Final exam, Statistical Inference I: Date 1/11 (2015 Fall): [+40points]
Name: \qquad Jia-Han, Shih

Q1 [+18] Let $X_{1}, \ldots, X_{n}{ }^{\text {iid }} \sim N\left(\xi, \sigma^{2}\right)$, where $\theta=\left(\xi, \sigma^{2}\right)$. Let $\bar{X}=\sum_{i=1}^{n} X_{i} / n$, and $S^{2}=\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$.
a) [+2] Derive the UMVUE of ξ^{2} (with proof)

Ans:

Since $\left(\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}, S^{2}=\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}\right)$ is a complete sufficient statistic for $\theta=\left(\xi, \sigma^{2}\right)$.

Their distribution are

$$
\bar{X} \sim N\left(\xi, \frac{\sigma^{2}}{n}\right) \text { and } \frac{S^{2}}{\sigma^{2}} \sim \chi_{d f=n-1}^{2} .
$$

Then we have

$$
E\left(\bar{X}^{2}\right)=E(\bar{X})^{2}+\operatorname{var}(\bar{X})=\xi^{2}+\frac{\sigma^{2}}{n}
$$

and

$$
E\left(\frac{S^{2}}{\sigma^{2}}\right)=n-1 \Rightarrow E\left(\frac{S^{2}}{n(n-1)}\right)=\frac{\sigma^{2}}{n} .
$$

Therefore,

$$
E\left(\bar{X}^{2}-\frac{S^{2}}{n(n-1)}\right)=E\left(\bar{X}^{2}\right)-E\left(\frac{S^{2}}{n(n-1)}\right)=\xi^{2}+\frac{\sigma^{2}}{n}-\frac{\sigma^{2}}{n}=\xi^{2} .
$$

Since $\bar{X}^{2}-\frac{S^{2}}{n(n-1)}$ is a function of complete sufficient statistic. Therefore, $\bar{X}^{2}-\frac{S^{2}}{n(n-1)}$ is the UMVUE of ξ^{2}.
b) $[+4]$ For the above estimator, derive the risk $R(\theta, \delta)$ under the squared error loss (include calculation details).

Ans:

Since \bar{X} is complete sufficient statistic for ξ and S^{2} is ancillary for ξ. By Basu's Theorem, \bar{X} and S^{2} are independent.

$$
\begin{aligned}
R(\theta, \delta) & =E\{L(\theta, \delta)\}=E\left\{\left(\bar{X}^{2}-\frac{S^{2}}{n(n-1)}\right)-\xi^{2}\right\}^{2}=\operatorname{var}\left(\bar{X}^{2}-\frac{S^{2}}{n(n-1)}\right) \\
& =\operatorname{var}\left(\bar{X}^{2}\right)+\operatorname{var}\left(\frac{S^{2}}{n(n-1)}\right)
\end{aligned}
$$

For the following computation, I directly use the formula of $E\left(\bar{X}^{k}\right)$. This formula will be proved latter.

$$
\begin{aligned}
\operatorname{var}\left(\bar{X}^{2}\right) & =E\left(\bar{X}^{4}\right)-\left\{E\left(\bar{X}^{2}\right)\right\}^{2}=\xi^{4}+\frac{6 \xi^{2} \sigma^{2}}{n}+\frac{3 \sigma^{4}}{n^{2}}-\left\{\xi^{2}+\frac{\sigma^{2}}{n}\right\}^{2} \\
& =\xi^{4}+\frac{6 \xi^{2} \sigma^{2}}{n}+\frac{3 \sigma^{4}}{n^{2}}-\xi^{4}-\frac{\sigma^{4}}{n^{2}}-\frac{2 \xi^{2} \sigma^{2}}{n} \\
& =\frac{4 \xi^{2} \sigma^{2}}{n}+\frac{2 \sigma^{4}}{n^{2}} .
\end{aligned}
$$

