Homework \#1

\#1
The mean of the binomial distribution is $n p$, the variance is $n p(1-p)$, and the skewness is $\frac{1-2 p}{\sqrt{n p(1-p)}}$, where n is the number of trials and p is the successful probability in each trial. Fix $n=$ 15 , the means of the binomial distribution are $1.5,7.5$, and 13.5 for $p=0.1,0.5$, and 0.9 , respectively. The variances are $1.35,3.75$, and 1.35 . The values of the skewness are $0.689,0.000$, and -0.689 . These results indicate that the binomial distribution tends to be left-skewed as p increases when n is fixed. In other words, the binomial distribution is right-skewed if p is smaller than 0.5 . When $p=$ 0.5 , the binomial distribution is symmetric. On the other hand, fix $p=0.25$, the means of the binomial distribution are $2.5,5$, and 10 for $n=10,20$, and 40 , respectively. The variances are $1.875,3.750$, and 7.500. The values of the skewness are $0.365,0.258$, and 0.183 . Theses results indicate that the binomial distribution becomes more symmetric when n increases. The value of skewness decreases to 0 as the n increases when p is fixed. In conclusion, the binomial distribution is symmetric when p is 0.5 , and is right-skewed when p is smaller than 0.5 . The following figures shows these properties.

《CODE》

```
rm(list=ls(all=TRUE))
layout(matrix(1:2,1,2))
######### (a) #########
na = 15
P=c(0.1,0.5,0.9)
pl = c()
for(i in 1:16){
```

```
    z= 1-1
    p1[i] = dbinom(z, size=na, prob=P[1])
}
p2 = c()
for(i in 1:16){
    z= i-1
    p2[i] = dbinom(z, size=na, prob=P[2])
}
p3 = c()
for(i in 1:16){
    z= i-1
    p3[i] = dbinom(z, size=na, prob=P[3])
}
X = data.frame(p1,p2,p3)
par(family="serif")
barplot(t(as.matrix(X)),beside=TRUE,col=c("dodgerblue3","black","deepskyblue"),axes=FALSE,
border=NA,ylim=c(0,0.4),xlim=c}(0,64)
axis(1,at=c(1.5,14,26,39,51,63.5),lab=c("0","3","6","9","12","15"),font.axis=5)
axis(2,at=c(0,0.1,0.2,0.3,0.4),lab=c("0","0.1","0.2","0.3","0.4"),font.axis=5)
box()
legend(30,0.4,c("n = 15, p = 0.1","n = 15, p = 0.5","n = 15, p =
0.9"),pch=c(15,15,15),col=c("dodgerblue3","black","deepskyblue"),bty = "n",cex=1.5)
title(xlab="x",ylab="f(x)",font.lab=3)
######## (b) #########
rm(list=ls(all=TRUE))
na}=c(10,20,40
P}=\operatorname{rep}(0.25,3
p1 = c()
for(i in 1:(na[1]+1)){
    z= i-1
    p1[i] = dbinom(z, size=na[1], prob=P[1])
}
p2 = c()
for(i in 1:(na[2]+1)){
    z= i-1
    p2[i] = dbinom(z, size=na[2], prob=P[2])
}
p3 = c()
for(i in 1:(na[3]+1)){
    z= i-1
    p3[i] = dbinom(z, size=na[3], prob=P[3])
}
X = data.frame(c(p1,rep(0,30)),c(p2,rep(0,20)),c(p3[1:21],rep(0,20)))
par(family="serif")
barplot(t(as.matrix(X)),beside=TRUE,col=c("dodgerblue3","black","deepskyblue"),axes=FALSE,
border=NA,ylim=c(0,0.3),xlim=c(0,120))
axis(1,at=c(1.5,22.5,43,85,102.5,120),lab=c("0","5","10","20","25","30"),font.axis=5)
axis(2,at=c(0,0.05,0.1,0.15,0.2,0.25,0.3),lab=c("0","0.05","0.1","0.15","0.2","0.25","0.3"),font.axi
s=5)
box()
legend(75,0.3,c("n = 10, p = 0.25","n = 20, p = 0.25","n = 40, p =
0.25"),pch=c(15,15,15),col=c("dodgerblue3","black","deepskyblue"),bty = "n",cex=1.5)
title(xlab="x",ylab="p(x)",font.lab=3)
```

Let $X \sim N\left(\mu, \sigma^{2}\right) . \quad P(\mu-\sigma \leq X \leq \mu+\sigma)=P\left(\frac{\mu-\sigma-\mu}{\sigma} \leq \frac{X-\mu}{\sigma} \leq \frac{\mu+\sigma-\mu}{\sigma}\right)=P(-1 \leq Z \leq 1)$
$=P(Z \leq 1)-P(Z \leq-1)=\Phi(1)-\Phi(-1)$ where Z is the standard normal distribution, and $\Phi(\cdot)$ is the cumulative density function of standard normal distribution. In addition, " pnorm (k, μ, σ) " can calculate the $P(X \leq k)$, in R language and the ppm Defective is $\{1-P(-\sigma-\mu \leq X \leq \sigma+\mu)\} \times 10^{6}$. Therefore, we could use the R language to determine the percentage inside specs and ppm Defective with different Spec. Limits.

