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Problem 2.1 

If ),(~,, 2

1 NXX
iid

n  with 2  is known. Find the UMVUE of (a) 2 , (b) 3  

and (c) 4 . 

Solution: 

(a) 
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Thus, it is the canonical form of an one-dimensional exponential family. Since the 

natural parameter space   contains an one-dimensional open rectangle (e.g., 

)1,0( ) hence it is full rank. Therefore, 
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Here I directly use the formula of )(
k

XE in Problem 2.4. This formula will be 

proved latter. The formula is  

),()(
0

rrk
k

r

k

YE
r

k
XE 



 







   

where  

)/,0(~ 2 nNY   

and  



 


.oddiswhere0

evenis2where)/(13)3)(1(
)(

2/2

r

rnrr
YE

r

r 
 

Therefore,  

.

)(
2

2
)(

1

2

0

2

)(
2

)(

2
2

22

2

0

22

n

YEYE

YE
r

XE
r

rr




















































 

Hence we obtain  

.2
2

2














n
XE  

Since 
n

X
2

2 
  is a function of complete sufficient statistic. Therefore, 

n
X

2
2 
  is 

the UMVUE of 2 . 

  



(b) 

By the formula of )(
k

XE , we have  
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3 3
  is a function of complete sufficient statistic. Therefore, 
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3 3
  is the UMVUE of 3 . 

 

  



(c) 

By the formula of )(
k

XE , we have  
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Problem 2.2 

(a) 

If ),(~,, 2

1 NXX
iid

n  with both parameters are unknown. Then we can use the 

same method in Problem 2.1 to show that 
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is complete sufficient statistic.  

Then we have 
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By the previous results, we have 
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(b) 

Since X  is complete sufficient statistic for   and 2S  is ancillary for  . By 

Basu’s Theorem, X  and 2S  are independent. 

Therefore, 
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By the previous results, we have 
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(c) 

Similarly, 
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Problem 2.4 

(a) 

If ),(~,, 2

1 NXX
iid

n  with 2  is known. The formula of )(
k

XE  is 
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Proof: 

One can write YX . By the binomial theorem, we have 
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Using the change of variable u
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 , then we can obtain 
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Then consider the integral 
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If r  is odd, it is an integral of an odd function over a real line. Hence it is zero. If r  

is even, consider the change of variable wu  , then we have 
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(b) 

If ),(~,, 2

1 NXX
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n  with   is known. Define  
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We can use the same method in Problem 2.1 to show that 2S  is an complete 

sufficient statistic. Moreover, we have 
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Problem 2.5 

If ),(~,, 2

1 NXX
iid

n  with both parameters are unknown. Then we can use the 

same method in Problem 2.1 to show that 
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By the previous results, we have 
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Problem 2.6 

(a) 

Here X  and 2S  are the same notations as in Problem 2.5. Since X  is complete 

sufficient statistic for   and 2S  is ancillary for  . By Basu’s Theorem, X  and 

2S  are independent. 

Since  
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