Homework\#5, Statistical Inference II, 2013 Spring

1. Let $T_{1}, T_{2}, \cdots, T_{n}$ be iid random variables from the density $f(x)=\lambda e^{-\lambda x} I(x \geq 0)$. For a fixed number $r<n$, let $T_{(1)}<T_{(2)}<\cdots<T_{(r)}$ be the ordered samples for the r smallest observations (Type II censored data). Consider inference for $\lambda>0$ based only on the observations $\left(T_{(1)}, T_{(2)}, \cdots, T_{(r)}\right)$.
1) Write the joint density of ($\left.T_{(1)}, T_{(2)}, \cdots, T_{(r)}\right)$.
2) Show that $V=\sum_{i=1}^{r} T_{(i)}+(n-r) T_{(r)}$ is complete and sufficient for λ.
3) Find the distribution of $2 \lambda V$, which is a pivotal quantity.
4) Find an exact $(1-\alpha)$-confidence sets for λ using the pivotal quantity.
2. In the least square model $X=Z \beta+\varepsilon$ with $p=2$, one has data

[1,	-0.8
$[2]$,	-2.1
$[3$,	1.4
$[4]$,	-1.0
$[5]$,	2.3
$[6]$,	3.6
$[7]$,	-0.6
$[8]$,	1.5
$[9]$,	-1.0
$[10]$,	2.2

$>$		
	$[, 1]$	$[, 2]$
$[1]$,	-0.6	-0.5
$[2]$,	-1.5	0.1
$[3]$,	0.7	-0.1
$[4]$,	0.1	0.8
$[5]$,	0.7	0.3
$[6]$,	1.1	1.5
$[7]$,	0.6	-1.6
$[8]$,	1.0	1.0
$[9]$,	-0.5	0.5
$[10]$,	0.4	1.0

Draw 95% confidence set for $\beta=\left(\beta_{1}, \beta_{2}\right)$
(detailed numerical information about your picture is necessary)

Answer 1

1)

$$
\begin{aligned}
& \operatorname{Pr}\left(T_{(1)}=t_{(1)}, T_{(2)}=t_{(2)}, \cdots, T_{(r)}=t_{(r)}\right) \\
& =\binom{n}{r} \operatorname{Pr}\left(T_{1}=t_{(1)}, T_{2}=t_{(2)}, \cdots, T_{r}=t_{(r)}, T_{r+1}>t_{(r)}, \cdots, T_{n}>t_{(r)}\right) \\
& =\binom{n}{r}\left(\prod_{i=1}^{r} \lambda e^{-\lambda t_{(i)}}\right) \times e^{-\lambda(n-r) t_{(r)}}=\binom{n}{r} \lambda^{r} e^{-\lambda\left\{\sum_{i=1}^{r} t_{(i)}+(n-r) t_{(r)}\right\}}=\binom{n}{r} e^{-\lambda v+r \log \lambda}
\end{aligned}
$$

2) Since the above density is in an exponential family with full rank, $V=\sum_{i=1}^{r} T_{(i)}+(n-r) T_{(r)}$ is complete and sufficient (Prop 2.1, p. 110 of Shao).
3) Let $T_{(0)}=0$. Then,

$$
\begin{aligned}
& T_{(1)}=T_{(1)}-T_{(0)} \\
& T_{(2)}=\left(T_{(1)}-T_{(0)}\right)+\left(T_{(2)}-T_{(1)}\right) \\
& \vdots \\
& T_{(r)}=\left(T_{(1)}-T_{(0)}\right)+\left(T_{(2)}-T_{(1)}\right)+\cdots+\left(T_{(r)}-T_{(r-1)}\right)
\end{aligned}
$$

So,
$V=\sum_{i=1}^{r} T_{(i)}+(n-r) T_{(r)}=\sum_{i=1}^{r}(r-i+1)\left(T_{(i)}-T_{(i-1)}\right)+(n-r) \sum_{i=1}^{r}\left(T_{(i)}-T_{(i-1)}\right)$
$=\sum_{i=1}^{r}(n-i+1)\left(T_{(i)}-T_{(i-1)}\right) \equiv \sum_{i=1}^{r} U_{i}$.
where $\quad U_{i} \equiv(n-i+1)\left(T_{(i)}-T_{(i-1)}\right), i=1, \ldots, r$ follows iid with the pdf $f(x)=\lambda e^{-\lambda x} I(x \geq 0)$. Thus, $2 \lambda U_{i}$ has the $f(x)=1 / 2 e^{-x / 2} I(x \geq 0)$, the chisquared distribution with $\mathrm{df}=2$. Hence, $V \sim \chi_{d f=2 r}^{2}$.
4) Find $c _1$ and $c _2$ such that
$\operatorname{Pr}\left(c_{1} \leq \chi_{d f=2 r}^{2} \leq c_{2}\right)=1-\alpha$.

Then, solve $c_{1} \leq 2 \lambda V \leq c_{2}$ and get $\frac{c_{1}}{2 V} \leq \lambda \leq \frac{c_{2}}{2 V}$.

