Homework\#3 Statistical Inference I

Name: Shih Jia-Han

Problem 2.1

If $X_{1}, \cdots, X_{n} \sim N\left(\xi, \sigma^{2}\right)$ with σ^{2} is known. Find the UMVUE of (a) ξ^{2}, (b) ξ^{3} and (c) ξ^{4}.

Solution:

(a)

Since $X_{1}, \cdots, X_{n} \stackrel{\text { iid }}{\sim} N\left(\xi, \sigma^{2}\right)$ and σ^{2} is known, we have

$$
\begin{aligned}
f\left(x_{1}, \cdots, x_{n}\right) & =\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{\frac{-1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\xi\right)^{2}\right\} \\
& =\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{\frac{-1}{2 \sigma^{2}} \sum_{i=1}^{n} x_{i}^{2}\right\} \exp \left\{\frac{\xi}{\sigma^{2}} \sum_{i=1}^{n} x_{i}-\frac{n \xi^{2}}{2 \sigma^{2}}\right\} \\
& =\exp \{\eta T(x)-A(\eta)\} h(x),
\end{aligned}
$$

where

$$
\begin{gathered}
\eta=\frac{\xi}{\sigma^{2}}, T(x)=\sum_{i=1}^{n} x_{i}, A(\eta)=\frac{n \eta^{2} \sigma^{2}}{2}, h(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{\frac{-1}{2 \sigma^{2}} \sum_{i=1}^{n} x_{i}^{2}\right\}, \\
\chi \in R^{n} \text { and } \Theta=\{\eta \mid \eta \in R\}
\end{gathered}
$$

Thus, it is the canonical form of an one-dimensional exponential family. Since the natural parameter space Θ contains an one-dimensional open rectangle (e.g., $(0,1) \in \Theta)$ hence it is full rank. Therefore, $T(x)=\sum_{i=1}^{n} x_{i}$ is a complete sufficient statistic.

Let

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \sim N\left(\xi, \sigma^{2} / n\right) .
$$

Here I directly use the formula of $E\left(\bar{X}^{k}\right)$ in Problem 2.4. This formula will be proved latter. The formula is

$$
E\left(\bar{X}^{k}\right)=\sum_{r=0}^{k}\binom{k}{r} \xi^{k-r} E\left(Y^{r}\right),
$$

where

$$
Y \sim N\left(0, \sigma^{2} / n\right)
$$

and

$$
E\left(Y^{r}\right)= \begin{cases}(r-1)(r-3) \cdots 3 \cdot 1 \cdot\left(\sigma^{2} / n\right)^{r / 2} & \text { where } r \geq 2 \text { is even } \\ 0 & \text { where } r \text { is odd. }\end{cases}
$$

Therefore,

$$
\begin{aligned}
E\left(\bar{X}^{2}\right) & =\sum_{r=0}^{2}\binom{2}{r} \xi^{2-r} E\left(Y^{r}\right) \\
& =\binom{2}{0} \xi^{2}+\binom{2}{1} \xi E(Y)+\binom{2}{2} E\left(Y^{2}\right) \\
& =\xi^{2}+\frac{\sigma^{2}}{n} .
\end{aligned}
$$

Hence we obtain

$$
E\left(\bar{X}^{2}-\frac{\sigma^{2}}{n}\right)=\xi^{2} .
$$

Since $\bar{X}^{2}-\frac{\sigma^{2}}{n}$ is a function of complete sufficient statistic. Therefore, $\bar{X}^{2}-\frac{\sigma^{2}}{n}$ is the UMVUE of ξ^{2}.
(b)

By the formula of $E\left(\bar{X}^{k}\right)$, we have

$$
\begin{aligned}
E\left(\bar{X}^{3}\right) & =\sum_{r=0}^{3}\binom{3}{r} \xi^{3-r} E\left(Y^{r}\right) \\
& =\binom{3}{0} \xi^{3}+\binom{3}{1} \xi^{2} E(Y)+\binom{3}{2} \xi E\left(Y^{2}\right)+\binom{3}{3} E\left(Y^{3}\right) \\
& =\xi^{3}+\frac{3 \xi \sigma^{2}}{n}
\end{aligned}
$$