Spec. Limit	Percentage Inside Specs	ppm Defective
± 1 Sigma	68.27	317310.508
± 2 Sigma	95.45	45500.264
± 3 Sigma	99.73	2699.796
± 4 Sigma	99.9937	63.342
± 5 Sigma	99.999943	0.573
± 6 Sigma	99.9999998	0.002

Spec. Limit
± 1 Sigma
± 2 Sigma
69.123
93.319
99.3790
99.97670
99.999660

《CODE》

```
rrm(list=ls(all=TRUE))
```

\#\#\#\#\#\#\#\#\# Determination of percentage inside specs and ppm defective \#\#\#\#\#\#\#\#
options(digits=10)
$a=c(1: 6)$
spec. limit $=c()$
for(i in 1:6) $\{$
spec.limit[i] $=$ pnorm(a[i])- pnorm(-a[i])
\}
ppmdef $=(1-\text { spec.limit })^{*} 10^{\wedge} 6$
round $(\text { spec.limit, digits }=10)^{*} 100$
round $($ ppmdef, digits $=3$)
options(digits=10)
$\mathrm{b}=\mathrm{c}(1: 6)$
spec. limitb $=c()$
for(i in 1:6) \{
spec.limitb[i] = pnorm(b[i],1.5,1)- pnorm(-b[i],1.5,1)
\}
ppmdefb $=(1 \text {-spec.limitb })^{*} 10^{\wedge} 6$
round $(\text { spec.limitb, digits }=10)^{*} 100$
round(ppmdefb, digits $=3$)\#\#\#\#\#\#\#\# (a) \#\#\#\#\#\#\#\#
layout(matrix(1:2,2,1))
stnorm $=$ function $(x)\{$
(1/sqrt(2*pi))*exp(-(x^2/2))
\}
$\operatorname{par}(f a m i l y=" s e r i f ")$
curve(stnorm,from=-6,to=6,ylim=c(0,0.5),xlab="",ylab="",col="blue",axes=FALSE)
$\operatorname{axis}(1, \mathrm{at}=\mathrm{c}(-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6)$,
lab=c(expression(-6*sigma),expression($-5 *$ sigma),expression($-4 *$ sigma),expression(-
3^{*} sigma),
expression(-2 *sigma),expression(-1 *sigma),expression(mu==T),expression(+1 *sigma),
expression $(+2$ sigma),expression($+3 *$ sigma),expression $(+4 *$ sigma $)$,expression $(+5 *$ sigma $)$,e
xpression(+6*sigma),font.axis=5)
box()
polygon(c(-6,seq(-6,6,0.01),6) ,c(0,dnorm(seq(-6,6,0.01)),0) ,col='skyblue')
par(new=TRUE)
plot(rep(-

```
3,length(seq(0,0.45,by=0.1))),seq(0,0.45,by=0.1),type="l",xlab="",ylab="",axes=FALSE,xlim=c(-
6,6),ylim=c(0,0.5))
par(new=TRUE)
plot(rep(3,length(seq(0,0.45,by=0.1))),seq(0,0.45,by=0.1),type="1",xlab="",ylab="",axes=FALSE,
xlim=c(-6,6),ylim=c(0,0.5))
text(-3,0.42,"LSL",cex=1.5)
text(3,0.42,"USL",cex=1.5)
text(0,0.2,"\pm"~3*sigma,cex=1.5)
text(0,0.15,"99.73%",cex=1.5)
######## (b) #########
rm(list=ls(all=TRUE))
stnorm1 = function(x){
    (1/sqrt(2*pi)**exp(-(x^2/2))
}
stnorm2 = function(x){
    (1/sqrt(2*pi))*exp(-((x-1.5)^2/2))
}
stnorm3 = function(x){
    (1/sqrt(2*pi))*exp(-((x+1.5)^2/2))
}
par(family="serif")
curve(stnorm2,from=-6,to=6,ylim=c(0,0.5),xlab="",ylab="",col="blue",axes=FALSE)
polygon(c(-6,seq(-6,6,0.01),6) ,c(0,dnorm(seq(-6,6,0.01),1.5,1),0) ,col='skyblue', border
='skyblue')
axis(1,at=c(-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6),
    lab=c(expression(-6*sigma),expression(-5*sigma),expression(-4*sigma),expression(-
3*sigma),
    expression(-2*sigma),expression(-1*sigma),expression(mu==T),expression(+1*sigma),
    expression(+2*sigma),expression(+3*sigma),expression(+4*sigma),expression(+5*sigma),e
