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Final exam, Statistical Inference I: Date 1/11 (2015 Fall): [+40points] 

Name:       Jia-Han, Shih        
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b) [+4] For the above estimator, derive the risk ),( R  under the squared error 

loss (include calculation details). 

Ans: 

Since X  is complete sufficient statistic for   and 2S  is ancillary for  . By 

Basu’s Theorem, X  and 2S  are independent. 
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For the following computation, I directly use the formula of )(
k

XE . This 

formula will be proved latter. 
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c) [+4] Derive the UMVUE of 4  if   is known (with proof) 

Ans: 

If   is known, we have 
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d) [+2] Derive the UMVUE of 4  if   is unknown (with proof) 

Ans: 

Since X  and 2S  are independent, we have 
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e) [+6] Under the constraint   , derive the best estimator in a class of linear 

unbiased combinations of two unbiased estimators. Use the notation 
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Formula 
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Then consider the integral 
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b) [+4] Derive the UMVUE of rr  /  (with proof) 

Ans: 
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d) [+4] Derive the UMVUE of r  when 22    (with proof) 
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Since r

rnm SK ,2  is a function of complete statistic hence r
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e) [+5] Derive the UMVUE of   when    and  22 /  is known (with 

proof). 

Ans: 

If    and 22   , then we have 

),(~,.., 2

1 NXX
iid

m  and ),(~,.., 2

1 NYY
iid

n . 

Then 

.
2

)1(

2

1
exp

)2(

1

)(
2

1
)(

2

1
exp

)2()2(

1

),(

2

2

11
2

1

2

1

2

2

2/)(22/

1 1

2

2

2

22/22/2







 











































 





 























n

i

i

m

i

i

n

i

i

m

i

i

nmm

m

i

n

i

iinm

YXyX

YX

yxp

 

Since 















 
 0and;,

2

1 2

22







R  contains a 2-dimensional open 

rectangle hence it is full rank. Therefore, 









 



n

i

i

m

i

i

n

i

i

m

i

i YXTyXT
11

2

1

2

1

2

1 ,   

is a complete sufficient statistic for ),( 2  . 

Thus, 

.)()( 2 


 











nm

T
EnmYnXmE  

Since 
nm

T


2  is a function of complete sufficient statistic hence 

nm

T


2  is the 

UMVUE of  . 

 

 



13 

f) [+4] Find an unbiased estimator of   when    (with proof). 

Ans: 
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