Hence we obtain

$$
\begin{aligned}
E\left(\bar{X}^{3}-\frac{3 \sigma^{2}}{n} \bar{X}\right) & =E\left(\bar{X}^{3}\right)-\frac{3 \sigma^{2}}{n} E(\bar{X}) \\
& =\xi^{3}+\frac{3 \xi \sigma^{2}}{n}-\frac{3 \sigma^{2}}{n} \xi \\
& =\xi^{3}
\end{aligned}
$$

Since $\bar{X}^{3}-\frac{3 \sigma^{2}}{n} \bar{X}$ is a function of complete sufficient statistic. Therefore, $\bar{X}^{3}-\frac{3 \sigma^{2}}{n} \bar{X}$ is the UMVUE of ξ^{3}.
(c)

By the formula of $E\left(\bar{X}^{k}\right)$, we have

$$
\begin{aligned}
E\left(\bar{X}^{4}\right) & =\sum_{r=0}^{4}\binom{4}{r} \xi^{4-r} E\left(Y^{r}\right) \\
& =\binom{4}{0} \xi^{4}+\binom{4}{1} \xi^{3} E(Y)+\binom{4}{2} \xi^{2} E\left(Y^{2}\right)+\binom{4}{3} \xi E\left(Y^{3}\right)+\binom{4}{4} E\left(Y^{4}\right) \\
& =\xi^{4}+\frac{6 \xi^{2} \sigma^{2}}{n}+\frac{3 \sigma^{4}}{n^{2}}
\end{aligned}
$$

Hence we obtain

$$
\begin{aligned}
& E\left(\bar{X}^{4}-\frac{6 \sigma^{2}}{n} \bar{X}^{2}+\frac{3 \sigma^{4}}{n^{2}}\right) \\
= & E\left(\bar{X}^{4}\right)-\frac{6 \sigma^{2}}{n} E\left(\bar{X}^{2}\right)+\frac{3 \sigma^{4}}{n^{2}} \\
= & \xi^{4}+\frac{6 \xi^{2} \sigma^{2}}{n}+\frac{3 \sigma^{4}}{n^{2}}-\frac{6 \sigma^{2}}{n}\left(\xi^{2}+\frac{\sigma^{2}}{n}\right)+\frac{3 \sigma^{4}}{n^{2}} \\
= & \xi^{4}+\frac{6 \xi^{2} \sigma^{2}}{n}+\frac{3 \sigma^{4}}{n^{2}}-\frac{6 \sigma^{2}}{n} \xi^{2}-\frac{6 \sigma^{4}}{n^{2}}+\frac{3 \sigma^{4}}{n^{2}} \\
= & \xi^{4} .
\end{aligned}
$$

Since $\bar{X}^{4}-\frac{6 \sigma^{2}}{n} \bar{X}^{2}+\frac{3 \sigma^{4}}{n^{2}}$ is a function of complete sufficient statistic. Therefore, $\bar{X}^{4}-\frac{6 \sigma^{2}}{n} \bar{X}^{2}+\frac{3 \sigma^{4}}{n^{2}}$ is the UMVUE of ξ^{4}.

Problem 2.2

(a)

If $X_{1}, \cdots, X_{n} \sim N\left(\xi, \sigma^{2}\right)$ with both parameters are unknown. Then we can use the same method in Problem 2.1 to show that

$$
\left(\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}, S^{2}=\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\right)
$$

is complete sufficient statistic.

