTE   and 0))((var)())((  XTAXTE
d

d
 


. 

Thus, the first derivative of log-likelihood function can be written as  
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It is a strictly decreasing function of   because  
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Therefore, there exist a unique root for the likelihood equation 
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Since  log  is an one-to-one transformation, there also exist a unique root for 
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