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Final exam, Statistical Inference II: (2016 Spring): [+32points] 

Name:    Jia-Han Shih    

 Proofs must be understandable to the instructor. 

 Avoid typos and undefined notations in your proofs. 

Q1 [+8]. Let ),(  ~,.., 2

1 NXX
iid

m  and ),(  ~,.., 2

1 NYY
iid

n , where 2  and 2  

are known. 

1) [+2] Derive the MLE of  .  

Answer: 

Since 2  and 2  are known, the likelihood function is 
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Then the log-likelihood function is 
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Solve the likelihood equation, we obtain the MLE of   is 

,
//

//ˆ
22

22






nm

YnXm




  

where  





m

i

ix
m

X
1

1
,   




n

i

iy
n

Y
1

1
. 

 

 

 

 

 



2 

2) [+2] Show that the above MLE is also UMVUE 

Answer: 

Since  
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Therefore, it is an one-dimensional exponential family. Since the parameter space 

}),(:{    contains an one-dimensional open rectangle (e.g., 

)1,0( ). Hence  
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is the complete sufficient statistics for  . Furthermore, we have 
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Thus, we have shown that ̂  is unbiased and it is a function of complete 

sufficient statistics. Then we have proven that the above MLE ̂  is also UMVUE. 
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3) [+4] Derive the asymptotic variance of the MLE under some conditions on m  

and n . 

Answer: 

Let )( ~,, 11 xfXX m  and )( ~,, 21 yfYY n . Assume that Nnm   and 

1
N

m
,   2

N

n
 as nm, . 

Then we define the appropriate information  
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Then the asymptotic distribution of ̂  is  
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Hence the asymptotic variance is  
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Q2 [+8]. Let )(~,..., 2,1 xfXX
iid

n 
, where 

)(
2

)(
exp

2
)(

2

2

2, 2 













 
 xI

x
xf  

is a truncated normal distribution, truncated at unknown value R .  

1) [+6] Derive the MLE )ˆ,ˆ(ˆ 2  . 

Answer: 

The likelihood function is 
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where ),,,min( 21)1( nxxxx  . The log-likelihood function is 
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But since ],( )1(x , therefore, )1(
ˆ x . Then  
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Thus, we obtain the MLE  
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2) [+2] Is the asymptotic theory of MLEs apply to this example? 

Answer: 

No, the support of X  is ),(  . It is depend on the parameter  . Therefore, 

the common support assumption does not hold in this example. 
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Q3 [+8]. Let )1,(  ~,..,1 NXX
iid

n  and )( 1 aXPp    

1) [+3] Derive the UMVUE of )( 1 aXPp     [denoted as n1 ]. 

Answer: 

We have 
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is the UMVUE of )( 1 aXPp   . 

 

2) [+1] Define the nonparametric estimator of )( 1 aXPp     [denoted as n2 ]. 

Answer: 

We define 
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3) [+3] Calculate the ARE 
21

e . 

Answer: 

Let  
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By a Taylor expansion, we have 
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Then we can apply the general delta method 
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By CLT, we have 
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4) [+1] Draw the graph of ARE with respect to  . 

Answer: 

Since  
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And 0
12
e , as   or  . The graph of ARE is shown in Figure 1 

with 3a . 

 

 

Fig.1  The graph of ARE 
12e  with 3a . 
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Q4 [+8]. We consider the asymptotic distribution of the MLE under independent 

but not identically distributed random variables kxfXX
iid

n ,...,1),|(  ~,..,1  
θ , 

sRθ . Let θ̂  be the solution to the likelihood equation (if exist). 

1. [+2] State the necessary assumption about the sample size kn ,...,1,  . 

Answer: 

Assumption (E): 

Let Nn
k


1

 , we define 0lim 
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2. [+1] Define the log-likelihood function 

Answer: 

The log-likelihood function is 
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3. [+1] Define the appropriate Fisher information matrix 

Answer: 

The appropriate Fisher information matrix is 
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4. [+4] Provide the outline of the proof of the asymptotic normality of θ̂ . 

(explain how the assumption about the sample size kn ,...,1,   is used) 

Answer: 

We define 
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Let )ˆ,,ˆ,ˆ(ˆ
21 s θ  be the solution of the likelihood equations 
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By a Taylor expansion around the true parameter ),,,( 00
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where 
θ  is on the line between θ̂  and 0

θ . Then we have 
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Consider equation )(  separately. First, by W.L.L.N., we have 
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Second, since 0ˆ 0
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In the vector form, by the Multivariate CLT, we obtain 
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Therefore, the equation )(  becomes 
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