Then we have

$$
\frac{S^{2}}{\sigma^{2}} \sim \chi_{d f=n-1}^{2}
$$

Therefore,

$$
E\left(\frac{S^{2}}{\sigma^{2}}\right)=n-1 \Rightarrow E\left(\frac{S^{2}}{n(n-1)}\right)=\frac{\sigma^{2}}{n}
$$

By the previous results, we have

$$
E\left(\bar{X}^{2}\right)=\xi^{2}+\frac{\sigma^{2}}{n}
$$

Hence we obtain

$$
\begin{aligned}
E\left(\bar{X}^{2}-\frac{S^{2}}{n(n-1)}\right) & =E\left(\bar{X}^{2}\right)-E\left(\frac{S^{2}}{n(n-1)}\right) \\
& =\xi^{2}+\frac{\sigma^{2}}{n}-\frac{\sigma^{2}}{n} \\
& =\xi^{2}
\end{aligned}
$$

Since $\bar{X}^{2}-\frac{S^{2}}{n(n-1)}$ is a function of complete sufficient statistic. Therefore, $\bar{X}^{2}-\frac{S^{2}}{n(n-1)}$ is the UMVUE of ξ^{2}.
(b)

Since \bar{X} is complete sufficient statistic for ξ and S^{2} is ancillary for ξ. By Basu's Theorem, \bar{X} and S^{2} are independent.

Therefore,

$$
\begin{aligned}
& E\left(\frac{S^{2}}{\sigma^{2}} \bar{X}\right)=E\left(\frac{S^{2}}{\sigma^{2}}\right) E(\bar{X})=(n-1) \xi \\
& \Rightarrow E\left(\frac{3 S^{2}}{n(n-1)} \bar{X}\right)=\frac{3 \sigma^{2} \xi}{n} .
\end{aligned}
$$

By the previous results, we have

$$
E\left(\bar{X}^{3}\right)=\xi^{3}+\frac{3 \sigma^{2} \xi}{n} .
$$

Hence we obtain

$$
\begin{aligned}
E\left(\bar{X}^{3}-\frac{3 S^{2}}{n(n-1)} \bar{X}\right) & =E\left(\bar{X}^{3}\right)-E\left(\frac{3 S^{2}}{n(n-1)} \bar{X}\right) \\
& =\xi^{3}+\frac{3 \sigma^{2} \xi}{n}-\frac{3 \sigma^{2} \xi}{n} \\
& =\xi^{3} .
\end{aligned}
$$

Since $\bar{X}^{3}-\frac{3 S^{2}}{n(n-1)} \bar{X}$ is a function of complete sufficient statistic. Therefore, $\bar{X}^{3}-\frac{3 S^{2}}{n(n-1)} \bar{X}$ is the UMVUE of ξ^{3}.
(c)

Similarly,

$$
\begin{aligned}
& \quad E\left(\frac{S^{2}}{\sigma^{2}} \bar{X}^{2}\right)=E\left(\frac{S^{2}}{\sigma^{2}}\right) E\left(\bar{X}^{2}\right)=(n-1)\left(\xi^{2}+\frac{\sigma^{2}}{n}\right) \\
& \Rightarrow E\left(\frac{6 S^{2}}{n(n-1)} \bar{X}^{2}\right)=\frac{6 \sigma^{2} \xi^{2}}{n}+\frac{6 \sigma^{4}}{n^{2}}, \\
& E\left(\frac{S^{4}}{\sigma^{4}}\right)=\operatorname{var}\left(\frac{S^{2}}{\sigma^{2}}\right)+\left\{E\left(\frac{S^{2}}{\sigma^{2}}\right)\right\}^{2}=2(n-1)+(n-1)^{2}=(n-1)(n+1)=n^{2}-1 \\
& \Rightarrow E\left(\frac{3 S^{4}}{n^{2}\left(n^{2}-1\right)}\right)=\frac{3 \sigma^{4}}{n^{2}} .
\end{aligned}
$$

By the previous results, we have

$$
E\left(\bar{X}^{4}\right)=\xi^{4}+\frac{6 \xi^{2} \sigma^{2}}{n}+\frac{3 \sigma^{4}}{n^{2}} .
$$

