Homework\#3 Statistical Inference II

Name: Jia-Han Shih

Problem 1.1 [p.389]

For the situation of Example 1.2:

$$
X \sim \operatorname{Bin}(n, p), \quad p \sim \operatorname{Beta}(a, b) .
$$

Then the Bayes estimator is

$$
\delta=\frac{a+x}{a+b+n} .
$$

Consider a group of three estimators $\delta^{1 / 4}, \delta^{1 / 2}$ and $\delta^{3 / 4}$, Bayes estimator of p from $\operatorname{Beta}(1,3), \operatorname{Beta}(2,2)$ and $\operatorname{Beta}(3,1)$ priors, respectively.
(a) Plot the risk functions of $\delta^{1 / 4}, \delta^{1 / 2}$ and $\delta^{3 / 4}$ for $n=5,10,25$.

Solution:

The risk function of δ is

$$
\begin{aligned}
R(p, \delta) & =E\left\{(p-\delta)^{2}\right\}=E\left\{(\delta-p)^{2}\right\}=E\left\{\left(\frac{a+x}{a+b+n}-p\right)^{2}\right\} \\
& =\frac{1}{(a+b+n)^{2}} E\left[\{(a+x)-(a+b+n) p\}^{2}\right] \\
& =\frac{1}{(a+b+n)^{2}} E\left([(x-n p)+\{a(1-p)-b p\}]^{2}\right) \\
& =\frac{1}{(a+b+n)^{2}}\left[E\left\{(x-n p)^{2}\right\}+\{a(1-p)-b p\}^{2}\right] \\
& =\frac{1}{(a+b+n)^{2}}\left[n p(1-p)+\{a(1-p)-b p\}^{2}\right] .
\end{aligned}
$$

Therefore, the risk function of $\delta^{1 / 4}, \delta^{1 / 2}$ and $\delta^{3 / 4}$ are

$$
\begin{aligned}
& R\left(p, \delta^{1 / 4}\right)=\frac{1}{(4+n)^{2}}\left[n p(1-p)+\{(1-p)-3 p\}^{2}\right], \\
& R\left(p, \delta^{1 / 2}\right)=\frac{1}{(4+n)^{2}}\left[n p(1-p)+\{2(1-p)-2 p\}^{2}\right], \\
& R\left(p, \delta^{3 / 4}\right)=\frac{1}{(4+n)^{2}}\left[n p(1-p)+\{3(1-p)-p\}^{2}\right],
\end{aligned}
$$

respectively. Now, we can use R software to plot the risk functions of $\delta^{1 / 4}, \delta^{1 / 2}$ and $\delta^{3 / 4}$ for $n=5,10,25$. The results are compared in Figure 1.

Fig. 1. Risk functions of $\delta^{1 / 4}, \delta^{1 / 2}$ and $\delta^{3 / 4}$ for $n=5,10,25$.
(b) For each value of n in part (a), find the range of prior values of p for which each estimator is preferred.

Solution:

For the case $n=5$, the cross points in Figure 1 are solved by

$$
\begin{aligned}
& R\left(p, \delta^{1 / 4}\right)=R\left(p, \delta^{1 / 2}\right) \\
& \Rightarrow \frac{1}{9^{2}}\left[5 p(1-p)+\{(1-p)-3 p\}^{2}\right]=\frac{1}{9^{2}}\left[5 p(1-p)+\{2(1-p)-2 p\}^{2}\right] \\
& \Rightarrow 5 p(1-p)+\{(1-p)-3 p\}^{2}=5 p(1-p)+\{2(1-p)-2 p\}^{2} \\
& \Rightarrow\{(1-p)-3 p\}^{2}=\{2(1-p)-2 p\}^{2} \\
& \Rightarrow\{1-4 p\}^{2}=\{2-4 p\}^{2} \Rightarrow 16 p^{2}-8 p+1=16 p^{2}-16 p+4 \\
& \Rightarrow 8 p=3 \Rightarrow p=3 / 8=0.375
\end{aligned}
$$