Thus, we have

$$
\begin{aligned}
\operatorname{var}\left(\bar{X}^{2}-\frac{S^{2}}{n(n-1)}\right) & =\operatorname{var}\left(\bar{X}^{2}\right)+\operatorname{var}\left(\frac{S^{2}}{n(n-1)}\right) \\
& =\frac{4 \xi^{2} \sigma^{2}}{n}+\frac{2 \sigma^{4}}{n^{2}}+\frac{\sigma^{4}}{n^{2}(n-1)^{2}} \operatorname{var}\left(\frac{S^{2}}{\sigma^{2}}\right) \\
& =\frac{4 \xi^{2} \sigma^{2}}{n}+\frac{2 \sigma^{4}}{n^{2}}+\frac{2 \sigma^{4}}{n^{2}(n-1)} .
\end{aligned}
$$

Therefore, we obtain

$$
R(\theta, \delta)=\frac{4 \xi^{2} \sigma^{2}}{n}+\frac{2 \sigma^{4}}{n^{2}}+\frac{2 \sigma^{4}}{n^{2}(n-1)} .
$$

c) $[+4]$ Derive the UMVUE of ξ^{4} if σ is known (with proof)

Ans:

If σ is known, we have

$$
E\left(\bar{X}^{4}\right)=\xi^{4}+\frac{6 \xi^{2} \sigma^{2}}{n}+\frac{3 \sigma^{4}}{n^{2}}
$$

and

$$
E\left(\bar{X}^{2}\right)=\xi^{2}+\frac{\sigma^{2}}{n} \Rightarrow E\left(\frac{6 \sigma^{2}}{n} \bar{X}^{2}\right)=\frac{6 \sigma^{2} \xi^{2}}{n}+\frac{6 \sigma^{4}}{n^{2}} .
$$

Thus,

$$
\begin{aligned}
E\left(\bar{X}^{4}-\frac{6 \sigma^{2}}{n} \bar{X}^{2}+\frac{3 \sigma^{4}}{n^{2}}\right) & =E\left(\bar{X}^{4}\right)-\frac{6 \sigma^{2}}{n} E\left(\bar{X}^{2}\right)+\frac{3 \sigma^{4}}{n^{2}} \\
& =\xi^{4}+\frac{6 \xi^{2} \sigma^{2}}{n}+\frac{3 \sigma^{4}}{n^{2}}-\frac{6 \sigma^{2}}{n} \xi^{2}-\frac{6 \sigma^{4}}{n^{2}}+\frac{3 \sigma^{4}}{n^{2}} \\
& =\xi^{4} .
\end{aligned}
$$

Since $\bar{X}^{4}-\frac{6 \sigma^{2}}{n} \bar{X}^{2}+\frac{3 \sigma^{4}}{n^{2}}$ is a function of complete sufficient statistic. Therefore, $\bar{X}^{4}-\frac{6 \sigma^{2}}{n} \bar{X}^{2}+\frac{3 \sigma^{4}}{n^{2}}$ is the UMVUE of ξ^{4}.
d) [+2] Derive the UMVUE of ξ^{4} if σ is unknown (with proof)

Ans:

Since \bar{X} and S^{2} are independent, we have

$$
\begin{aligned}
& E\left(\frac{S^{2}}{\sigma^{2}} \bar{X}^{2}\right)=E\left(\frac{S^{2}}{\sigma^{2}}\right) E\left(\bar{X}^{2}\right)=(n-1)\left(\xi^{2}+\frac{\sigma^{2}}{n}\right) \\
& \Rightarrow E\left(\frac{6 S^{2}}{n(n-1)} \bar{X}^{2}\right)=\frac{6 \sigma^{2} \xi^{2}}{n}+\frac{6 \sigma^{4}}{n^{2}}
\end{aligned}
$$

