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Problem 5.28 

(a) 

The distribution of X  with density 
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The distribution of X  truncated on A  that is the distribution with density  
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Then,  
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Hence the distribution of X  truncated on A  is an s-dimensional exponential 

family where 
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Problem 6.37 

Under the assumptions of Theorem 6.5, let A  be any fixed set in the sample space, 

*

P  the distribution P  truncated on A  and },{ **  P . Then prove 

(a) if T  is sufficient for  , it is sufficient for * . 

Proof: 

Since T  is sufficient for  , by the factorization criterion  
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  , )()()(* xIxhxh A . 

By the factorization criterion 
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Hence T  is sufficient for * . 

 

  



(b) if, in addition, if T  is complete for  , it is complete for *  

Proof: 

Since T  is complete for },{  P , we have 
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Consider *

P  the distribution P  truncated on A  and },{ **  P . 
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Since A  is any fixed set in the sample space. Therefore,  
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Hence T  is complete for * . 

  



Problem 7.4 

If   is convex on ),( ba  and   is convex and non-decreasing on the range of  , 

show that the function ])([ x  is convex on ),( ba . 

Proof: 

Since   is convex on ),( ba , for all )1,0(  and for all ),(, bayx   we have 

)()1()())1(( yxyx   . 

Since   is non-decreasing on the range of  , we have 

})()1()({}))1(({ yxyx    

and    is also convex on the range of  , hence 

})({)1(})({})()1()({ yxyx   . 

Therefore, we obtain 

})({)1(})({}))1(({ yxyx   , 

for all )1,0(  and for all ),(, bayx  . 

By definition ])([ x  is convex on ),( ba . 

 


