Homework#3, Statistical Inference II, 2013 Spring

Note that the likelihood ratio $\frac{f_{\theta_2}(x)}{f_{\theta_1}(x)}$ is well-defined when at least one of $f_{\theta_1}(x)$ and $f_{\theta_2}(x)$ is nonzero [Def. 6.2 in the textbook]. Hence, we define the set $S = \{x : f_{\theta_1}(x) > 0 \text{ or } f_{\theta_2}(x) > 0\}$ in which $\frac{f_{\theta_2}(x)}{f_{\theta_1}(x)}$ is well-defined.

1. Consider the family $\{f_{\theta}(x) : \theta \in R\}$ with $f_{\theta}(x) = c(\theta)h(x)I_{(a(\theta),b(\theta))}(x)$, where $a(\theta)$ and $b(\theta)$ are nondecreasing [Ex. 12 in the textbook].

- a) Define the set S.
- b) Show that the family is MLR.
- c) Derive a size α UMP test for $H_0: \theta \le \theta_0$ vs. $H_1: \theta > \theta_0$.

2. Data $(X_1,...,X_n)$ follows independently and identically a Weibull distribution with $P_{\theta}(X_i > x) = \exp\{-(x/\theta)^c\}I_{(0,\infty)}(x) + I_{(-\infty,0]}(x)$, where $\theta > 0$ is unknown and c > 0 is known. Derive a size α UMP test for $H_0: \theta \le \theta_0$ vs. $H_1: \theta > \theta_0$ [the cut-off value should use the percentile of the chi-square distribution]. This is a simplified answer. You need to write more details.

$$\begin{array}{l} \textbf{1.Answer}\\ \textbf{Case (i):} \quad a(\theta_2) < b(\theta_1)\\ S = (a(\theta_1), b(\theta_2))\\ \\ \frac{f_{\theta_2}(x)}{f_{\theta_1}(x)} = \begin{cases} 0 & \text{if } a(\theta_1) < x \leq a(\theta_2)\\ c(\theta_2)/c(\theta_1) & \text{if } a(\theta_2) < x < b(\theta_1) \\ \infty & \text{if } b(\theta_1) \leq x < b(\theta_2) \end{cases} \quad \text{(MLR in x)}\\ \\ \infty & \text{if } b(\theta_1) \leq x < b(\theta_2) \end{cases}\\ \textbf{Case (i):} \quad b(\theta_1) \leq a(\theta_2)\\ S = (a(\theta_1), b(\theta_1)) \cup (a(\theta_2), b(\theta_2)))\\ \\ \frac{f_{\theta_2}(x)}{f_{\theta_1}(x)} = \begin{cases} 0 & \text{if } a(\theta_1) < x \leq b(\theta_1)\\ \\ \infty & \text{if } a(\theta_2) < x < b(\theta_2) \end{cases} \quad \text{(MLR in x)}\\ \\ \infty & \text{if } a(\theta_2) < x < b(\theta_2) \end{cases} \end{aligned}$$

Answer 2:

Since $f_{\theta}(x_i) = c x_i^{c-1} I_{(0,\infty)}(x) \exp(-x_i^c / \theta^c - c \log \theta)$, the p.d.f. of full data is

$$f_{\theta}(x) = c^{n} \prod_{i=1}^{n} x_{i}^{c-1} I_{(0,\infty)}(x_{(1)}) \exp(-\sum_{i=1}^{n} x_{i}^{c} / \theta^{c} - nc \log \theta),$$

where $\eta(\theta) = -1/\theta^c$ is strictly increasing and $Y(X) = \sum_{i=1}^n X_i^c \sim Gamma(n, \theta^c)$. Note that $2Y(X)/\theta^c \sim \chi^2_{df=n}$. Solving $P_{\theta_0}(Y > d) = P_{\theta_0}(\frac{2Y}{\theta_0^c} > \frac{2d}{\theta_0^c}) = \alpha$, $d = \theta_0^c \chi^2_{df=n,1-\alpha}/2$. Hence, by Corollary 6.2, the UMP is

 $T(X) = I_{(d_{\alpha},\infty)}(Y(X))$, where $d_{\alpha} = \theta_0^c \chi_{df=n,1-\alpha}^2 / 2$.