Statistical inference I, 2012 Fall, Homework #2

1. Sigma-field:

Let $X : (\Omega, \mathbf{F}, P) \to (R, \mathbf{B})$ be a random variable, representing the failure time of an electric component.

- (i) Suppose an engineer *cannot* observe the exact failure time X. Instead, he/she can observe the failure status of the electric component at time t>0. That is, the engineer can identify whether the event $\{X \le t\}$ occurs or not. Show that $\{X \le t\} \in \mathbf{F}$ (just recall the definition of random variables in my note or p.7 of the text).
- (ii) Find $\sigma(\{X \le t\})$, a σ -field generated by the event $\{X \le t\}$.

(this σ -field represents all events that the engineer can observe at time *t*)

- (iii) Suppose that an engineer can observe the failure status of the electric component at two different times $t_1 < t_2$. Find $\sigma(\{X \le t_1\}, \{X \le t_2\})$.
- (iv) Suppose that an engineer can observe the failure status of the electric component at $t_1 < t_2 < \cdots < t_k$. Explicitly write

 $\mathbf{F}_k = \sigma([\{X \le t_i\}; j = 1, 2, ..., k])$. How many elements are there?

(\mathbf{F}_i represents all events that the engineer can observe before t_k)

(v) Show that
$$\mathbf{F}_{i-1} \subset \mathbf{F}_i$$
 for $i = 2, ..., k$.

(vi) Prove or disprove $\{X > t_i\} \in \mathbf{F}_i, \{X > t_i\} \in \mathbf{F}_{i-1}, \text{ and } \{X \ge t_i\} \in \mathbf{F}_{i-1}$

2. Asymptotic analysis

Show that $X_n = o_P(Y_n)$ implies $X_n = O_P(Y_n)$.

3. Exponential family

Problem 13 (p.143), Problem 14 (144)

4. Location-scale family

Suppose that a probability measure $P_{\mu,\Sigma,\nu}$ defined on the *k*-dimensional Borel field has a density (w.r.t. a Lebesgue measure)

$$f_{\mu,\Sigma,\nu}(\mathbf{x}) = \frac{\det(\Sigma)^{-1/2} \Gamma\{(\nu+k)/2\}}{\Gamma(1/2)^k \Gamma(\nu/2) \nu^{k/2}} \left\{ 1 + \frac{(\mathbf{x}-\mu)^T \Sigma^{-1} (\mathbf{x}-\mu)}{\nu} \right\}^{-(\nu+k)/2}$$

(i) Show that $P_{\mu,\Sigma,\nu}(B) = P_{\nu}(\Sigma^{-1/2}(B - \mu\Sigma))$ for some P_{ν} , and write down P_{ν} .

(ii) For cases of k = 1, 2, show $P_v \rightarrow_d P$ using Scheffe's theorem (p.59). Please explain in details how to apply the Scheffe's theorem. **NOTE:** This is my simplified answers. You need to write more detailed calculations.

Answer 1

(ii)
$$\sigma(\{X \le t\}) = [\phi, \{X \le t\}, \{X > t\}, \Omega].$$

(iii) $\sigma(\{X \le t_1\}, \{X \le t_2\})$
 $= [\phi, \{X \le t_1\}, \{X \le t_2\}, \{X > t_1\}, \{X > t_2\}, \{t_1 < X \le t_2\}, \{X \le t_1 \text{ or } X > t_2\}, \Omega]$

8 elements.

(iv) Let $t_0 = -\infty$. Then, $\mathbf{F}_k = \sigma([\{X \le t_j\}; j = 1, 2, ..., k])$ $= \left\{ \bigcup_{j=1}^{k+1} A_j \middle| A_j = \{X \in (t_{j-1}, t_j]\} \text{ or } \phi, j = 1, ..., k; \quad A_{k+1} = \{X > t_k\} \text{ or } \phi \right\}$

Hence, the number of elements is 2^{k+1} . I check this number by a special case of k=3 as follows:

$$\begin{split} &\sigma(\{X \leq t_1\}, \{X \leq t_2\}, \{X \leq t_3\}) = \\ &[\phi, \Omega, \\ &\{X \leq t_1\}, \{X \leq t_2\}, \{X \leq t_3\}, \\ &\{X > t_1\}, \{X > t_2\}, \{X > t_3\}, \\ &\{t_1 < X \leq t_2\}, \{t_2 < X \leq t_3\}, \{t_2 < X \leq t_3\}, \{t_1 < X \leq t_3\}, \\ &\{t_1 < X \leq t_2\}^c, \{t_2 < X \leq t_3\}^c, \{t_2 < X \leq t_3\}^c, \{t_1 < X \leq t_3\}^c \end{bmatrix}$$

Hence, we have $16=2^{3+1}$ elements.

- (v) Omit [it follows from (A1)].
- (vi) From (A1), $\{X > t_i\} \in \mathbf{F}_i$, $\{X > t_i\} \notin \mathbf{F}_{i-1}$ and $\{X \ge t_i\} = \{X > t_{i-1}\} \in \mathbf{F}_{i-1}$.