Final exam, Statistical Inference II: (2016 Spring): [+32points]
Name: \qquad Jia-Han Shih

- Proofs must be understandable to the instructor.
- Avoid typos and undefined notations in your proofs.

Q1 [+8]. Let $X_{1}, \ldots, X_{m} \stackrel{\text { iid }}{\sim} N\left(\xi, \sigma^{2}\right)$ and $Y_{1}, \ldots, Y_{n} \sim N\left(\xi, \tau^{2}\right)$, where σ^{2} and τ^{2} are known.

1) $[+2]$ Derive the MLE of ξ.

Answer:

Since σ^{2} and τ^{2} are known, the likelihood function is

$$
\begin{aligned}
L(\xi) & =\prod_{i=1}^{m} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{1}{2 \sigma^{2}}\left(x_{i}-\xi\right)^{2}\right\} \prod_{i=1}^{n} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{1}{2 \tau^{2}}\left(y_{i}-\xi\right)^{2}\right\} \\
& =\left(\frac{1}{2 \pi \sigma^{2}}\right)^{\frac{m}{2}}\left(\frac{1}{2 \pi \tau^{2}}\right)^{\frac{n}{2}} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{m}\left(x_{i}-\xi\right)^{2}\right\} \exp \left\{-\frac{1}{2 \tau^{2}} \sum_{i=1}^{n}\left(y_{i}-\xi\right)^{2}\right\} .
\end{aligned}
$$

Then the log-likelihood function is

$$
\begin{aligned}
\quad \ell(\xi) & =\text { constant }-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{m}\left(x_{i}-\xi\right)^{2}-\frac{1}{2 \tau^{2}} \sum_{i=1}^{n}\left(y_{i}-\xi\right)^{2} \\
\Rightarrow & \ell^{\prime}(\xi)=\frac{1}{\sigma^{2}} \sum_{i=1}^{m}\left(x_{i}-\xi\right)+\frac{1}{\tau^{2}} \sum_{i=1}^{n}\left(y_{i}-\xi\right)=0 .
\end{aligned}
$$

Solve the likelihood equation, we obtain the MLE of ξ is

$$
\hat{\xi}=\frac{m \bar{X} / \sigma^{2}+n \bar{Y} / \tau^{2}}{m / \sigma^{2}+n / \tau^{2}}
$$

where

$$
\bar{X}=\frac{1}{m} \sum_{i=1}^{m} x_{i}, \quad \bar{Y}=\frac{1}{n} \sum_{i=1}^{n} y_{i} .
$$

2) [+2] Show that the above MLE is also UMVUE

Answer:

Since

$$
\begin{aligned}
L(\xi)= & \left(\frac{1}{2 \pi \sigma^{2}}\right)^{\frac{m}{2}}\left(\frac{1}{2 \pi \tau^{2}}\right)^{\frac{n}{2}} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{m}\left(x_{i}-\xi\right)^{2}\right\} \exp \left\{-\frac{1}{2 \tau^{2}} \sum_{i=1}^{n}\left(y_{i}-\xi\right)^{2}\right\} \\
= & \left(\frac{1}{2 \pi \sigma^{2}}\right)^{\frac{m}{2}}\left(\frac{1}{2 \pi \tau^{2}}\right)^{\frac{n}{2}} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{m} x_{i}^{2}-\frac{1}{2 \tau^{2}} \sum_{i=1}^{n} y_{i}^{2}\right\} \\
& \times \exp \left\{\xi\left(\frac{1}{\sigma^{2}} \sum_{i=1}^{m} x_{i}+\frac{1}{\tau^{2}} \sum_{i=1}^{n} y_{i}\right)-\frac{\xi^{2}}{2 \sigma^{2}}-\frac{\xi^{2}}{2 \tau^{2}}\right\} \\
= & \exp \{\eta T(\mathbf{x}, \mathbf{y})-A(\eta)\} h(\mathbf{x}, \mathbf{y}),
\end{aligned}
$$

where

$$
\begin{aligned}
& \eta=\xi, \quad T(\mathbf{x}, \mathbf{y})=\frac{1}{\sigma^{2}} \sum_{i=1}^{m} x_{i}+\frac{1}{\tau^{2}} \sum_{i=1}^{n} y_{i}=\frac{m}{\sigma^{2}} \bar{X}+\frac{n}{\tau^{2}} \bar{Y} \quad \text { and } \\
& h(\mathbf{x}, \mathbf{y})=\left(\frac{1}{2 \pi \sigma^{2}}\right)^{\frac{m}{2}}\left(\frac{1}{2 \pi \tau^{2}}\right)^{\frac{n}{2}} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{m} x_{i}^{2}-\frac{1}{2 \tau^{2}} \sum_{i=1}^{n} y_{i}^{2}\right\} .
\end{aligned}
$$

