Homework\#1 Statistical Inference I

Name: Shih Jia-Han

Example 6.23

(i) Theorem 6.22 proves the completeness of
(a) X for the binominal family $\{b(p, n), 0<p<1\}$.
(b) X for the Poisson family $\{P(\lambda), \lambda>0\}$.

Solution:

(a)

For $X \sim b(p, n), 0<p<1$.

$$
\begin{aligned}
P(X=x) & =\binom{n}{x} p^{x}(1-p)^{n-x} \\
& =\binom{n}{x}\left(\frac{p}{1-p}\right)^{x}(1-p)^{n} \\
& =\binom{n}{x} \exp \left\{x \log \left(\frac{p}{1-p}\right)+n \log (1-p)\right\} .
\end{aligned}
$$

Let

$$
\eta=\log \left(\frac{p}{1-p}\right), T(x)=x, \quad A(\eta)=n \log \left(1+e^{\eta}\right) \text { and } h(x)=\binom{n}{x} .
$$

Hence

$$
p(x \mid \eta)=\exp \{\eta T(x)-A(\eta)\} h(x)
$$

is the canonical form of an one-dimensional exponential family with

$$
\chi=\{0,1, \cdots, n\} \text { and } \Theta=\{\eta ; \eta \in(-\infty, \infty)\} .
$$

Since $\Theta=\{\eta ; \eta \in(-\infty, \infty)\}$ contains an one-dimensional open rectangle (e.g.,
$(0,1)$ is an one-dimensional open rectangle contained in $\Theta)$. Hence it is full rank.
By Theorem 6.22, $T(x)=x$ is complete.
(b)

For $X \sim P(\lambda), \lambda>0$.

$$
\begin{aligned}
P(X=x) & =\frac{1}{x!} \lambda^{x} e^{-\lambda} \\
& =\frac{1}{x!} \exp \{x \log \lambda-\lambda\} .
\end{aligned}
$$

Let

$$
\eta=\log \lambda, \quad T(x)=x, \quad A(\eta)=e^{\eta} \text { and } h(x)=\frac{1}{x!}
$$

Hence

$$
p(x \mid \eta)=\exp \{\eta T(x)-A(\eta)\} h(x)
$$

is the canonical form of an one-dimensional exponential family with

$$
\chi=\{0,1, \cdots\} \text { and } \Theta=\{\eta ; \eta>0\} .
$$

Since $\Theta=\{\eta ; \eta>0\}$ contains an one-dimensional open rectangle (e.g., (1,2) is an one-dimensional open rectangle contained in Θ). Hence it is full rank. By Theorem 6.22, $T(x)=x$ is complete.
(ii) Uniform. Let X_{1}, \cdots, X_{n} be iid according to the uniform distribution $U(0, \theta)$, $\theta>0$.

Solution:

For $X_{1}, \cdots, X_{n} \sim U(0,1)$.

$$
\begin{aligned}
P_{\theta}(x) & =\prod_{i=1}^{n} P_{\theta}\left(x_{i}\right)=\prod_{i=1}^{n} \frac{1}{\theta} I_{\left(0<x_{i}<\theta\right)} \\
& =\frac{1}{\theta^{n}} I_{\left(0<x_{1}, \cdots, x_{n}<\theta\right)}=\frac{1}{\theta^{n}} I_{\left(0<x_{(1)}, x_{(n n}<\theta\right)} \\
& =\frac{I_{\left(x_{(n)}<\theta\right)}}{\theta^{n}} I_{\left(0<x_{(1)}\right)} .
\end{aligned}
$$

Hence $T=X_{(n)}$ is sufficient by the factorization criterion with $g_{\theta}(t)=\frac{I_{(t<\theta)}}{\theta^{n}}$ and $h(x)=I_{\left(0<x_{(1)}\right)}$.

