Statistical inference I, 2012 Fall, Homework \#2

1. Sigma-field:

Let $X:(\Omega, \mathbf{F}, P) \rightarrow(R, \mathbf{B})$ be a random variable, representing the failure time of an electric component.
(i) Suppose an engineer cannot observe the exact failure time X. Instead, he/she can observe the failure status of the electric component at time $t>0$. That is, the engineer can identify whether the event $\{X \leq t\}$ occurs or not. Show that $\{X \leq t\} \in \mathbf{F}$ (just recall the definition of random variables in my note or p .7 of the text).
(ii) Find $\sigma(\{X \leq t\})$, a σ-field generated by the event $\{X \leq t\}$. (this σ-field represents all events that the engineer can observe at time t)
(iii) Suppose that an engineer can observe the failure status of the electric component at two different times $t_{1}<t_{2}$. Find $\sigma\left(\left\{X \leq t_{1}\right\},\left\{X \leq t_{2}\right\}\right)$.
(iv) Suppose that an engineer can observe the failure status of the electric component at $t_{1}<t_{2}<\cdots<t_{k}$. Explicitly write
$\mathbf{F}_{k}=\sigma\left(\left[\left\{X \leq t_{j}\right\} ; j=1,2, \ldots, k\right]\right)$. How many elements are there?
(\mathbf{F}_{j} represents all events that the engineer can observe before t_{k})
(v) Show that $\mathbf{F}_{i-1} \subset \mathbf{F}_{i}$ for $i=2, \ldots, k$.
(vi) Prove or disprove $\left\{X>t_{i}\right\} \in \mathbf{F}_{i},\left\{X>t_{i}\right\} \in \mathbf{F}_{i-1}$, and $\left\{X \geq t_{i}\right\} \in \mathbf{F}_{i-1}$

2. Asymptotic analysis

Show that $X_{n}=o_{P}\left(Y_{n}\right)$ implies $X_{n}=O_{P}\left(Y_{n}\right)$.

3. Exponential family

Problem 13 (p.143), Problem 14 (144)

4. Location-scale family

Suppose that a probability measure $P_{\mu, \Sigma, v}$ defined on the k-dimensional Borel field has a density (w.r.t. a Lebesgue measure)

$$
f_{\mu, \mathbf{\Sigma}, v}(\mathbf{x})=\frac{\operatorname{det}(\Sigma)^{-1 / 2} \Gamma\{(v+k) / 2\}}{\Gamma(1 / 2)^{k} \Gamma(v / 2) v^{k / 2}}\left\{1+\frac{(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu}}{v}\right\}^{-(v+k) / 2} .
$$

(i) Show that $P_{\mu, \Sigma, v}(B)=P_{v}\left(\boldsymbol{\Sigma}^{-1 / 2}(B-\boldsymbol{\mu} \mathbf{\Sigma})\right)$ for some P_{v}, and write down P_{v}.
(ii) For cases of $k=1,2$, show $P_{v} \rightarrow_{d} P$ using Scheffe's theorem (p.59). Please explain in details how to apply the Scheffe's theorem.

NOTE: This is my simplified answers. You need to write more detailed calculations.

Answer 1

(ii) $\sigma(\{X \leq t\})=[\phi,\{X \leq t\},\{X>t\}, \Omega]$.
(iii) $\begin{aligned} & \sigma\left(\left\{X \leq t_{1}\right\},\left\{X \leq t_{2}\right\}\right) \\ & =\left[\phi,\left\{X \leq t_{1}\right\},\left\{X \leq t_{2}\right\},\left\{X>t_{1}\right\},\left\{X>t_{2}\right\},\left\{t_{1}<X \leq t_{2}\right\},\left\{X \leq t_{1} \text { or } X>t_{2}\right\}, \Omega\right]\end{aligned}$.

8 elements.
(iv) Let $t_{0}=-\infty$. Then,

$$
\begin{aligned}
\mathbf{F}_{k} & =\sigma\left(\left[\left\{X \leq t_{j}\right\} ; j=1,2, \ldots, k\right]\right) \\
& =\left\{\bigcup_{j=1}^{k+1} A_{j} \mid A_{j}=\left\{X \in\left(t_{j-1}, t_{j}\right]\right\} \text { or } \phi, j=1, \ldots, k ; \quad A_{k+1}=\left\{X>t_{k}\right\} \text { or } \phi\right\}
\end{aligned}
$$

Hence, the number of elements is 2^{k+1}. I check this number by a special case of $k=3$ as follows:
$\sigma\left(\left\{X \leq t_{1}\right\},\left\{X \leq t_{2}\right\},\left\{X \leq t_{3}\right\}\right)=$
$[\phi, \Omega$,
$\left\{X \leq t_{1}\right\},\left\{X \leq t_{2}\right\},\left\{X \leq t_{3}\right\}$,
$\left\{X>t_{1}\right\},\left\{X>t_{2}\right\},\left\{X>t_{3}\right\}$
$\left\{t_{1}<X \leq t_{2}\right\},\left\{t_{2}<X \leq t_{3}\right\},\left\{t_{2}<X \leq t_{3}\right\},\left\{t .<X \leq t_{3}\right\}$,
$\left.\left\{t_{1}<X \leq t_{2}\right\}^{c},\left\{t_{2}<X \leq t_{3}\right\}^{c},\left\{t_{2}<X \leq t_{3}\right\}^{c},\left\{t .<X \leq t_{3}\right\}^{c}\right]$
Hence, we have $16=2^{3+1}$ elements.
(v) Omit [it follows from (A1)].
(vi) From (A1), $\left\{X>t_{i}\right\} \in \mathbf{F}_{i},\left\{X>t_{i}\right\} \notin \mathbf{F}_{i-1}$ and $\left\{X \geq t_{i}\right\}=\left\{X>t_{i-1}\right\} \in \mathbf{F}_{i-1}$.