Therefore, it is an one-dimensional exponential family. Since the parameter space $\Theta=\{\eta: \eta \in(-\infty, \infty)\}$ contains an one-dimensional open rectangle (e.g., $(0,1) \in \Theta)$. Hence

$$
T(\mathbf{x}, \mathbf{y})=\frac{m}{\sigma^{2}} \bar{X}+\frac{n}{\tau^{2}} \bar{Y}
$$

is the complete sufficient statistics for ξ. Furthermore, we have

$$
E\left(\frac{m \bar{X} / \sigma^{2}+n \bar{Y} / \tau^{2}}{m / \sigma^{2}+n / \tau^{2}}\right)=\xi
$$

Thus, we have shown that $\hat{\xi}$ is unbiased and it is a function of complete sufficient statistics. Then we have proven that the above MLE $\hat{\xi}$ is also UMVUE.
3) [+4] Derive the asymptotic variance of the MLE under some conditions on m and n.

Answer:

Let $X_{1}, \cdots, X_{m} \sim f_{1}(x)$ and $Y_{1}, \cdots, Y_{n} \sim f_{2}(y)$. Assume that $m+n=N$ and

$$
\frac{m}{N} \rightarrow \lambda_{1}, \quad \frac{n}{N} \rightarrow \lambda_{2} \text { as } m, n \rightarrow \infty
$$

Then we define the appropriate information

$$
I(\xi)=\sum_{\alpha=1}^{2} \lambda_{\alpha} I^{(\alpha)}(\xi)
$$

where

$$
I^{(\alpha)}(\xi)=-E_{\xi}\left[\frac{\partial^{2}}{\partial \xi^{2}} \log f_{1}(x)\right] .
$$

Therefore, we have

$$
I^{(1)}(\xi)=-E_{\xi}\left[-\frac{1}{\sigma^{2}}\right]=\frac{1}{\sigma^{2}} .
$$

Similarly,

$$
I^{(2)}(\xi)=\frac{1}{\tau^{2}}
$$

Thus, we obtain

$$
I(\xi)=\frac{\lambda_{1}}{\sigma^{2}}+\frac{\lambda_{2}}{\tau^{2}} \Rightarrow I^{-1}(\xi)=\frac{\sigma^{2} \tau^{2}}{\lambda_{2} \sigma^{2}+\lambda_{1} \tau^{2}} .
$$

Then the asymptotic distribution of $\hat{\xi}$ is

$$
\sqrt{N}(\hat{\xi}-\xi) \xrightarrow{d} N\left(0, \frac{\sigma^{2} \tau^{2}}{\lambda_{2} \sigma^{2}+\lambda_{1} \tau^{2}}\right) .
$$

Hence the asymptotic variance is

$$
\operatorname{var}(\hat{\xi})=\frac{\sigma^{2} \tau^{2}}{\lambda_{2} \sigma^{2}+\lambda_{1} \tau^{2}}
$$

Q2 [+8]. Let $X_{1}, \ldots, X_{n} \sim f_{\mu, \sigma^{2}}(x)$, where

$$
f_{\mu, \sigma^{2}}(x)=\sqrt{\frac{2}{\pi \sigma^{2}}} \exp \left\{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right\} I(x \geq \mu)
$$

is a truncated normal distribution, truncated at unknown value $\mu \in R$.

1) $[+6]$ Derive the MLE $\hat{\theta}=\left(\hat{\mu}, \hat{\sigma}^{2}\right)$.