Hence we obtain

$$
\begin{aligned}
E\left(\bar{X}^{4}-\frac{6 S^{2}}{n(n-1)} \bar{X}^{2}+\frac{3 S^{4}}{n^{2}\left(n^{2}-1\right)}\right) & =E\left(\bar{X}^{4}\right)-E\left(\frac{6 S^{2}}{n(n-1)} \bar{X}^{2}\right)+E\left(\frac{3 S^{4}}{n^{2}\left(n^{2}-1\right)}\right) \\
& =\xi^{4}+\frac{6 \xi^{2} \sigma^{2}}{n}+\frac{3 \sigma^{4}}{n^{2}}-\frac{6 \sigma^{2} \xi^{2}}{n}-\frac{6 \sigma^{4}}{n^{2}}+\frac{3 \sigma^{4}}{n^{2}} \\
& =\xi^{4} .
\end{aligned}
$$

Since $\bar{X}^{4}-\frac{6 S^{2}}{n(n-1)} \bar{X}^{2}+\frac{3 S^{4}}{n^{2}\left(n^{2}-1\right)}$ is a function of complete sufficient statistic.
Therefore, $\bar{X}^{4}-\frac{6 S^{2}}{n(n-1)} \bar{X}^{2}+\frac{3 S^{4}}{n^{2}\left(n^{2}-1\right)}$ is the UMVUE of ξ^{3}.

Problem 2.4

(a)

If $X_{1}, \cdots, X_{n} \sim N\left(\xi, \sigma^{2}\right)$ with σ^{2} is known. The formula of $E\left(\bar{X}^{k}\right)$ is

$$
E\left(\bar{X}^{k}\right)=\sum_{r=0}^{k}\binom{k}{r} \xi^{k-r} E\left(Y^{r}\right),
$$

where

$$
Y \sim N\left(0, \sigma^{2} / n\right)
$$

and

$$
E\left(Y^{r}\right)= \begin{cases}(r-1)(r-3) \cdots 3 \cdot 1 \cdot\left(\sigma^{2} / n\right)^{r / 2} & \text { where } r \geq 2 \text { is even } \\ 0 & \text { where } r \text { is odd. }\end{cases}
$$

Proof:

One can write $\bar{X}=Y+\xi$. By the binomial theorem, we have

$$
\begin{aligned}
E\left(\bar{X}^{k}\right) & =E\left\{(Y+\xi)^{k}\right\} \\
& \left.=E\left\{\begin{array}{l}
k \\
r=0 \\
k \\
r
\end{array}\right) \xi^{k-r} Y^{r}\right\} \\
& =\sum_{r=0}^{k}\binom{k}{r} \xi^{k-r} E\left(Y^{r}\right) .
\end{aligned}
$$

Then

$$
E\left(Y^{r}\right)=\int_{-\infty}^{\infty} y^{r} \frac{1}{\sqrt{2 \pi \sigma^{2} / n}} \exp \left\{\frac{-y^{2}}{2 \sigma^{2} / n}\right\} d y .
$$

Using the change of variable $y=\frac{\sigma}{\sqrt{n}} u$, then we can obtain

$$
\begin{aligned}
& \int_{-\infty}^{\infty} y^{r} \frac{1}{\sqrt{2 \pi \sigma^{2} / n}} \exp \left\{\frac{-y^{2}}{2 \sigma^{2} / n}\right\} d y \\
& =\int_{-\infty}^{\infty}\left(\frac{\sigma}{\sqrt{n}} u\right)^{r} \frac{1}{\sqrt{2 \pi \sigma^{2} / n}} \exp \left\{\frac{-1}{2 \sigma^{2} / n} \frac{\sigma^{2}}{n} u^{2}\right\} \frac{\sigma}{\sqrt{n}} d u \\
& =\left(\frac{\sigma}{\sqrt{n}}\right)^{r} \int_{-\infty}^{\infty} u^{r} \frac{1}{\sqrt{2 \pi}} \exp \left\{\frac{-u^{2}}{2}\right\} d u .
\end{aligned}
$$

