Report\#4 Statistical Inference I

Name: Jia-Han Shih

Problem 5.28

(a)

The distribution of X with density

$$
p_{\theta}(x)=\exp \left[\sum_{i=1}^{s} \eta_{i}^{\prime}(\theta) T_{i}^{\prime}(x)-B^{\prime}(\theta)\right] h^{\prime}(x) .
$$

The distribution of X truncated on A that is the distribution with density

$$
\frac{p_{\theta}(x) I_{A}(x)}{P_{\theta}(A)} .
$$

Therefore,

$$
\begin{aligned}
& \int_{\chi} \frac{p_{\theta}(x) I_{A}(x)}{P_{\theta}(A)} d x=1 \\
& \Rightarrow \int_{A} p_{\theta}(x) d x=P_{\theta}(A) \\
& \Rightarrow P_{\theta}(A)=\int_{A} \exp \left[\sum_{i=1}^{s} \eta_{i}^{\prime}(\theta) T_{i}^{\prime}(x)-B^{\prime}(\theta)\right] h^{\prime}(x) d x .
\end{aligned}
$$

Then,

$$
\begin{aligned}
\frac{p_{\theta}(x) I_{A}(x)}{P_{\theta}(A)} & =\exp \left[\sum_{i=1}^{s} \eta_{i}^{\prime}(\theta) T_{i}^{\prime}(x)-B^{\prime}(\theta)\right] h^{\prime}(x) \frac{I_{A}(x)}{P_{\theta}(A)} \\
& =\exp \left[\sum_{i=1}^{s} \eta_{i}^{\prime}(\theta) T_{i}^{\prime}(x)-\left\{B^{\prime}(\theta)+\log P_{\theta}(A)\right\}\right] h^{\prime}(x) I_{A}(x) \\
& =\exp \left[\sum_{i=1}^{s} \eta_{i}(\theta) T_{i}(x)-B(\theta)\right] h(x) .
\end{aligned}
$$

Hence the distribution of X truncated on A is an s-dimensional exponential family where

$$
\eta_{i}(\theta)=\eta_{i}^{\prime}(\theta), \quad T_{i}(\theta)=T_{i}^{\prime}(\theta), h(x)=h^{\prime}(x) I_{A}(x)
$$

and $B(\theta)=B^{\prime}(\theta)+\int_{A}\left\{\sum_{i=1}^{s} \eta_{i}^{\prime}(\theta) T_{i}^{\prime}(x)-B^{\prime}(\theta)+\log h^{\prime}(x)\right\} d x$.

Problem 6.37

Under the assumptions of Theorem 6.5, let A be any fixed set in the sample space, P_{θ}^{*} the distribution P_{θ} truncated on A and $\mathrm{P}^{*}=\left\{P_{\theta}^{*}, \theta \in \Omega\right\}$. Then prove
(a) if T is sufficient for P , it is sufficient for P^{*}.

Proof:

Since T is sufficient for P , by the factorization criterion

$$
p_{\theta}(x)=g_{\theta}[T(x)] h(x) .
$$

Therefore,

$$
\begin{aligned}
p_{\theta}^{*}(x) & =\frac{p_{\theta}(x) I_{A}(x)}{P_{\theta}(A)} \\
& =\frac{g_{\theta}[T(x)] h(x) I_{A}(x)}{P_{\theta}(A)} .
\end{aligned}
$$

Let

$$
g_{\theta}^{*}(x)=\frac{g_{\theta}(x)}{P_{\theta}(A)}, h^{*}(x)=h(x) I_{A}(x) .
$$

By the factorization criterion

$$
\begin{aligned}
p_{\theta}^{*}(x) & =\frac{g_{\theta}[T(x)] h(x) I_{A}(x)}{P_{\theta}(A)} \\
& =g_{\theta}^{*}[T(x)] h^{*}(x)
\end{aligned}
$$

Hence T is sufficient for P^{*}.
(b) if, in addition, if T is complete for P , it is complete for P^{*}

Proof:

Since T is complete for $\mathrm{P}=\left\{P_{\theta}, \theta \in \Omega\right\}$, we have

$$
E_{\theta}[f(T(X))]=\int_{\chi} f(T(x)) p_{\theta}(x) d x=0, \forall \theta \in \Omega \Rightarrow f=0 .
$$

Consider P_{θ}^{*} the distribution P_{θ} truncated on A and $P^{*}=\left\{P_{\theta}^{*}, \theta \in \Omega\right\}$.

$$
\begin{aligned}
& E_{\theta}[f(T(X))]=0 \\
& \Rightarrow \int_{\chi} f(T(x)) p_{\theta}^{*}(x) d x=0 \\
& \Rightarrow \int_{\chi} f(T(x)) \frac{p_{\theta}(x) I_{A}(x)}{P_{\theta}(A)} d x=0 \\
& \Rightarrow \int_{A} f(T(x)) p_{\theta}(x) d x=0
\end{aligned}
$$

Since A is any fixed set in the sample space. Therefore,

$$
\int_{A} f(T(x)) p_{\theta}(x) d x=0, \forall \theta \in \Omega \Rightarrow f=0 .
$$

Hence T is complete for P^{*}.

Problem 7.4

If ϕ is convex on (a, b) and ψ is convex and non-decreasing on the range of ϕ, show that the function $\psi[\phi(x)]$ is convex on (a, b).

Proof:

Since ϕ is convex on (a, b), for all $\gamma \in(0,1)$ and for all $x, y \in(a, b)$ we have

$$
\phi(\gamma x+(1-\gamma) y) \leq \gamma \phi(x)+(1-\gamma) \phi(y) .
$$

Since ψ is non-decreasing on the range of ϕ, we have

$$
\psi\{\phi(\gamma x+(1-\gamma) y)\} \leq \psi\{\gamma \phi(x)+(1-\gamma) \phi(y)\}
$$

and ψ is also convex on the range of ϕ, hence

$$
\psi\{\gamma \phi(x)+(1-\gamma) \phi(y)\} \leq \gamma \psi\{\phi(x)\}+(1-\gamma) \psi\{\phi(y)\} .
$$

Therefore, we obtain

$$
\psi\{\phi(\gamma x+(1-\gamma) y)\} \leq \gamma \psi\{\phi(x)\}+(1-\gamma) \psi\{\phi(y)\},
$$

for all $\gamma \in(0,1)$ and for all $x, y \in(a, b)$.
By definition $\psi[\phi(x)]$ is convex on (a, b).