The cumulative distribution function of $T=X_{(n)}$ is

$$
\begin{aligned}
F_{T}(t) & =P(T \leq t)=P\left(X_{(n)} \leq t\right) \\
& =P\left(X_{1}, \cdots, X_{n} \leq t\right) \\
& =P\left(X_{1} \leq t\right)^{n} \\
& =\left(\frac{t}{\theta}\right)^{n},
\end{aligned}
$$

with $0<t<\theta$.
The probability density function is

$$
p_{\theta}(t)=\frac{d}{d t} F_{T}(t)=\frac{d}{d t}\left(\frac{t}{\theta}\right)^{n}=\frac{n t^{n-1}}{\theta^{n}},
$$

with $0<t<\theta$.

Suppose $E_{\theta} f(T)=0$ for all θ.

$$
\begin{aligned}
& E_{\theta} f(T)=0 \\
& \Rightarrow \int_{0}^{\theta} \frac{n t^{n-1}}{\theta^{n}} f(t) d t=0 \\
& \Rightarrow \int_{0}^{\theta} t^{n-1} f(t) d t=0 .
\end{aligned}
$$

Let f^{+}and f^{-}be the positive and negative part of f, respectively. Therefore,

$$
\begin{aligned}
& \int_{0}^{\theta} t^{n-1} f(t) d t=0 \\
& \Rightarrow \int_{0}^{\theta} t^{n-1}\left\{f^{+}(t)-f^{-}(t)\right\} d t=0 \\
& \Rightarrow \int_{0}^{\theta} t^{n-1} f^{+}(t) d t=\int_{0}^{\theta} t^{n-1} f^{-}(t) d t \\
& \Rightarrow \frac{d}{d t} \int_{0}^{\theta} t^{n-1} f^{+}(t) d t=\frac{d}{d t} \int_{0}^{\theta} t^{n-1} f^{-}(t) d t \\
& \Rightarrow \theta^{n-1} f^{+}(\theta)-0=\theta^{n-1} f^{-}(\theta)-0 \\
& \Rightarrow f^{+}(\theta)=f^{-}(\theta) \\
& \Rightarrow f^{+}(t)=f^{-}(t) .
\end{aligned}
$$

for all t. This implies $f=0$, for all t.
Therefore, $T=X_{(n)}$ satisfied (6.12), hence T is complete for θ.
(iii) Exponential. Let Y_{1}, \cdots, Y_{n} be iid according to the exponential distribution $E(\eta, 1)$.

Solution:

For $Y_{1}, \cdots, Y_{n} \sim E(\eta, 1)$. The probability density function of Y_{i} is

$$
f_{Y_{i}}(y)=e^{-(y-\eta)} I_{(\eta<y<\infty)}, \quad i=1,2, \cdots, n .
$$

If $X_{i}=e^{-Y_{i}}$ and $\theta=e^{-\eta}$. We have

$$
x_{i}=e^{-y_{i}} \Rightarrow y_{i}=-\log x_{i} \Rightarrow|J|=1 / x_{i} .
$$

Then

$$
\begin{aligned}
f_{X_{i}}\left(x_{i}\right) & =f_{Y_{i}}\left(-\log x_{i}\right) / x_{i}=\frac{e^{\log x_{i}+\eta}}{x_{i}} I_{\left(\eta<-\log x_{i}<\infty\right)} \\
& =e^{\eta} I_{\left(-\eta>\log x_{i}>-\infty\right)}=\frac{1}{e^{-\eta}} I_{\left(e^{\left.-\eta>x_{i}>0\right)}\right.} \\
& =\frac{1}{\theta} I_{\left(\theta>x_{i}>0\right)} .
\end{aligned}
$$

for $i=1,2, \cdots, n$.
Therefore, $X_{1}, \cdots, X_{n} \sim U(0, \theta)$. By (ii), $T=X_{(n)}$ is sufficient and complete for θ.

Since $f(x)=-\log x$ is monotone and decrease in x. Therefore, $Y_{(1)}=-\log X_{(n)}$.
Hence $Y_{(1)}$ is also sufficient and complete for η.

