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Example 6.23 

(i) Theorem 6.22 proves the completeness of  

(a) X  for the binominal family }10),,({  pnpb . 

(b) X  for the Poisson family }0),({ P . 

Solution: 
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For ),(~ npbX , 10  p . 
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Hence  

)(})()(exp{)|( xhAxTxp    

is the canonical form of an one-dimensional exponential family with  

},,1,0{ n  and }),(;{   . 

Since }),(;{    contains an one-dimensional open rectangle (e.g., 

)1,0(  is an one-dimensional open rectangle contained in  ). Hence it is full rank. 

By Theorem 6.22, xxT )(  is complete. 

 

  



(b) 

For )(~ PX , 0 . 
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 log , xxT )( ,  eA )(  and 
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Hence  

)(})()(exp{)|( xhAxTxp    

is the canonical form of an one-dimensional exponential family with  

},1,0{   and }0;{   . 

Since }0;{    contains an one-dimensional open rectangle (e.g., )2,1(  is 

an one-dimensional open rectangle contained in  ). Hence it is full rank. By 

Theorem 6.22, xxT )(  is complete. 

 

  



(ii) Uniform. Let nXX ,,1   be iid according to the uniform distribution ),0( U , 

0 . 

Solution: 

For )1,0(~,,1 UXX n . 
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Hence )( nXT   is sufficient by the factorization criterion with 
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)( xIxh  . 

The cumulative distribution function of )( nXT   is  
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with  t0 . 

The probability density function is  
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Suppose 0)( TfE  for all  . 
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Let f  and f  be the positive and negative part of f , respectively. Therefore, 
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for all t . This implies 0f , for all t . 

Therefore, )( nXT   satisfied (6.12), hence T  is complete for  .  

 

  



(iii) Exponential. Let nYY ,,1   be iid according to the exponential distribution 

)1,(E . 

Solution: 

For )1,(~,,1 EYY n . The probability density function of iY  is  
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for ni ,,2,1  . 

Therefore, ),0(~,,1 UXX n . By (ii), )( nXT   is sufficient and complete for 

 .  

Since xxf log)(   is monotone and decrease in x . Therefore, )()1( log nXY  . 

Hence )1(Y  is also sufficient and complete for  . 

 

  



Exercise 6.18 

Show that the statistic )1(X  and   ][ )1(XX i  of Problem 6.17(c) are 

independently distributed as )/,( nbaE  and )1,1( nbGamma , respectively. 

Solution: 

For ),(~,,1 baEXX n , the cumulative distribution function of )1(XT   is  
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Therefore, the distribution of )1(XT   is )/,( nbaE . 

Since exponential distribution is location-scale family. We have  

ii XbaX  , 

where )1,0(~ EX i
 . 

The joint probability density function of order statistics )()1( ,, nXX    is 
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Therefore, the joint probability density function of nYY ,,1   is  
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Hence we obtained that ))(1( )1()( 
 iii XXinY  are identically independent 

distributed as )1,0(E , for ni ,,1   and define 0)0( X . 

Then  
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Since  

)1,1(~)1,0(~
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Proof of independence 

Since ))(1( )1()( 
 iii XXinY  for  ni ,,1   are independent. 

Therefore,  

)1()1(1 XXbaY
n
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are also independent. 

Thus, we proved that )1(X  and   ][ )1(XX i  are independent. 

 

 

  



Problem 6.34 

Suppose that nXX ,,1   are an iid sample from a location-scale family with 

distribution function )/)(( baxF  . 

(a) If b  is known, show that the difference bXX i /)( 1  , ni ,,2   are 

ancillary. 

(b) If a  is known, show that the difference )/()( 1 aXaX i  , ni ,,2   are 

ancillary. 

(c) If neither a  or b  are known, show that the quantities )/()( 21 ii XXXX  ,

ni ,,3   are ancillary. 

Solution: 

(a) 

Since nXX ,,1   are an iid sample from a location-scale family with distribution 

function. Let  

ii bYaX  , ni ,,2,1   

The distribution function of iY  are 
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Therefore, the distribution of iY  does not depend on ba,  for ni ,,2,1   

Let bXXT i /)( 1  , the distribution function is 
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Therefore, ii YYbXX  11 /)( . 

  



Since iY  does not depend on ba,  for ni ,,2,1  . Hence, iYY 1  also does not 

depend on ba,  for ni ,,2  . Hence bXX i /)( 1  , ni ,,2   are ancillary. 

(b) 

Let )/()( 1 aXaXS i  , the distribution function is 
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Therefore, ii YYaXaX /)/()( 11  . 

Since iY  does not depend on ba,  for ni ,,2,1  . Hence, iYY /1  also does not 

depend on ba,  for ni ,,2  . Hence )/()( 1 aXaX i  , ni ,,2   are 

ancillary. 

(c) 

Let )/()( 21 ii XXXXK  , the distribution function is 
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Therefore, )/()()/()( 2121 iiii YYYYXXXX  . 

Since iY  does not depend on ba,  for ni ,,2,1  . Hence, )/()( 21 ii YYYY   

also does not depend on ba,  for ni ,,3  . Hence )/()( 21 ii XXXX  , 

ni ,,3   are ancillary. 

 

  



If nXX ,,1   are random sample from ),( 2N , then  
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Proof: 

Without loss of generality, let 1,0 2   . It is easy to obtain 
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Then, use Equation (1) 
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Hence we have derived 
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Consider Equation (2) with 2n , we have 
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Proof of independence: 

Since the vector ),( 1 kk XX   is independent of 2

kS . Hence 2
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kS . 

Proof of distribution: 

Since )1,0(~1 NX k  and )/1,0(~ kNX k  are independent. Therefore, 
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Therefore, by mathematical induction  
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