Then consider the integral

$$
\int_{-\infty}^{\infty} u^{r} \frac{1}{\sqrt{2 \pi}} \exp \left\{\frac{-u^{2}}{2}\right\} d u
$$

If r is odd, it is an integral of an odd function over a real line. Hence it is zero. If r is even, consider the change of variable $u=\sqrt{w}$, then we have

$$
\begin{aligned}
\int_{-\infty}^{\infty} u^{r} \frac{1}{\sqrt{2 \pi}} \exp \left\{\frac{-u^{2}}{2}\right\} d u & =2 \int_{0}^{\infty} u^{r} \frac{1}{\sqrt{2 \pi}} \exp \left\{\frac{-u^{2}}{2}\right\} d u \\
& =2 \int_{0}^{\infty}(\sqrt{2 w})^{r} \frac{1}{\sqrt{2 \pi}} \exp \left\{\frac{-(\sqrt{2 w})^{2}}{2}\right\} \frac{1}{\sqrt{2 w}} d w \\
& =\frac{2^{\frac{r}{2}}}{\sqrt{\pi}} \int_{-\infty}^{\infty} w^{\frac{r}{2}-\frac{1}{2}} e^{-w} d w=\frac{2^{\frac{r}{2}}}{\sqrt{\pi}} \Gamma\left(\frac{r}{2}+\frac{1}{2}\right) \\
& =\frac{1}{\sqrt{\pi}} 2^{\frac{r}{2}}\left(\frac{r-1}{2}\right)\left(\frac{r-3}{2}\right) \cdots 3 \cdot 1 \cdot \sqrt{\pi} \\
& =(r-1)(r-3) \cdots 3 \cdot 1 .
\end{aligned}
$$

Therefore, we obtain

$$
E\left(Y^{r}\right)= \begin{cases}(r-1)(r-3) \cdots 3 \cdot 1 \cdot\left(\sigma^{2} / n\right)^{r / 2} & \text { where } r \geq 2 \text { is even } \\ 0 & \text { where } r \text { is odd. }\end{cases}
$$

Hence we have shown the formula of $E\left(\bar{X}^{k}\right)$.
(b)

If $X_{1}, \cdots, X_{n} \sim N\left(\xi, \sigma^{2}\right)$ with ξ is known. Define

$$
S^{2}=\sum_{i=1}^{n}\left(X_{i}-\xi\right)^{2}
$$

We can use the same method in Problem 2.1 to show that S^{2} is an complete sufficient statistic. Moreover, we have

$$
\frac{S^{2}}{\sigma^{2}} \sim \chi_{d f=n}^{2}
$$

Therefore,

$$
\begin{aligned}
& E\left(\frac{S^{4}}{\sigma^{4}}\right)=\operatorname{var}\left(\frac{S^{2}}{\sigma^{2}}\right)+\left\{E\left(\frac{S^{2}}{\sigma^{2}}\right)\right\}^{2}=2 n+n^{2}=n(n+2) \\
& \Rightarrow E\left(S^{4}\right)=n(n+2) \sigma^{4} \\
& \quad \operatorname{var}\left(\frac{S^{2}}{\sigma^{2}}\right)=2 n \Rightarrow \operatorname{var}\left(\frac{S^{2}}{n}\right)=\frac{2 \sigma^{4}}{n} .
\end{aligned}
$$

Since

$$
E\left(S^{4}\right)=n(n+2) \sigma^{4} .
$$

Then we can obtain

$$
E\left(\frac{2 S^{4}}{n^{2}(n+2)}\right)=\frac{2 \sigma^{4}}{n} .
$$

Since $\frac{2 S^{4}}{n^{2}(n+2)}$ is a function of complete sufficient statistic. Therefore, $\frac{2 S^{4}}{n^{2}(n+2)}$ is the UMVUE of $\frac{2 \sigma^{4}}{n}$.