Exercise 6.18

Show that the statistic $X_{(1)}$ and $\sum\left[X_{i}-X_{(1)}\right]$ of Problem 6.17(c) are independently distributed as $E(a, b / n)$ and $b \operatorname{Gamma}(n-1,1)$, respectively.

Solution:

For $X_{1}, \cdots, X_{n} \sim E(a, b)$, the cumulative distribution function of $T=X_{(1)}$ is

$$
\begin{aligned}
F_{T}(t) & =P(T \leq t)=P\left(X_{(1)} \leq t\right)=1-P\left(X_{(1)}>t\right) \\
& =1-P\left(X_{1}, \cdots, X_{n}>t\right)=1-P\left(X_{1}>t\right)^{n} \\
& =1-\left(e^{\frac{-(x-a)}{b}}\right)^{n}=1-e^{\frac{-n(x-a)}{b}} \\
& =1-e^{\frac{-(x-a)}{b / n}} .
\end{aligned}
$$

Therefore, the distribution of $T=X_{(1)}$ is $E(a, b / n)$.

Since exponential distribution is location-scale family. We have

$$
X_{i}=a+b X_{i}^{\prime},
$$

where $\quad X_{i}^{\prime} \sim E(0,1)$.

The joint probability density function of order statistics $X_{(1)}^{\prime}, \cdots, X_{(n)}^{\prime}$ is

$$
\begin{aligned}
f_{X_{(1)}^{\prime} \cdots x_{(n)}^{\prime}}\left(x_{(1)}^{\prime}, \cdots, x_{(n)}^{\prime}\right) & =n!f_{X^{\prime}}\left(x_{(1)}^{\prime}\right) \cdots f_{X^{\prime}}\left(x_{(n)}^{\prime}\right) \\
& =n!e^{\left.-\left(x_{(1)}^{\prime}\right)+\cdots+x_{(n)}^{\prime}\right)} .
\end{aligned}
$$

Let

$$
\begin{aligned}
& y_{1}=n x_{(1)}^{\prime} \\
& y_{2}=(n-1)\left(x_{(2)}^{\prime}-x_{(1)}^{\prime}\right) \\
& \quad \vdots \\
& y_{n}=x_{(n)}^{\prime}-x_{(n-1)}^{\prime}
\end{aligned}
$$

Thus,

$$
y_{1}+\cdots+y_{n}=x_{(1)}^{\prime}+\cdots+x_{(n)}^{\prime}
$$

and

$$
J=\left|\begin{array}{cccccc}
n & 0 & 0 & 0 & \cdots & 0 \\
n-1 & n-1 & 0 & 0 & \cdots & 0 \\
0 & n-2 & n-2 & 0 & \cdots & 0 \\
0 & 0 & n-3 & n-3 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \ddots & 0 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right|=n!
$$

Therefore, the joint probability density function of Y_{1}, \cdots, Y_{n} is

$$
\begin{aligned}
f_{Y_{1} \cdots Y_{n}}\left(y_{1}, \cdots, y_{n}\right) & =n!e^{-\left(y_{1}+\cdots+y_{n}\right)} \frac{1}{n!} \\
& =e^{-\left(y_{1}+\cdots+y_{n}\right)} \\
& =e^{-y_{1}} \times e^{-y_{2}} \times \cdots \times e^{-y_{n}} .
\end{aligned}
$$

Hence we obtained that $Y_{i}=(n-i+1)\left(X_{(i)}^{\prime}-X_{(i-1)}^{\prime}\right)$ are identically independent distributed as $E(0,1)$, for $i=1, \cdots, n$ and define $X_{(0)}^{\prime}=0$.