Answer:

The likelihood function is

$$
\begin{aligned}
L(\boldsymbol{\theta}) & =\prod_{i=1}^{n} \sqrt{\frac{2}{\pi \sigma^{2}}} \exp \left\{-\frac{1}{2 \sigma^{2}}\left(x_{i}-\mu\right)^{2}\right\} I\left(x_{i} \geq \mu\right) \\
& =\left(\frac{2}{\pi}\right)^{\frac{n}{2}}\left(\frac{1}{\sigma^{2}}\right)^{\frac{n}{2}} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}\right\} I\left(x_{(1)} \geq \mu\right),
\end{aligned}
$$

where $x_{(1)}=\min \left(x_{1}, x_{2}, \cdots, x_{n}\right)$. The log-likelihood function is

$$
\ell(\boldsymbol{\theta})=\frac{n}{2} \log \left(\frac{2}{\pi}\right)-\frac{n}{2} \log \sigma^{2}-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}+\log I\left(x_{(1)} \geq \mu\right) .
$$

First, we have

$$
\frac{\partial \ell(\boldsymbol{\theta})}{\partial \mu}=\frac{1}{\sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right) \stackrel{\text { set }}{=} 0 \Rightarrow \hat{\mu}=\frac{1}{n} \sum_{i=1}^{n} x_{i}=\bar{X}, \quad \frac{\partial^{2} \ell(\boldsymbol{\theta})}{\partial^{2} \mu}=-\frac{n}{\sigma^{2}}<0 .
$$

But since $\mu \in\left(-\infty, x_{(1)}\right]$, therefore, $\hat{\mu}=x_{(1)}$. Then

$$
\frac{\partial^{2} \ell(\boldsymbol{\theta})}{\partial \sigma^{2}}=-\frac{n}{\sigma^{2}}+\frac{1}{2 \sigma^{4}} \sum_{i=1}^{n}\left(x_{i}-\hat{\mu}\right)^{2} \stackrel{\text { set }}{=} 0 \Rightarrow \hat{\sigma}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\hat{\mu}\right)^{2} .
$$

Thus, we obtain the MLE

$$
\hat{\theta}=\left(\hat{\mu}=x_{(1)}, \hat{\sigma}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-x_{(1)}\right)^{2}\right) .
$$

2) $[+2]$ Is the asymptotic theory of MLEs apply to this example?

Answer:

No, the support of X is (μ, ∞). It is depend on the parameter μ. Therefore, the common support assumption does not hold in this example.

Q3 [+8]. Let $X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim} N(\theta, 1)$ and $p=P_{\theta}\left(X_{1} \leq a\right)$

1) [+3] Derive the UMVUE of $p=P_{\theta}\left(X_{1} \leq a\right)$ [denoted as $\delta_{1 n}$].

Answer:

We have $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$ is the complete sufficient statistics and

$$
X_{1}-\bar{X}=\frac{n-1}{n} X_{1}+\frac{1}{n} X_{2}+\cdots+\frac{1}{n} X_{n} \sim N\left(0,\left(\frac{n-1}{n}\right)^{2}+\frac{n-1}{n^{2}}\right)=N\left(0, \frac{n-1}{n}\right) .
$$

Then

$$
\begin{aligned}
\delta_{1 n} & =E\left[I\left(X_{1} \leq a\right) \mid \bar{X}\right]=\operatorname{Pr}\left(X_{1} \leq a \mid \bar{X}\right)=\operatorname{Pr}\left(X_{1}-\bar{X} \leq a-\bar{X}\right) \\
& =\operatorname{Pr}\left(\sqrt{\frac{n}{n-1}}\left(X_{1}-\bar{X}\right) \leq \sqrt{\frac{n}{n-1}}(a-\bar{X})\right)=\Phi\left(\sqrt{\frac{n}{n-1}}(a-\bar{X})\right),
\end{aligned}
$$

where

$$
I\left(X_{1} \leq a\right)=\left\{\begin{array}{ll}
1 & \text { if } X_{1} \leq a \\
0 & \text { otherwise }
\end{array} .\right.
$$

Hence

$$
\Phi\left(\sqrt{\frac{n}{n-1}}(a-\bar{X})\right)
$$

is the UMVUE of $p=P_{\theta}\left(X_{1} \leq a\right)$.
2) [+1] Define the nonparametric estimator of $p=P_{\theta}\left(X_{1} \leq a\right) \quad\left[\right.$ denoted as $\left.\delta_{2 n}\right]$.

Answer:

We define

$$
\delta_{2 n}=\frac{1}{n} \sum_{i=1}^{n} I\left(X_{i} \leq a\right)
$$

is the nonparametric estimator of $p=P_{\theta}\left(X_{1} \leq a\right)$.

3) $[+3]$ Calculate the ARE $e_{\delta_{1} \delta_{2}}$.

