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Homework#6, Statistical Inference I, 2012 Fall 

 

1. Admissibility 

Let }:{~ kRPX   , and let )(XT  be a unique minimax estimator for 

1)( Rg    under some loss. Show that )(XT  admissible. 

 

 

2.  Minimaxity in nonparametric models 

1) Let FX ~ , where   is a set of distributions (parametric or 

nonparametric). Assume that )(* X  is minimax in  , i.e., 






for       )(sup)(sup * FRFR
FF

. 

Let 1 . Show that )(* X  is minimax in 1  if 

)(sup)(sup *

1

* FRFR
FF




 . 

2) Let FXX
iid

n ~,...,1 , where }))((|{ 2

112 cXEXEF FF L  be a class 

of bounded variance (L_2 space). Find a minimax estimator for )( 1XEF  

under the squared error loss in 2L . 

3) Let FXX
iid

n ~,...,1 , where }1y  probabilit  with  ,10|{ 1]1,0[  XFL  

be a class of finite support on ]1,0[ . Find a minimax estimator for 

)( 1XEF  under the squared error loss in ]1,0[L . 

 

 

3. Bayes estimator 

Let ),(~|),...,( 2

1  NXXX
iid

n  μ , where 2  is known. Consider 

estimation of   under the loss 2)(),( aaL    and an improper prior 

 dId )0()(  . 

4) Derive the generalized Bayes estimator )(X . 

5) Find the asymptotic distribution of  .)(  Xn  

6) Under n=10, 2 =1, ]5.2,1.0[ , draw the graph for the risk of )(X  and 

X  using simulations (including codes in Appendix). 
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7) ),(~),...,( 2

1 NXXX
iid

n , where 0  is unknown and 2  is known. 

Derive the MLE under the restricted space }0|{   , and draw the 

graph of the risk using simulations under the same setting as (3). 

8) According to the three risks, which estimator do you prefer? Give a short 

discussion. 

 

 

4. The James-Stein estimator (I) 

Based on data ),(~ pp INX  , consider estimation of )...,,( 1
 p  under the 

loss 2||)(||  X . Calculate the risk of the estimator 

)(
||||

3
)(

2 p

p

JXX
JXX

p
XX 




 ,  )1...,,1( pJ , 

and then show that X  is inadmissible when 4p . 

 

 

5. The James-Stein estimator (II) 

Let 
p

pp RINX   ),,(~| θ , and 
p

pp RcIcN ),,(~ 2θ , where 02   

is a known hyperparameter. 

1. Derive the marginal distribution of X . 

2. Derive the posterior distribution of xX |θ . 

3. Derive the Bayes estimator of  , which is written in terms of )1/(1 2 . 

4. Show that )||/(||)2( 2cXp   is an unbiased estimator of )1/(1 2 . 

5. By the plug-in unbiased estimator of )1/(1 2 , find the empirical Bayes 

estimator of  . 
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Answer 1: 

[Proof by contradiction] Suppose that )(
~

XT  is better than )(XT . Then, 

  for    )()(~ TT
RR . Thus, )(sup)(sup ~  TT

RR   and so )(
~

XT  is also 

minimax. This contradicts to the uniqueness.  

Answer 2: 

1) [Proof by contradiction] Suppose that )(* X  is not minimax under 1 . 

That is, there exist an estimator )(X  with )(sup)(sup *

11

FRFR
FF




 . Then, 

)(sup)(sup)(sup)(sup **

11

FRFRFRFR
FFFF




 . 

This contradicts that )(* X  is minimax in  . 

[Proof by direct calculation] For )(XT , 

)(sup)(sup)(sup)(sup
1

**

1

FRFRFRFR T
F

T
FFF 




. 

Therefore, )(* X  is minimax in 1 . 

2) Set ]},0(),(),(|{ 2

),( 2 cF
N

 


, 21 L  and XX )(* . 

Then, 1  and ncFRFR
FF

/)(sup)(sup *

1

* 



. Since X  is a minimax 

estimator for )( 1XE  in  , it is minimax also in 2L . 

3) Set })1,0(),,1(~|{ 1  ppBinXF , ]1,0[1 L  and 

2

1
)(*

nn

n
X

nn

n
X





  that is minimax in   with the constant risk 

2)1(4

1
)(*

n
pR





. Then, 1  and it remains to show 

2)1(4

1
)(sup *

1 n
FR
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. By direct calculations, 
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Since 22

1

22

11 )()()(   XEXEXVar FFF , 
2)1(4

1
)(*

n
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. 

Hence, 
2)1(4

1
)(sup *

1 n
FR

F 





 holds. 

Answer 3: 
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1. The (improper) posterior density is 
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The generalized Bayes action is the minimizer of 
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The Bayes action is  
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2. Note that 0P
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. It follows that 
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3. 4. 5. See below 

Overall, the Bayes action provides the smallest MSE while the sample mean has 

the largest MSE. 
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Fig.  ----- X ;  ------ )(X ;  ----- )0,max(X  

n=10 

R=50000 
N=500 

mu_vec=seq(0.1,2.5,length=N) 
R_bar=R_Bayes=R_MLE=numeric(N) 

 

for(j in 1:N){ 
 

  mu=mu_vec[j]   
   

  bar=Bayes=MLE=numeric(R) 

  for(i in 1:R){ 
    x=rnorm(n,mean=mu) 

    x_bar=mean(x) 
    bar[i]=x_bar 

    Bayes[i]=x_bar+dnorm(sqrt(n)*x_bar)/(1-pnorm(-sqrt(n)*x_bar))/sqrt(n) 

    MLE[i]=max(x_bar,0) 
  } 

 
  R_bar[j]=mean((bar-mu)^2) 

  R_Bayes[j]=mean((Bayes-mu)^2) 

  R_MLE[j]=mean((MLE-mu)^2) 
 

} 
 

Min=min(R_bar,R_Bayes,R_MLE) 

Max=max(R_bar,R_Bayes,R_MLE) 
plot(mu_vec,R_bar,type="l",xlab="mu",ylab="Risk",ylim=c(Min,Max)) 

points(mu_vec,R_Bayes,type="l",col="red") 
points(mu_vec,R_MLE,type="l",col="blue") 

 

Answer 4: 

One can write )()( XgXX   where ))(),...,(()( 1
 pXgXgXg  and  

)(
||||

3
)( XX

JXX

p
Xg i

p

i 



 . Then,  



6 




























































222

222

)||(||

)(2

||||

)/11(
)3(

)(2)(
2

)||(||

)(

||||

)/11(
)3(

)(

p

pi

p

i

j

j

p

pi

p

i

i

JXX

JXX

JXX

p
p

XXXX
pJXX

JXX

JXX

p
p

Xg
X

 

and  

2

2

1 ||||

)3(
)(

p

p

i

i

i JXX

p
Xg

X 










. 

By Corollary 7.2 of Lehmann & Casella (p.273 of the book), we have 
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Hence, if 4p , then )()(  XRpR   

Answer 5: 

1. ))1(,(~ 2

pp IcNX  . 

Proof: Since pXX ,...,1  are iid, we only need to derive the marginal 

distribution of jX . It can be shown (calculations omitted) that, 
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Hence, ))1(,(~ 2jj cNX . 

2. xX |θ  ~ 
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  (the James-Stein estimator) 

 

 