Then

$$
\begin{aligned}
& \sum_{i=2}^{n}(n-i+1)\left[X_{(i)}-X_{(i-1)}\right] \\
= & \left\{(n-1)\left[X_{(2)}-X_{(1)}\right]+(n-2)\left[X_{(3)}-X_{(2)}\right]+\cdots+\left[X_{(n)}-X_{(1)}\right]\right\} \\
= & \left\{X_{(n)}+\cdots+X_{(2)}-(n-1) X_{(1)}\right\}=\left\{X_{(n)}+\cdots+X_{(2)}+X_{(1)}-n X_{(1)}\right\} \\
= & \sum_{i=1}^{n}\left[X_{i}-X_{(1)}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
(n-i+1)\left[X_{(i)}-X_{(i-1)}\right] & =(n-i+1)\left[a+b X_{(i)}^{\prime}-\left\{a+b X_{(i-1)}^{\prime}\right\}\right] \\
& =b(n-i+1)\left[X_{(i)}^{\prime}-X_{(i-1)}^{\prime}\right] \\
& =b Y_{i} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\sum_{i=1}^{n}\left[X_{i}-X_{(1)}\right] & =\sum_{i=2}^{n}(n-i+1)\left[X_{(i)}-X_{(i-1)}\right] \\
& =b \sum_{i=2}^{n} Y_{i} .
\end{aligned}
$$

Since

$$
Y_{i} \sim E(0,1) \Rightarrow \sum_{i=2}^{n} Y_{i} \sim \operatorname{Gamma}(n-1,1) .
$$

Hence

$$
\sum_{i=1}^{n}\left[X_{i}-X_{(1)}\right]=b \sum_{i=2}^{n} Y_{i} \sim b \operatorname{Gamma}(n-1,1) .
$$

Proof of independence

Since $Y_{i}=(n-i+1)\left(X_{(i)}^{\prime}-X_{(i-1)}^{\prime}\right)$ for $i=1, \cdots, n$ are independent.

Therefore,

$$
a+\frac{b}{n} Y_{1}=a+b X_{(1)}^{\prime}=X_{(1)}
$$

and

$$
b \sum_{i=2}^{n} Y_{i}=\sum_{i=1}^{n}\left[X_{i}-X_{(1)}\right]
$$

are also independent.
Thus, we proved that $X_{(1)}$ and $\sum\left[X_{i}-X_{(1)}\right]$ are independent.

Problem 6.34

Suppose that X_{1}, \cdots, X_{n} are an iid sample from a location-scale family with distribution function $F((x-a) / b)$.
(a) If b is known, show that the difference $\left(X_{1}-X_{i}\right) / b, i=2, \cdots, n$ are ancillary.
(b) If a is known, show that the difference $\left(X_{1}-a\right) /\left(X_{i}-a\right), i=2, \cdots, n$ are ancillary.
(c) If neither a or b are known, show that the quantities $\left(X_{1}-X_{i}\right) /\left(X_{2}-X_{i}\right)$, $i=3, \cdots, n$ are ancillary.

Solution:

(a)

Since X_{1}, \cdots, X_{n} are an iid sample from a location-scale family with distribution function. Let

$$
X_{i}=a+b Y_{i}, \quad i=1,2, \cdots, n
$$

The distribution function of Y_{i} are

$$
\begin{aligned}
F_{Y_{i}}\left(y_{i}\right) & =P\left(Y_{i} \leq y_{i}\right)=P\left(\frac{X_{i}-a}{b} \leq y_{i}\right) \\
& =P\left(X_{i} \leq a+b y_{i}\right)=F\left(\frac{a+b y_{i}-a}{b}\right) \\
& =F(y) .
\end{aligned}
$$

Therefore, the distribution of Y_{i} does not depend on a, b for $i=1,2, \cdots, n$
Let $T=\left(X_{1}-X_{i}\right) / b$, the distribution function is

$$
\begin{aligned}
F_{T}(t) & =P(T \leq t)=P\left(\frac{X_{1}-X_{i}}{b} \leq t\right) \\
& =P\left(\frac{a+b Y_{1}-a-b Y_{i}}{b} \leq t\right)=P\left(Y_{1}-Y_{i} \leq t\right) \\
& =F_{Y_{1}-Y_{i}}(t) .
\end{aligned}
$$

Therefore, $\left(X_{1}-X_{i}\right) / b=Y_{1}-Y_{i}$.