Answer:

Let

$$
c_{n}=\sqrt{\frac{n}{n-1}}=\left(1-\frac{1}{n}\right)^{-\frac{1}{2}} .
$$

By a Taylor expansion, we have

$$
c_{n}=1+\frac{1}{2 n}+\frac{3}{8 n^{2}} .
$$

We also define

$$
\bar{Y}=a-\bar{X} \Rightarrow E\left(Y_{i}\right)=a-\theta \equiv \xi \text { and } \operatorname{var}\left(Y_{i}\right)=1, \quad \text { for } i=1,2, \cdots, n .
$$

Then we can apply the general delta method

$$
\begin{aligned}
\sqrt{n}\left(\delta_{1 n}-p\right) & =\sqrt{n}\left(\Phi\left(\sqrt{\frac{n}{n-1}}(a-\bar{X})\right)-\Phi(a-\theta)\right) \\
& =\sqrt{n}\left(\Phi\left(c_{n} \bar{Y}\right)-\Phi(\xi)\right) \rightarrow N\left(0, \phi(\xi)^{2}\right)=N\left(0, \phi(a-\theta)^{2}\right) .
\end{aligned}
$$

By CLT, we have

$$
\sqrt{n}\left(\delta_{2 n}-p\right)=N(0, p(1-p)) .
$$

Therefore, the ARE $e_{\delta_{1} \delta_{2}}$ is

$$
e_{\delta_{1} \delta_{2}}=\frac{p(1-p)}{\phi(a-\theta)^{2}}=\frac{\Phi(a-\theta)\{1-\Phi(a-\theta)\}}{\phi(a-\theta)^{2}} .
$$

4) $[+1]$ Draw the graph of ARE with respect to θ.

Answer:

Since

$$
e_{\delta_{2} \delta_{1}}=\frac{\phi(a-\theta)^{2}}{\Phi(a-\theta)\{1-\Phi(a-\theta)\}} .
$$

If $\theta=a$, we have

$$
e_{\delta_{2} \delta_{1}}=\frac{\left(\frac{1}{\sqrt{2 \pi}}\right)^{2}}{\frac{1}{2} \times \frac{1}{2}}=\frac{2}{\pi} \approx 0.6366<1 \text {. }
$$

And $e_{\delta_{2} \delta_{1}} \rightarrow 0$, as $\theta \rightarrow \infty$ or $\theta \rightarrow-\infty$. The graph of ARE is shown in Figure 1 with $a=3$.

Fig. 1 The graph of ARE $e_{\delta_{2} \delta_{1}}$ with $a=3$.

Q4 [+8]. We consider the asymptotic distribution of the MLE under independent but not identically distributed random variables $X_{\alpha 1}, \ldots, X_{\alpha n_{\alpha}}{ }^{\text {iid }} \sim f_{\alpha}(x \mid \boldsymbol{\theta}), \alpha=1, \ldots, k$, $\boldsymbol{\theta} \in \Omega \subset R^{s}$. Let $\hat{\boldsymbol{\theta}}$ be the solution to the likelihood equation (if exist).

1. [+2] State the necessary assumption about the sample size $n_{\alpha}, \alpha=1, \ldots, k$.

Answer:

Assumption (E):
Let $\sum_{\alpha=1}^{k} n_{\alpha}=N$, we define $\lim _{N \rightarrow \infty} \frac{n_{\alpha}}{N}=\lambda_{\alpha}>0$, for $\alpha=1,2, \ldots, k$.
2. [+1] Define the log-likelihood function

Answer:

The log-likelihood function is

$$
\ell(\boldsymbol{\theta})=\sum_{\alpha=1}^{k} \sum_{i=1}^{n_{\alpha}} \log f_{\alpha}\left(x_{\alpha i} \mid \boldsymbol{\theta}\right) .
$$

3. [+1] Define the appropriate Fisher information matrix

Answer:

The appropriate Fisher information matrix is

$$
I(\boldsymbol{\theta})=\sum_{\alpha=1}^{l} \lambda_{\alpha} I^{(\alpha)}(\boldsymbol{\theta})
$$

where

$$
I^{(\alpha)}(\boldsymbol{\theta})=E_{\boldsymbol{\theta}}\left[\frac{\partial}{\partial \boldsymbol{\theta}} \log f_{\alpha}(x \mid \boldsymbol{\theta}) \frac{\partial}{\partial \boldsymbol{\theta}^{\prime}} \log f_{\alpha}(x \mid \boldsymbol{\theta})\right] .
$$