xpression(+6*sigma)),font.axis=5)
box()
polygon(c(-3.5,seq(-3.5,-1.5,0.01),-1.5) ,c(0,dnorm(seq(-3.5,-1.5,0.01),-1.5,1),dnorm(-
1.5)) ,col='dodgerblue3', border ='dodgerblue3')
polygon(c(-6,seq(-6,-3.5,0.01),-3.5) ,c(0,dnorm(seq(-6,-3.5,0.01),-1.5,1),0) ,col='dodgerblue3',
border ='dodgerblue3')
polygon(c(-3.5,seq(-3.5,-1.5,0.01),-1.5) ,c(dnorm(-3.5),dnorm(seq(-3.5,-1.5,0.01)),stnorm1(-
1.5)) ,col='dodgerblue3', border ='dodgerblue3')
polygon(c(-1.5,seq(-1.5,-1,0.01),-1) ,c(stnorm3(-0.5),dnorm(seq(-1.5,-1,0.01),-1.5,1),stnorm3(-
0.5)) ,col='dodgerblue3', border ='dodgerblue3')
polygon(c(-1.5,seq(-1.5,-1,0.01),-1) ,c(stnorm1(-0.5),dnorm(seq(-1.5,-1,0.01)),stnorm1(-
0.5)) ,col='dodgerblue3', border ='dodgerblue3')
polygon(c(-1.5,seq(-1.5,-1,0.01),-9/12) ,c(stnorm3(-0.5),dnorm(seq(-1.5,-1,0.01),-1.5,1),stnorm3(-
9/12)) ,col='dodgerblue3', border ='dodgerblue3')
polygon(c(-1.5,seq(-1.5,-1,0.01),-9/12) ,c(stnorm3(-0.5),dnorm(seq(-1.5,-1,0.01)),stnorm3(-
9/12)) ,col='dodgerblue3', border ='dodgerblue3')
curve(stnorm2,from=-6,to=6,ylim=c(0,0.5),xlab="",ylab="",col="blue",axes=FALSE,add=TRUE)
curve(stnorm1,from=-6,to=6,ylim=c(0,0.5),axes=FALSE,xlab="",ylab="",col="blue",add=TRUE)
curve(stnorm3,from=-6,to=6,ylim=c(0,0.5),xlab="",ylab="",col="blue",axes=FALSE,add=TRUE)
par(new=TRUE)
plot(rep(-
6,length(seq(0,0.45,by=0.1))),seq(0,0.45,by=0.1),type="l",xlab="",ylab="",axes=FALSE,xlim=c(-
6,6),ylim=c(0,0.5))
par(new=TRUE)
```

```
plot(rep(6,length(seq(0,0.45,by=0.1))),seq(0,0.45,by=0.1),type="l",xlab="",ylab="",axes=FALSE,
xlim=c(-6,6),ylim=c(0,0.5))
text(-6,0.42,"LSL",cex=1.5)
text(6,0.42,"USL",cex=1.5)
par(new=TRUE)
plot(rep(-
1.5,length(seq(0,0.55,by=0.1))),seq(0,0.55,by=0.1),type="l",xlab="",ylab="",axes=FALSE,xlim=
c(-6,6),ylim=c(0,0.5))
par(new=TRUE)
plot(rep(1.5,length(seq(0,0.55,by=0.1))),seq(0,0.55,by=0.1),type="l",xlab="",ylab="",axes=FALS
E,xlim=c(-6,6),ylim=c(0,0.5))
par(new=TRUE)
plot(rep(0,length(seq(0,0.45,by=0.1))),seq(0,0.45,by=0.1),type="l",xlab="",ylab="",axes=FALSE,
xlim=c(-6,6),ylim=c(0,0.5),lty=2)
par(new=TRUE)
plot(rep(0,length(seq(0.4,0.55,by=0.1))),seq(0.4,0.55,by=0.1),type="l",xlab="",ylab="",axes=FAL
SE,xlim}=c(-6,6),ylim=c(0,0.5)
arrows(-1.5,0.45,0,0.45,code=3)
arrows(0,0.45,1.5,0.45,code=3)
text(-0.75,0.47,expression(1.5*sigma),cex=1.5)
text(0.75,0.47,expression(1.5*sigma),cex=1.5)
```


《OUTPUT》

> spec.limit
[1] 0.68268949210 .95449973610 .99730020390 .99993665750 .99999942670 .9999999980
> ppmdef
[1] $3.173105079 \mathrm{e}+054.550026390 \mathrm{e}+042.699796063 \mathrm{e}+036.334248367 \mathrm{e}+015.733031438 \mathrm{e}-01$
$1.973175401 \mathrm{e}-03$
$>$ spec.limitb
[1] 0.30232787340 .69122983220 .93318940110 .99379031570 .99976737090 .9999966023
> ppmdefb
[1] 6.976721266e+05 3.087701678e+05 6.681059894e+04 6.209684315e+03 2.326291192e+02
$3.397673157 \mathrm{e}+00$