Since Y_{i} does not depend on a, b for $i=1,2, \cdots, n$. Hence, $Y_{1}-Y_{i}$ also does not depend on a, b for $i=2, \cdots, n$. Hence $\left(X_{1}-X_{i}\right) / b, i=2, \cdots, n$ are ancillary.
(b)

Let $S=\left(X_{1}-a\right) /\left(X_{i}-a\right)$, the distribution function is

$$
\begin{aligned}
F_{S}(s) & =P(S \leq s)=P\left(\frac{X_{1}-a}{X_{i}-a} \leq s\right) \\
& =P\left(\frac{a+b Y_{1}-a}{a+b Y_{i}-a} \leq s\right)=P\left(\frac{Y_{1}}{Y_{i}} \leq s\right) \\
& =F_{Y_{1} / Y_{i}}(s) .
\end{aligned}
$$

Therefore, $\left(X_{1}-a\right) /\left(X_{i}-a\right)=Y_{1} / Y_{i}$.
Since Y_{i} does not depend on a, b for $i=1,2, \cdots, n$. Hence, Y_{1} / Y_{i} also does not depend on a, b for $i=2, \cdots, n$. Hence $\left(X_{1}-a\right) /\left(X_{i}-a\right), i=2, \cdots, n$ are ancillary.
(c)

Let $K=\left(X_{1}-X_{i}\right) /\left(X_{2}-X_{i}\right)$, the distribution function is

$$
\begin{aligned}
F_{K}(k) & =P(K \leq k)=P\left(\frac{X_{1}-X_{i}}{X_{2}-X_{i}} \leq k\right) \\
& =P\left(\frac{a+b Y_{1}-a-b Y_{i}}{a+b Y_{2}-a-b Y_{i}} \leq k\right)=P\left(\frac{Y_{1}-Y_{i}}{Y_{2}-Y_{i}} \leq k\right) \\
& =F_{\left(Y_{1}-Y_{i}\right) /\left(Y_{2}-Y_{i}\right)}(k) .
\end{aligned}
$$

Therefore, $\left(X_{1}-X_{i}\right) /\left(X_{2}-X_{i}\right)=\left(Y_{1}-Y_{i}\right) /\left(Y_{2}-Y_{i}\right)$.
Since Y_{i} does not depend on a, b for $i=1,2, \cdots, n$. Hence, $\left(Y_{1}-Y_{i}\right) /\left(Y_{2}-Y_{i}\right)$ also does not depend on a, b for $i=3, \cdots, n$. Hence $\left(X_{1}-X_{i}\right) /\left(X_{2}-X_{i}\right)$, $i=3, \cdots, n$ are ancillary.

If X_{1}, \cdots, X_{n} are random sample from $N\left(\mu, \sigma^{2}\right)$, then

$$
\sum_{i=1}^{n}\left(\frac{X_{i}-\bar{X}}{\sigma}\right)^{2} \sim \chi_{d f=n-1}^{2}
$$

Proof:

Without loss of generality, let $\mu=0, \sigma^{2}=1$. It is easy to obtain

$$
\begin{equation*}
\bar{X}_{n+1}=\frac{1}{n+1}\left(X_{n+1}+n \bar{X}_{n}\right) . \tag{1}
\end{equation*}
$$

Now, let

$$
S_{n}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2} .
$$

Then, use Equation (1)