4. $[+4]$ Provide the outline of the proof of the asymptotic normality of $\hat{\boldsymbol{\theta}}$. (explain how the assumption about the sample size $n_{\alpha}, \alpha=1, \ldots, k$ is used)

Answer:

We define

$$
\ell^{\prime}{ }_{j}(\boldsymbol{\theta})=\frac{\partial \ell(\boldsymbol{\theta})}{\partial \theta_{j}}, \quad \ell^{\prime \prime}{ }_{j r}(\boldsymbol{\theta})=\frac{\partial^{2} \ell(\boldsymbol{\theta})}{\partial \theta_{j} \partial \theta_{k}}, \quad \ell^{\prime \prime \prime}{ }_{j r l}(\boldsymbol{\theta})=\frac{\partial^{3} \ell(\boldsymbol{\theta})}{\partial \theta_{j} \partial \theta_{r} \partial \theta_{l}} .
$$

Let $\hat{\boldsymbol{\theta}}=\left(\hat{\theta}_{1}, \hat{\theta}_{2}, \cdots, \hat{\theta}_{s}\right)$ be the solution of the likelihood equations

$$
\frac{\partial \ell(\boldsymbol{\theta})}{\partial \theta_{j}}=0, \text { for } j=1,2, \cdots, n .
$$

By a Taylor expansion around the true parameter $\boldsymbol{\theta}^{0}=\left(\theta_{1}^{0}, \theta_{2}^{0}, \cdots, \theta_{s}^{0}\right)$, we have

$$
\ell_{j}^{\prime}(\hat{\boldsymbol{\theta}})=\ell_{j}^{\prime}\left(\boldsymbol{\theta}^{0}\right)+\sum_{r=1}^{s}\left(\hat{\theta}_{r}-\theta_{r}^{0}\right) \ell^{\prime \prime \prime}{ }_{j r}\left(\boldsymbol{\theta}^{0}\right)+\frac{1}{2} \sum_{l=1}^{s} \sum_{r=1}^{s}\left(\hat{\theta}_{r}-\theta_{r}^{0}\right)\left(\hat{\theta}_{l}-\theta_{l}^{0}\right) \ell^{\prime \prime \prime}{ }_{j r l}\left(\boldsymbol{\theta}^{*}\right),
$$

where $\boldsymbol{\theta}^{*}$ is on the line between $\hat{\boldsymbol{\theta}}$ and $\boldsymbol{\theta}^{0}$. Then we have

$$
\begin{array}{r}
0=\ell^{\prime}{ }_{j}\left(\boldsymbol{\theta}^{0}\right)+\sum_{r=1}^{s}\left(\hat{\theta}_{r}-\theta_{r}^{0}\right)\left\{\ell^{\prime \prime}{ }_{j r}\left(\boldsymbol{\theta}^{0}\right)+\frac{1}{2} \sum_{l=1}^{s}\left(\hat{\theta}_{l}-\theta_{l}^{0}\right) \ell^{\prime \prime \prime}{ }_{j r l}\left(\boldsymbol{\theta}^{*}\right)\right\} \\
\Rightarrow \frac{1}{\sqrt{N}} \ell^{\prime}{ }_{j}\left(\boldsymbol{\theta}^{0}\right)=\sum_{r=1}^{s} \sqrt{N}\left(\hat{\theta}_{r}-\theta_{r}^{0}\right)\left\{-\frac{1}{N} \ell^{\prime \prime}{ }_{j r}\left(\boldsymbol{\theta}^{0}\right)-\frac{1}{2 N} \sum_{l=1}^{s}\left(\hat{\theta}_{l}-\theta_{l}^{0}\right) \ell^{\prime \prime \prime}{ }_{j r l}\left(\boldsymbol{\theta}^{*}\right)\right\} \cdots \tag{*}
\end{array}
$$