and

$$
\begin{aligned}
& E\left(\frac{S^{4}}{\sigma^{4}}\right)=\operatorname{var}\left(\frac{S^{2}}{\sigma^{2}}\right)+\left\{E\left(\frac{S^{2}}{\sigma^{2}}\right)\right\}^{2}=2(n-1)+(n-1)^{2}=(n-1)(n+1)=n^{2}-1 \\
& \Rightarrow E\left(\frac{3 S^{4}}{n^{2}\left(n^{2}-1\right)}\right)=\frac{3 \sigma^{4}}{n^{2}}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
E\left(\bar{X}^{4}-\frac{6 S^{2}}{n(n-1)} \bar{X}^{2}+\frac{3 S^{4}}{n^{2}\left(n^{2}-1\right)}\right) & =E\left(\bar{X}^{4}\right)-E\left(\frac{6 S^{2}}{n(n-1)} \bar{X}^{2}\right)+E\left(\frac{3 S^{4}}{n^{2}\left(n^{2}-1\right)}\right) \\
& =\xi^{4}+\frac{6 \xi^{2} \sigma^{2}}{n}+\frac{3 \sigma^{4}}{n^{2}}-\frac{6 \sigma^{2} \xi^{2}}{n}-\frac{6 \sigma^{4}}{n^{2}}+\frac{3 \sigma^{4}}{n^{2}} \\
& =\xi^{4} .
\end{aligned}
$$

Since $\bar{X}^{4}-\frac{6 S^{2}}{n(n-1)} \bar{X}^{2}+\frac{3 S^{4}}{n^{2}\left(n^{2}-1\right)}$ is a function of complete sufficient statistic. Therefore, $\bar{X}^{4}-\frac{6 S^{2}}{n(n-1)} \bar{X}^{2}+\frac{3 S^{4}}{n^{2}\left(n^{2}-1\right)}$ is the UMVUE of ξ^{4}.
e) $[+6]$ Under the constraint $\xi=\sigma$, derive the best estimator in a class of linear unbiased combinations of two unbiased estimators. Use the notation $c_{n}=\frac{1}{\sqrt{2}} \frac{\Gamma((n-1) / 2)}{\Gamma(n / 2)}$ to simplify the results.

Ans:

If $\xi=\sigma$, we have $X_{1}, \ldots, X_{n} \sim N\left(\xi, \xi^{2}\right)$. It is clear $E(\bar{X})=\xi$.
Now, let

$$
Y=\frac{S^{2}}{\xi^{2}} \sim \chi_{d f=n-1}^{2} \Rightarrow S=\xi Y^{1 / 2} .
$$

Then we have

$$
\begin{aligned}
E(S) & =E\left(\xi Y^{1 / 2}\right)=\xi E\left(Y^{1 / 2}\right)=\xi \int_{0}^{\infty} y^{1 / 2} \frac{1}{2^{(n-1) / 2} \Gamma((n-1) / 2)} y^{\frac{n-1}{2}-1} e^{\frac{-y}{2}} d y \\
& =\frac{\xi 2^{n / 2} \Gamma(n / 2)}{2^{(n-1) / 2} \Gamma((n-1) / 2)} \int_{0}^{\infty} \frac{1}{2^{n / 2} \Gamma(n / 2)} y^{\frac{n}{2}-1} e^{\frac{-y}{2}} d y=\frac{\xi 2^{1 / 2} \Gamma(n / 2)}{\Gamma((n-1) / 2)} \\
& =c_{n}^{-1} \xi .
\end{aligned}
$$

Therefore,

$$
E\left(c_{n} S\right)=\xi .
$$

Hence we obtain \bar{X} and $c_{n} S$ are both unbiased estimator for ξ. Let $\delta=\alpha \bar{X}+(1-\alpha) c_{n} S$ is unbiased for ξ.