and

$$
\begin{aligned}
& R\left(p, \delta^{1 / 2}\right)=R\left(p, \delta^{3 / 4}\right) \\
& \Rightarrow \frac{1}{9^{2}}\left[5 p(1-p)+\{2(1-p)-2 p\}^{2}\right]=\frac{1}{9^{2}}\left[5 p(1-p)+\{3(1-p)-p\}^{2}\right] \\
& \Rightarrow 5 p(1-p)+\{2(1-p)-2 p\}^{2}=5 p(1-p)+\{3(1-p)-p\}^{2} \\
& \Rightarrow\{2(1-p)-2 p\}^{2}=\{3(1-p)-p\}^{2} \\
& \Rightarrow\{2-4 p\}^{2}=\{3-4 p\}^{2} \Rightarrow 16 p^{2}-16 p+4=16 p^{2}-24 p+9 \\
& \Rightarrow 8 p=5 \Rightarrow p=5 / 8=0.625
\end{aligned}
$$

The cross points of $n=10,25$ in Figure 1 can also be solved similarly and they are all the same as the case $n=5$. Because we want the risk as small as possible. Therefore, for $n=5,10,25$, Figure 1 reveals the following conclusions:

1) Estimator $\delta^{1 / 4}$ is better with the range $0<p<0.375$.
2) Estimator $\delta^{1 / 2}$ is better with the range $0.375<p<0.625$.
3) Estimator $\delta^{3 / 4}$ is better with the range $0.625<p<1$.
(c) If an experimenter has no prior knowledge of p, which of $\delta^{1 / 4}, \delta^{1 / 2}$ and $\delta^{3 / 4}$ would you recommend? Justify your choice.

Solution:

If one has no prior knowledge of p, I would recommend the estimator with the curve of risk function is flat, that is I recommend $\delta^{1 / 2}$. More specifically, this "flat" means that the maximum risk is the smallest among the others. If the risk function is flat, this means the value of p doesn't effect the risk too much. Because if we don't have any prior knowledge, we don't know the distribution of p. Therefore, choosing an estimator which the value of p doesn't effect the risk too much is better.

R code

```
risk_func=function(a,b,n,p) {
    ((n*p*(1-p))+(a*(1-p)-b*p)^2)/(a+b+n)^2
}
n=5
p=seq(0,1,0.001)
windows()
plot(p,risk_func(1,3,n,p),type="l",main="n = 5",col="blue",lty=2,lwd=2,
    xaxt="n",xaxs="i",yaxs="i",ylab="Risk")
axis(1,at=c(0,0.125,0.25,3/8,0.5,5/8,0.75,0.875,1))
legend(0.8,0.065,c(expression(delta^"1/4",delta^"1/2",delta^"3/4")),lty=2,lwd=2,col=c("
blue","red","green"))
lines(p,risk_func(2,2,n,p),type="l",col="red",lty=2,lwd=2)
lines(p,risk_func(3,1,n,p),type="l",col="green",lty=2,lwd=2)
abline(v=3/8,lty=2)
abline(v=5/8,lty=2)
n=10
p = seq(0,1,0.001)
windows()
plot(p,risk_func(1,3,n,p),type="l",main="n = 10",col="blue",lty=2,lwd=2,
    xaxt="n",xaxs="i",yaxs="i",ylab="Risk")
axis(1,at=c(0,0.125,0.25,3/8,0.5,5/8,0.75,0.875,1))
legend(0.8,0.03,c(expression(delta^"1/4",delta^"1/2",delta^"3/4")),lty=2,lwd=2,col=c("b
lue","red","green"))
lines(p,risk_func(2,2,n,p),type="l",col="red",lty=2,lwd=2)
lines(p,risk_func(3,1,n,p),type="l",col="green",lty=2,lwd=2)
abline(v=3/8,lty=2)
abline(v=5/8,lty=2)
```

```
n}=2
p=seq(0,1,0.001)
windows()
plot(p,risk_func(1,3,n,p),type="l",main="n = 25",col="blue",lty=2,lwd=2,
xaxt="n",xaxs="i",yaxs="i",ylab="Risk")
axis(1,at=c(0,0.125,0.25,3/8,0.5,5/8,0.75,0.875,1))
legend(0.8,0.009,c(expression(delta^"1/4",delta^"1/2",delta^"3/4")),lty=2,lwd=2,col=c("
blue","red","green"))
lines(p,risk_func(2,2,n,p),type="l",col="red",lty=2,lwd=2)
lines(p,risk_func(3,1,n,p),type="l",col="green",lty=2,lwd=2)
abline(v=3/8,lty=2)
abline(v=5/8,lty=2)
```