Problem 2.5

If $X_{1}, \cdots, X_{n} \sim N\left(\xi, \sigma^{\text {iid }}\right)$ with both parameters are unknown. Then we can use the same method in Problem 2.1 to show that

$$
\left(\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}, S^{2}=\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\right)
$$

is complete sufficient statistic.

Now we have

$$
\frac{S^{2}}{\sigma^{2}} \sim \chi_{d f=n-1}^{2} .
$$

Therefore,

$$
E\left(\frac{S^{2}}{\sigma^{2}}\right)=n-1 \Rightarrow E\left(\frac{S^{2}}{n(n-1)}\right)=\frac{\sigma^{2}}{n} .
$$

By the previous results, we have

$$
E\left(\bar{X}^{2}\right)=\xi^{2}+\frac{\sigma^{2}}{n} .
$$

Hence we obtain

$$
\begin{aligned}
E\left(\bar{X}^{2}-\frac{S^{2}}{n(n-1)}\right) & =E\left(\bar{X}^{2}\right)-E\left(\frac{S^{2}}{n(n-1)}\right) \\
& =\xi^{2}+\frac{\sigma^{2}}{n}-\frac{\sigma^{2}}{n} \\
& =\xi^{2} .
\end{aligned}
$$

Since $\bar{X}^{2}-\frac{S^{2}}{n(n-1)}$ is a function of complete sufficient statistic. Therefore, $\bar{X}^{2}-\frac{S^{2}}{n(n-1)}$ is the UMVUE of ξ^{2}.

Problem 2.6

(a)

Here \bar{X} and S^{2} are the same notations as in Problem 2.5. Since \bar{X} is complete sufficient statistic for ξ and S^{2} is ancillary for ξ. By Basu's Theorem, \bar{X} and S^{2} are independent.

Since

$$
\begin{aligned}
\operatorname{var}\left(\bar{X}^{2}\right) & =E\left(\bar{X}^{4}\right)-\left\{E\left(\bar{X}^{2}\right)\right\}^{2} \\
& =\xi^{4}+\frac{6 \xi^{2} \sigma^{2}}{n}+\frac{3 \sigma^{4}}{n^{2}}-\left\{\xi^{2}+\frac{\sigma^{2}}{n}\right\}^{2} \\
& =\xi^{4}+\frac{6 \xi^{2} \sigma^{2}}{n}+\frac{3 \sigma^{4}}{n^{2}}-\xi^{4}-\frac{\sigma^{4}}{n^{2}}-\frac{2 \xi^{2} \sigma^{2}}{n} \\
& =\frac{4 \xi^{2} \sigma^{2}}{n}+\frac{2 \sigma^{4}}{n^{2}} .
\end{aligned}
$$

Then we have

$$
\begin{aligned}
\operatorname{var}\left(\bar{X}^{2}-\frac{S^{2}}{n(n-1)}\right) & =\operatorname{var}\left(\bar{X}^{2}\right)+\operatorname{var}\left(\frac{S^{2}}{n(n-1)}\right) \\
& =\frac{4 \xi^{2} \sigma^{2}}{n}+\frac{2 \sigma^{4}}{n^{2}}+\frac{\sigma^{4}}{n^{2}(n-1)^{2}} \operatorname{var}\left(\frac{S^{2}}{\sigma^{2}}\right) \\
& =\frac{4 \xi^{2} \sigma^{2}}{n}+\frac{2 \sigma^{4}}{n^{2}}+\frac{2 \sigma^{4}}{n^{2}(n-1)} .
\end{aligned}
$$

Hence we obtain

$$
\operatorname{var}\left(\bar{X}^{2}-\frac{S^{2}}{n(n-1)}\right)=\frac{4 \xi^{2} \sigma^{2}}{n}+\frac{2 \sigma^{4}}{n^{2}}+\frac{2 \sigma^{4}}{n^{2}(n-1)} .
$$