Then the risk

$$
\begin{aligned}
& R(\theta, \delta)=E(\delta-\xi)^{2}=\operatorname{var}(\delta)=\alpha^{2} \operatorname{var}(\bar{X})+(1-\alpha)^{2} \operatorname{var}\left(c_{n} S\right) . \\
& \\
& \quad \frac{\partial}{\partial \alpha} R(\theta, \delta)=2 \alpha \operatorname{var}(\bar{X})-2(1-\alpha) \operatorname{var}\left(c_{n} S\right) \equiv 0 \\
& \Rightarrow \alpha^{*}=\frac{\operatorname{var}\left(c_{n} S\right)}{\operatorname{var}(\bar{X})+\operatorname{var}\left(c_{n} S\right)} .
\end{aligned}
$$

Since

$$
\operatorname{var}(\bar{X})=\frac{\xi^{2}}{n}
$$

and

$$
\begin{aligned}
\operatorname{var}\left(c_{n} S\right) & =E\left(c_{n}^{2} S^{2}\right)-E\left(c_{n} S\right)^{2}=c_{n}^{2} \xi^{2}(n-1)-\xi^{2} \\
& =\left\{c_{n}^{2}(n-1)-1\right\} \xi^{2} .
\end{aligned}
$$

Hence

$$
\alpha^{*}=\frac{\left\{c_{n}^{2}(n-1)-1\right\} \xi^{2}}{\xi^{2} / n+\left\{c_{n}^{2}(n-1)-1\right\} \xi^{2}}=\frac{n\left\{c_{n}^{2}(n-1)-1\right\}}{1+n\left\{c_{n}^{2}(n-1)-1\right\}} .
$$

Thus, the best estimator in the class of linear unbiased combination is

$$
\alpha^{*} \bar{X}+\left(1-\alpha^{*}\right) c_{n} S
$$

where

$$
\alpha^{*}=\frac{n\left\{c_{n}^{2}(n-1)-1\right\}}{1+n\left\{c_{n}^{2}(n-1)-1\right\}} .
$$

Formula

If $X_{1}, \cdots, X_{n} \sim N\left(\xi, \sigma^{2}\right)$ with σ^{2} is known. The formula of $E\left(\bar{X}^{k}\right)$ is

$$
E\left(\bar{X}^{k}\right)=\sum_{r=0}^{k}\binom{k}{r} \xi^{k-r} E\left(Y^{r}\right),
$$

where

$$
Y \sim N\left(0, \sigma^{2} / n\right)
$$

and

$$
E\left(Y^{r}\right)= \begin{cases}(r-1)(r-3) \cdots 3 \cdot 1 \cdot\left(\sigma^{2} / n\right)^{r / 2} & \text { where } r \geq 2 \text { is even } \\ 0 & \text { where } r \text { is odd. }\end{cases}
$$

Proof:

One can write $\bar{X}=Y+\xi$. By the binomial theorem, we have

$$
\begin{aligned}
E\left(\bar{X}^{k}\right) & =E\left\{(Y+\xi)^{k}\right\} \\
& =E\left\{\sum_{r=0}^{k}\binom{k}{r} \xi^{k-r} Y^{r}\right\} \\
& =\sum_{r=0}^{k}\binom{k}{r} \xi^{k-r} E\left(Y^{r}\right) .
\end{aligned}
$$

Then

$$
E\left(Y^{r}\right)=\int_{-\infty}^{\infty} y^{r} \frac{1}{\sqrt{2 \pi \sigma^{2} / n}} \exp \left\{\frac{-y^{2}}{2 \sigma^{2} / n}\right\} d y .
$$

Using the change of variable $y=\frac{\sigma}{\sqrt{n}} u$, then we can obtain

$$
\begin{aligned}
& \int_{-\infty}^{\infty} y^{r} \frac{1}{\sqrt{2 \pi \sigma^{2} / n}} \exp \left\{\frac{-y^{2}}{2 \sigma^{2} / n}\right\} d y \\
& =\int_{-\infty}^{\infty}\left(\frac{\sigma}{\sqrt{n}} u\right)^{r} \frac{1}{\sqrt{2 \pi \sigma^{2} / n}} \exp \left\{\frac{-1}{2 \sigma^{2} / n} \frac{\sigma^{2}}{n} u^{2}\right\} \frac{\sigma}{\sqrt{n}} d u \\
& =\left(\frac{\sigma}{\sqrt{n}}\right)^{r} \int_{-\infty}^{\infty} u^{r} \frac{1}{\sqrt{2 \pi}} \exp \left\{\frac{-u^{2}}{2}\right\} d u .
\end{aligned}
$$