Consider equation (*) separately. First, by W.L.L.N., we have

$$
\begin{aligned}
-\frac{1}{N} \ell^{\prime \prime}{ }_{j r}\left(\boldsymbol{\theta}^{0}\right)= & -\frac{1}{N} \frac{\partial^{2}}{\partial \theta_{j} \partial \theta_{k}} \sum_{\alpha=1}^{k} \sum_{i=1}^{n_{\alpha}} \log f_{\alpha}\left(x_{\alpha i} \mid \boldsymbol{\theta}\right) \\
= & \sum_{\alpha=1}^{k} \frac{n_{\alpha}}{N}\left(-\frac{1}{n_{\alpha}} \sum_{i=1}^{n_{\alpha}} \frac{\partial^{2}}{\partial \theta_{j} \partial \theta_{k}} \log f_{\alpha}\left(x_{\alpha i} \mid \boldsymbol{\theta}\right)\right) \\
& \xrightarrow{p} \sum_{\alpha=1}^{k} \lambda_{\alpha} I_{j r}^{(\alpha)}\left(\boldsymbol{\theta}^{0}\right)=I_{j r}\left(\boldsymbol{\theta}^{0}\right) .
\end{aligned}
$$

Second, since $\hat{\theta}_{l}-\theta_{l}^{0} \xrightarrow{p} 0$ and $\ell^{\prime \prime \prime}{ }_{j r l}\left(\boldsymbol{\theta}^{*}\right) \xrightarrow{p}$ constant, we have

$$
\frac{1}{2 N} \sum_{l=1}^{s}\left(\hat{\theta}_{l}-\theta_{l}^{0}\right) \ell^{\prime \prime \prime}{ }_{j r l}\left(\boldsymbol{\theta}^{*}\right) \xrightarrow{p} 0
$$

Finally,

$$
\begin{aligned}
\frac{1}{\sqrt{N}} \ell^{\prime}\left(\boldsymbol{\theta}^{0}\right) & =\frac{1}{\sqrt{N}} \frac{\partial}{\partial \theta_{j}} \sum_{\alpha=1}^{k} \sum_{i=1}^{n_{\alpha}} \log f_{\alpha}\left(x_{\alpha i} \mid \boldsymbol{\theta}\right) \\
& =\sum_{\alpha=1}^{k} \sqrt{\frac{n_{\alpha}}{N}} \frac{1}{\sqrt{n_{\alpha}}} \sum_{i=1}^{n_{\alpha}} \frac{\partial}{\partial \theta_{j}} \log f_{\alpha}\left(x_{\alpha i} \mid \boldsymbol{\theta}\right)
\end{aligned}
$$

In the vector form, by the Multivariate CLT, we obtain

$$
\begin{aligned}
\frac{1}{\sqrt{N}}\left[\begin{array}{c}
\ell_{1}^{\prime}\left(\boldsymbol{\theta}^{0}\right) \\
\ell_{2}^{\prime}\left(\boldsymbol{\theta}^{0}\right) \\
\vdots \\
\ell_{s}^{\prime}\left(\boldsymbol{\theta}^{0}\right)
\end{array}\right] & =\sum_{\alpha=1}^{k} \sqrt{\frac{n_{\alpha}}{N}}\left[\begin{array}{c}
\frac{1}{\sqrt{n_{\alpha}}} \sum_{i=1}^{n_{\alpha}} \frac{\partial}{\partial \theta_{1}} \log f_{\alpha}\left(x_{\alpha i} \mid \boldsymbol{\theta}\right) \\
\frac{1}{\sqrt{n_{\alpha}}} \sum_{i=1}^{n_{\alpha}} \frac{\partial}{\partial \theta_{2}} \log f_{\alpha}\left(x_{\alpha i} \mid \boldsymbol{\theta}\right) \\
\vdots \\
\frac{1}{\sqrt{n_{\alpha}}} \sum_{i=1}^{n_{\alpha}} \frac{\partial}{\partial \theta_{s}} \log f_{\alpha}\left(x_{\alpha i} \mid \boldsymbol{\theta}\right)
\end{array}\right] \\
& \xrightarrow{d} \sum_{\alpha=1}^{k} \sqrt{\lambda_{\alpha}} N\left(0, I^{(\alpha)}\left(\boldsymbol{\theta}^{0}\right)\right)=N\left(0, I\left(\boldsymbol{\theta}^{0}\right)\right) .
\end{aligned}
$$

Therefore, the equation (*) becomes

$$
\begin{aligned}
& I\left(\boldsymbol{\theta}^{0}\right) \sqrt{N}\left(\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{0}\right) \xrightarrow{d} N\left(0, I\left(\boldsymbol{\theta}^{0}\right)\right) \\
& \Rightarrow \sqrt{N}\left(\hat{\boldsymbol{\theta}}-\boldsymbol{\theta}^{0}\right) \xrightarrow{d} N\left(0, I^{-1}\left(\boldsymbol{\theta}^{0}\right)\right) .
\end{aligned}
$$