$$
\begin{aligned}
n S_{n+1}^{2}= & \sum_{i=1}^{n+1}\left(X_{i}-\bar{X}_{n+1}\right)^{2}=\sum_{i=1}^{n+1}\left(X_{i}-\left(\frac{X_{n+1}+n \bar{X}_{n}}{n+1}\right)\right)^{2} \\
= & \sum_{i=1}^{n+1}\left(X_{i}-\frac{n \bar{X}_{n}}{n+1}-\frac{X_{n+1}}{n+1}\right)^{2}=\sum_{i=1}^{n+1}\left(X_{i}-\bar{X}_{n}+\frac{\bar{X}_{n}}{n+1}-\frac{X_{n+1}}{n+1}\right)^{2} \\
= & \sum_{i=1}^{n+1}\left(\left(X_{i}-\bar{X}_{n}\right)^{2}+\left(\frac{\bar{X}_{n}}{n+1}-\frac{X_{n+1}}{n+1}\right)^{2}+2\left(X_{i}-\bar{X}_{n}\right)\left(\frac{\bar{X}_{n}}{n+1}-\frac{X_{n+1}}{n+1}\right)\right) \\
= & \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}+\left(X_{n+1}-\bar{X}_{n}\right)^{2}+\frac{1}{n+1}\left(\bar{X}_{n}-X_{n+1}\right)^{2} \\
& \quad+2 \sum_{i=1}^{n+1}\left(X_{i}-\bar{X}_{n}\right)\left(\frac{\bar{X}_{n}-X_{n+1}}{n+1}\right) \\
= & \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}+\left(\bar{X}_{n}-X_{n+1}\right)^{2}+\frac{1}{n+1}\left(\bar{X}_{n}-X_{n+1}\right)^{2}-\frac{2}{n+1}\left(\bar{X}_{n}-X_{n+1}\right)^{2} \\
= & (n-1) S_{n}^{2}+\frac{n}{n+1}\left(\bar{X}_{n}-X_{n+1}\right)^{2} .
\end{aligned}
$$

Hence we have derived

$$
n S_{n+1}^{2}=(n-1) S_{n}^{2}+\frac{n}{n+1}\left(\bar{X}_{n}-X_{n+1}\right)^{2} .
$$

It is the same as

$$
\begin{equation*}
(n-1) S_{n}^{2}=(n-2) S_{n}^{2}+\frac{n-1}{n}\left(\bar{X}_{n-1}-X_{n}\right)^{2} . \tag{2}
\end{equation*}
$$

Consider Equation (2) with $n=2$, we have

$$
S_{2}^{2}=\left(\frac{X_{1}-X_{2}}{\sqrt{2}}\right)^{2} \sim \chi_{d f=1}^{2}
$$

For $n=k$, assume

$$
(k-1) S_{k}^{2} \sim \chi_{d f=k-1}^{2} .
$$

For $n=k+1$,

$$
k S_{k+1}^{2}=(k-1) S_{k}^{2}+\left(\frac{k}{k+1}\right)\left(\bar{X}_{k}-X_{k+1}\right)^{2} .
$$

Since

$$
(k-1) S_{k}^{2} \sim \chi_{d f=k-1}^{2} .
$$

Hence we only need to check $\left(\frac{k}{k+1}\right)\left(\bar{X}_{k}-X_{k+1}\right)^{2} \sim \chi_{d f=1}^{2}$, independent with S_{k}^{2} then by mathematical induction, $k S_{k+1}^{2} \sim \chi_{d f=k}^{2}$ is proved.

Proof of independence:

Since the vector $\left(X_{k+1}, \bar{X}_{k}\right)$ is independent of S_{k}^{2}. Hence $\left(\bar{X}_{k}-X_{k+1}\right)^{2}$ is also independent of S_{k}^{2}.

Proof of distribution:

Since $X_{k+1} \sim N(0,1)$ and $\bar{X}_{k} \sim N(0,1 / k)$ are independent. Therefore,

$$
\bar{X}_{k}-X_{k+1} \sim N(0,(k+1) / k) .
$$

Hence

$$
\left(\frac{k}{k+1}\right)\left(\bar{X}_{k}-X_{k+1}\right)^{2} \sim \chi_{d f=1}^{2} .
$$

is proved.

Therefore, by mathematical induction

$$
(n-1) S_{n}^{2}=\sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2} \sim \chi_{d f=n-1}^{2} .
$$

Hence we have proved

$$
\sum_{i=1}^{n}\left(\frac{X_{i}-\bar{X}}{\sigma}\right)^{2} \sim \chi_{d f=n-1}^{2}
$$