Then consider the integral

$$
\int_{-\infty}^{\infty} u^{r} \frac{1}{\sqrt{2 \pi}} \exp \left\{\frac{-u^{2}}{2}\right\} d u
$$

If r is odd, it is an integral of an odd function over a real line. Hence it is zero. If r is even, consider the change of variable $u=\sqrt{w}$, then we have

$$
\begin{aligned}
\int_{-\infty}^{\infty} u^{r} \frac{1}{\sqrt{2 \pi}} \exp \left\{\frac{-u^{2}}{2}\right\} d u & =2 \int_{0}^{\infty} u^{r} \frac{1}{\sqrt{2 \pi}} \exp \left\{\frac{-u^{2}}{2}\right\} d u \\
& =2 \int_{0}^{\infty}(\sqrt{2 w})^{r} \frac{1}{\sqrt{2 \pi}} \exp \left\{\frac{-(\sqrt{2 w})^{2}}{2}\right\} \frac{1}{\sqrt{2 w}} d w \\
& =\frac{2^{\frac{r}{2}}}{\sqrt{\pi}} \int_{-\infty}^{\infty} w^{\frac{r}{2}-\frac{1}{2}} e^{-w} d w=\frac{2^{\frac{r}{2}}}{\sqrt{\pi}} \Gamma\left(\frac{r}{2}+\frac{1}{2}\right) \\
& =\frac{1}{\sqrt{\pi}} 2^{\frac{r}{2}}\left(\frac{r-1}{2}\right)\left(\frac{r-3}{2}\right) \cdots \frac{3}{2} \cdot \frac{1}{2} \cdot \sqrt{\pi} \\
& =(r-1)(r-3) \cdots 3 \cdot 1 .
\end{aligned}
$$

Therefore, we obtain

$$
E\left(Y^{r}\right)= \begin{cases}(r-1)(r-3) \cdots 3 \cdot 1 \cdot\left(\sigma^{2} / n\right)^{r / 2} & \text { where } r \geq 2 \text { is even } \\ 0 & \text { where } r \text { is odd. }\end{cases}
$$

Hence we have shown the formula of $E\left(\bar{X}^{k}\right)$.

Q2 [+22] We obtain independent observations $X_{1}, . ., X_{m}{ }^{\text {iid }} \sim N\left(\xi, \sigma^{2}\right)$ and $Y_{1}, \ldots, Y_{n} \sim N\left(\eta, \tau^{2}\right)$, where $\theta=\left(\xi, \sigma^{2}, \eta, \tau^{2}\right)$. Let $\bar{X}=\sum_{i=1}^{m} X_{i} / m, \bar{Y}=\sum_{i=1}^{n} Y_{i} / n$, $S_{X}^{2}=\sum_{i=1}^{m}\left(X_{i}-\bar{X}\right)^{2}$, and $S_{Y}^{2}=\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}$.
a) $[+3]$ Derive the UMVUE of σ^{r} (with proof)

Ans:

$\left(\bar{X}, \bar{Y}, S_{X}^{2}, S_{Y}^{2}\right)$ is complete sufficient statistic for $\theta=\left(\xi, \sigma^{2}, \eta, \tau^{2}\right)$.
Now, let

$$
W=\frac{S_{X}^{2}}{\sigma^{2}} \sim \chi_{d f=m-1}^{2} \Rightarrow S=\sigma W^{1 / 2}
$$

Then we have

$$
\begin{aligned}
E\left(S_{X}^{r}\right) & =E\left(\sigma^{r} W^{r / 2}\right)=\sigma^{r} E\left(W^{1 / 2}\right)=\sigma^{r} \int_{0}^{\infty} w^{1 / 2} \frac{1}{2^{(m-1) / 2} \Gamma((m-1) / 2)} w^{\frac{m-1}{2}-1} e^{\frac{-w}{2}} d w \\
& =\frac{\sigma^{r} 2^{(m+r-1) / 2} \Gamma((m+r-1) / 2}{2^{(m-1) / 2} \Gamma((m-1) / 2)} \int_{0}^{\infty} \frac{1}{2^{(m+r-1) / 2} \Gamma((m+r-1) / 2)} w^{\frac{m+r-1}{2}-1} e^{\frac{-w}{2}} d w \\
& =\frac{\sigma^{r} 2^{r / 2} \Gamma((m+r-1) / 2)}{\Gamma((m-1) / 2)} .
\end{aligned}
$$

Here we define

$$
K_{m-1, r}=\frac{\Gamma((m-1) / 2)}{2^{r / 2} \Gamma((m+r-1) / 2)} .
$$

Therefore,

$$
E\left(K_{m-1, r} S_{X}^{r}\right)=\sigma^{r}
$$

Since $K_{m-1, r} S_{X}^{r}$ is a function of complete sufficient statistic hence $K_{m-1, r} S_{X}^{r}$ is the UMVUE of σ^{r}.
b) $[+4]$ Derive the UMVUE of τ^{r} / σ^{r} (with proof)

Ans:

Since $\tau^{r} / \sigma^{r}=\tau^{r} \sigma^{-r}$. Similarly, we have

$$
E\left(K_{n-1, r} S_{Y}^{r}\right)=\tau^{r} .
$$

This formula is also correct for negative in the constraint

$$
m>-r+1
$$

This is because the gamma function $\Gamma(\alpha)$, where $\alpha>0$. Therefore,

$$
E\left(K_{m-1,-r} S_{X}^{-r}\right)=\sigma^{-r}
$$

Also X and Y are independent. Thus,

$$
E\left(K_{n-1, r} S_{Y}^{r} K_{m-1,-r} S_{X}^{-r}\right)=\tau^{r} \sigma^{-r}
$$

Since $K_{n-1, r} S_{Y}^{r} K_{m-1,-r} S_{X}^{-r}$ is a function of complete sufficient statistic hence $K_{n-1, r} S_{Y}^{r} K_{m-1, r} S_{X}^{-r}$ is the UMVUE of τ^{r} / σ^{r}.
c) $[+2]$ Derive the UMVUE of ξ / σ (with proof)

Ans:

We have

$$
E(\bar{X})=\xi
$$

and

$$
E\left(K_{m-1,-1} S_{X}^{-1}\right)=\sigma^{-1} .
$$

Since \bar{X} and S^{2} are independent, we have

$$
E\left(\bar{X} K_{m-1,-1} S_{X}^{-1}\right)=E(\bar{X}) E\left(K_{m-1,-1} S_{X}^{-1}\right)=\xi / \sigma
$$

Since $\bar{X} K_{m-1,-1} S_{X}^{-1}$ is a function of complete sufficient statistic hence $\bar{X} K_{m-1,-1} S_{X}^{-1}$ is the UMVUE of ξ / σ.
d) $[+4]$ Derive the UMVUE of σ^{r} when $\tau^{2}=\sigma^{2}$ (with proof)

Ans:

If $\tau^{2}=\sigma^{2}$, then we have

$$
X_{1}, \ldots, X_{m} \sim N\left(\xi, \sigma^{2}\right) \text { and } Y_{1}, \ldots, Y_{n} \sim N\left(\eta, \sigma^{\text {iid }}\right) .
$$

Then

$$
\begin{aligned}
& p_{\theta}(x, y) \\
= & \frac{1}{\left(2 \pi \sigma^{2}\right)^{m / 2}\left(2 \pi \sigma^{2}\right)^{n / 2}} \exp \left\{\frac{-1}{2 \sigma^{2}} \sum_{i=1}^{m}\left(X_{i}-\xi\right)^{2} \frac{-1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(Y_{i}-\eta\right)^{2}\right\} \\
= & \frac{1}{\left(2 \pi \sigma^{2}\right)^{(m+n) / 2}} \exp \left\{\frac{-1}{2 \sigma^{2}}\left(\sum_{i=1}^{m} X_{i}^{2}+\sum_{i=1}^{n} y_{i}^{2}\right)+\frac{\xi}{\sigma^{2}} \sum_{i=1}^{m} X_{i}+\frac{\eta}{\sigma^{2}} \sum_{i=1}^{n} Y_{i}-\frac{\xi^{2}+\eta^{2}}{2 \sigma^{2}}\right\} .
\end{aligned}
$$

Since $\Theta=\left\{\left(\frac{-1}{2 \sigma^{2}}, \frac{\xi}{\sigma^{2}}, \frac{\eta}{\sigma^{2}}\right) ; \xi \in R, \eta \in R\right.$ and $\left.\sigma^{2}>0\right\}$ contains a 3-dimensional open rectangle hence it is full rank. Therefore,

$$
\left(\sum_{i=1}^{m} X_{i}^{2}+\sum_{i=1}^{n} y_{i}^{2}, \sum_{i=1}^{m} X_{i}, \sum_{i=1}^{n} Y_{i}\right)
$$

is a complete sufficient statistic for $\theta=\left(\xi, \eta, \sigma^{2}\right)$.

$$
\left(\bar{X}, \bar{Y}, S^{2}=S_{X}^{2}+S_{Y}^{2}\right)
$$

is also a complete sufficient statistic for $\theta=\left(\xi, \eta, \sigma^{2}\right)$.
Now, let

$$
W=\frac{S^{2}}{\sigma^{2}} \sim \chi_{d f=m+n-2}^{2} \Rightarrow S=\sigma W^{1 / 2}
$$

Then we have

$$
\begin{aligned}
& E\left(S^{r}\right) \\
& =E\left(\sigma^{r} W^{r / 2}\right)=\sigma^{r} E\left(W^{1 / 2}\right)=\sigma^{r} \int_{0}^{\infty} w^{1 / 2} \frac{1}{2^{(m+n-2) / 2} \Gamma((m+n-2) / 2)} w^{\frac{m+n-2}{2}-1} e^{\frac{-w}{2}} d w \\
& =\frac{\sigma^{r} 2^{(m+n+r-2) / 2} \Gamma((m+n+r-2) / 2)}{2^{(m+n-2) / 2} \Gamma((m+n-2) / 2)} \\
& \quad \times \int_{0}^{\infty} \frac{1}{2^{(m+n+r-2) / 2} \Gamma((m+n+r-2) / 2)} w^{\frac{m+n+r-2}{2}-1} e^{\frac{-w}{2}} d w \\
& =\frac{\sigma^{r} 2^{r / 2} \Gamma((m+n+r-2) / 2)}{\Gamma((m+n-2) / 2)} .
\end{aligned}
$$

Therefore,

$$
E\left(K_{m+n-2, r} r^{r}\right)=\sigma^{r} .
$$

Since $K_{m+n-2, r} S^{r}$ is a function of complete statistic hence $K_{m+n-2, r} S^{r}$ is the UMVUE of σ^{r}.
e) [+5] Derive the UMVUE of ξ when $\xi=\eta$ and $\sigma^{2} / \tau^{2}=\gamma$ is known (with proof).

Ans:

If $\xi=\eta$ and $\sigma^{2}=\gamma \tau^{2}$, then we have

$$
X_{1}, . ., X_{m} \stackrel{\text { iid }}{\sim} \sim N\left(\xi, \gamma \tau^{2}\right) \text { and } Y_{1}, . ., Y_{n} \sim N\left(\xi, \tau^{\text {iid }}\right) .
$$

Then

$$
\begin{aligned}
& p_{\theta}(x, y) \\
&= \frac{1}{\left(2 \pi \gamma \tau^{2}\right)^{m / 2}\left(2 \pi \tau^{2}\right)^{n / 2}} \exp \left\{\frac{-1}{2 \gamma \tau^{2}} \sum_{i=1}^{m}\left(X_{i}-\xi\right)^{2} \frac{-1}{2 \tau^{2}} \sum_{i=1}^{n}\left(Y_{i}-\xi\right)^{2}\right\} \\
&= \frac{1}{\gamma^{m / 2}\left(2 \pi \tau^{2}\right)^{(m+n) / 2}} \\
& \quad \quad \times \exp \left\{\frac{-1}{2 \gamma \tau^{2}}\left(\sum_{i=1}^{m} X_{i}^{2}+\gamma \sum_{i=1}^{n} y_{i}^{2}\right)+\frac{\xi}{\gamma \tau^{2}}\left(\sum_{i=1}^{m} X_{i}+\gamma \sum_{i=1}^{n} Y_{i}\right)-\frac{\xi^{2}(1+\gamma)}{2 \gamma \tau^{2}}\right\} .
\end{aligned}
$$

Since $\Theta=\left\{\left(\frac{-1}{2 \gamma \tau^{2}}, \frac{\xi}{\gamma \tau^{2}}\right) ; \xi \in R\right.$ and $\left.\tau^{2}>0\right\}$ contains a 2-dimensional open rectangle hence it is full rank. Therefore,

$$
\left(T_{1}=\sum_{i=1}^{m} X_{i}^{2}+\gamma \sum_{i=1}^{n} y_{i}^{2}, T_{2}=\sum_{i=1}^{m} X_{i}+\gamma \sum_{i=1}^{n} Y_{i}\right)
$$

is a complete sufficient statistic for $\theta=\left(\xi, \tau^{2}\right)$.
Thus,

$$
E(m \bar{X}+m \bar{Y})=(m+m) \xi \Rightarrow E\left(\frac{T_{2}}{m+m}\right)=\xi .
$$

Since $\frac{T_{2}}{m+m}$ is a function of complete sufficient statistic hence $\frac{T_{2}}{m+\gamma n}$ is the UMVUE of ξ.

f) $[+4]$ Find an unbiased estimator of ξ when $\xi=\eta$ (with proof).

Ans:

Since γ is unknown, we can estimate γ by

$$
\hat{\gamma}=\frac{\hat{\sigma}^{2}}{\hat{\tau}^{2}}
$$

where $\hat{\sigma}^{2}=\frac{S_{X}^{2}}{m-1}$ and $\hat{\tau}^{2}=\frac{S_{Y}^{2}}{n-1}$ are unbiased.
Then

$$
E\left(\frac{m \bar{X}+\hat{\jmath} \bar{Y}}{m+\hat{\gamma}}\right)=E\left(\frac{m \bar{X}}{m+\hat{\gamma}}\right)+E\left(\frac{\hat{\rho} \bar{Y}}{m+\hat{\gamma}}\right) .
$$

Let

$$
\hat{\alpha}=\frac{m}{m+\hat{\gamma}} \text { and } 1-\hat{\alpha}=\frac{\hat{\gamma}}{m+\hat{\gamma}} .
$$

Therefore,

$$
\begin{aligned}
E\left(\frac{m \bar{X}+\hat{m} \bar{Y}}{m+\hat{\gamma}}\right) & =E(\hat{\alpha} \bar{X})+E((1-\hat{\alpha}) \bar{Y}) \\
& =E(\hat{\alpha}) \xi+\{1-E(\hat{\alpha})\} \xi \\
& =\xi
\end{aligned}
$$

Hence $\frac{m \bar{X}+\hat{j} \bar{Y}}{m+\hat{\gamma}}$ is an unbiased estimator of ξ.

